Open Problems in Automata Theory: An Idiosyncratic View

Jeffrey Shallit
School of Computer Science University of Waterloo
Waterloo, Ontario N2L 3G1 Canada
shallit@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~shallit

Outline

1. The separating words problem
2. Bucher's problem on separating context-free languages
3. Nonzero Hankel determinants
4. The Endrullis-Hendriks transducer problem
5. The Oldenburger-Kolakoski problem
6. Primes and automata
7. Divisibility and automata
8. A universality problem

The Simplest Computational Problem?

Imagine a stupid computing device with very limited powers...

What is the simplest computational problem you could ask it to solve?

The Simplest Computational Problem?

- not the addition of two numbers
- not sorting
- it's telling two inputs apart - distinguishing them

Thanks to Gavin Rymill for letting me use his Dalek image.

Our Computational Model: the Finite Automaton

Our main computational model is the deterministic finite automaton, or DFA.

We also consider nondeterministic finite automata, or NFA.

Motivation

We want to know how many states suffice to tell one length- n input from another.

On average, it's easy - but how about in the worst case?
Motivation: a classical problem from the early days of automata theory:

Given two automata, how big a word do we need to distinguish them?

Motivation

More precisely, given two DFA's M_{1} and M_{2}, with m and n states, respectively, with $L\left(M_{1}\right) \neq L\left(M_{2}\right)$, what is a good bound on the length of the shortest word accepted by one but not the other?

- The cross-product construction gives an upper bound of $m n-1$ (make a DFA for $L\left(M_{1}\right) \cap \overline{L\left(M_{2}\right)}$)
- But an upper bound of $m+n-2$ follows from the usual algorithm for minimizing automata
- Furthermore, this bound is best possible.
- For NFA's the bound is exponential in m and n

Separating Words with Automata

Our problem is the inverse problem: given two distinct words, how big an automaton do we need to separate them?

That is, given two words w and x of length $\leq n$, what is the smallest number of states in any DFA that accepts one word, but not the other?

Call this number $\operatorname{sep}(w, x)$.

Separation

A machine M separates the word w from the word x if M accepts w and rejects x, or vice versa.

For example, the machine below separates 0010 from 1000.

However, no 2-state DFA can separate these two words. So $\operatorname{sep}(1000,0010)=3$.

Separating Words of Different Length

Easy case: if the two words are of different lengths, both $\leq n$, we can separate them with a DFA of size $O(\log n)$.

For by the prime number theorem, if $k \neq m$, and $k, m \leq n$ then there is a prime $p=O(\log n)$ such that $k \not \equiv m(\bmod p)$.

So we can accept one word and reject the other by using a cycle $\bmod p$, and the appropriate residue class.

Separating Words of Different Length

Example: suppose $|w|=22$ and $|x|=52$. Then $|w| \equiv 1(\bmod 7)$ and $|x| \equiv 3(\bmod 7)$. So we can accept w and reject x with a DFA that uses a cycle of size 7 , as follows:

Separating Words with Automata

A similar idea works if the strings have a different number of 1's, or if the 1's are in different positions, or if the number of occurrences of a short subword is different, etc.

Separating Words With Automata

- Let

$$
S(n):=\max _{\substack{|w|=|x|=n \\ w \neq x}} \operatorname{sep}(w, x),
$$

the smallest number of states required to separate any two strings of length n.

- The separation problem was first studied by Goralcik and Koubek 1986, who proved $S(n)=o(n)$.
- In 1989 Robson who obtained the best known bound: $S(n)=O\left(n^{2 / 5}(\log n)^{3 / 5}\right)$.

Separating Words with Automata

For equal-length strings, $S(n)$ doesn't depend on alphabet size (provided it is at least 2).

Suppose x, y are distinct strings of length n an alphabet Σ of size >2.

Then they must differ in some position, say

$$
\begin{aligned}
& x=x^{\prime} a x^{\prime \prime} \\
& y=y^{\prime} b y^{\prime \prime}
\end{aligned}
$$

for $a \neq b$.
Map a to $0, b$ to 1 and assign all other letters arbitrarily to either 0 or 1 . This gives two new distinct strings X and Y of the same length. If X and Y can be separated by an m-state DFA, then so can x and y, by renaming transitions to be over Σ instead of 0 and 1.

Separating Words With Automata

Not the best upper bound:
Theorem (Robson, 1996). We can separate words by computing the parity of the number of 1 's occurring in positions congruent to $i(\bmod j)$, for $i, j=O(\sqrt{n})$.

This gives the bound $S(n)=O\left(n^{1 / 2}\right)$.

Open Problem 1 (£100): Improve Robson's upper bound of $O\left(n^{2 / 5}(\log n)^{3 / 5}\right)$ on $S(n)$.

Separating Words With Automata: Lower Bound

- Claim: $S(n)=\Omega(\log n)$.
- To see this, consider the two strings

$$
0^{t-1+\operatorname{lcm}(1,2, \ldots, t)} 1^{t-1} \quad \text { and } \quad 0^{t-1} 1^{t-1+\operatorname{lcm}(1,2, \ldots, t)}
$$

Proof in pictures:

Separating Words With Automata: Lower Bound

So no t-state machine can distinguish these strings.
Since $\operatorname{Icm}(1,2, \ldots, t)=e^{t+o(t)}$ by the prime number theorem, the lower bound $S(n)=\Omega(\log n)$ follows.

Variations on Separating Words

- Separation by context-free grammars; count number of productions
- Problem: right-hand sides can be arbitrarily complicated
- Solution: Use CFG's in Chomsky normal form (CNF), where all productions are of the form $A \rightarrow B C$ or $A \rightarrow a$.

Variations on Separating Words

- In 1999 Currie, Petersen, Robson and JOS proved:
- If $|w| \neq|x|$ then there is a CFG in CNF with $O(\log \log n)$ productions separating w from x. Furthermore, this bound is optimal.
- If $|w|=|x|$ there is a CFG in CNF with $O(\log n)$ productions separating w from x. There is a lower bound of $\Omega\left(\frac{\log n}{\log \log n}\right)$.
Open Problem 2 (£10): Find matching upper and lower bounds for CFG's in the case $|w|=|x|$.

More Variations on Separating Words

- Separation by NFA. Do NFA's give more power?

Yes,

$$
\operatorname{sep}(0001,0111)=3
$$

but

$$
\mathrm{nsep}(0001,0111)=2
$$

More Variations on Separating Words

Is

$$
\operatorname{sep}(x, w) / n \operatorname{sep}(x, w)
$$

unbounded?

Yes.

Consider once again the strings

$$
w=0^{t-1+\operatorname{lcm}(1,2, \ldots, t)} 1^{t-1} \quad \text { and } \quad x=0^{t-1} 1^{t-1+\operatorname{lcm}(1,2, \ldots, t)}
$$

where $t=n^{2}-3 n+2, n \geq 4$.

We know from before that any DFA separating these strings must have at least $t+1=n^{2}-3 n+3$ states.

Now consider the following NFA M :

The language accepted by this NFA is $\left\{0^{a}: a \in A\right\} 1^{*}$, where A is the set of all integers representable by a non-negative integer linear combination of n and $n-1$.

But $t-1=n^{2}-3 n+1 \notin A$.
On the other hand, every integer $\geq t$ is in A. Hence $w=0^{t-1+\operatorname{lcm}(1,2, \ldots, t)} 1^{t-1}$ is accepted by M but $x=0^{t-1} 1^{t-1+\operatorname{lcm}(1,2, \ldots, t)}$ is not.
M has $2 n=\Theta(\sqrt{t})$ states, so
$\operatorname{sep}(x, w) / n \operatorname{sep}(x, w) \geq \sqrt{t}=\Omega(\sqrt{\log |x|})$, which is unbounded.

More Variations on Separating Words

Open Problem 3 (£50): Find good bounds on $\operatorname{nsep}(w, x)$ for $|w|=|x|=n$, as a function of n.

Open Problem 4 (£50): Find good bounds on $\operatorname{sep}(w, x) / n s e p(w, x)$.

More Variations on Separating Words

- Must $\operatorname{sep}\left(w^{R}, x^{R}\right)=\operatorname{sep}(w, x)$?

No, for $w=1000, x=0010$, we have

$$
\operatorname{sep}(w, x)=3
$$

but

$$
\operatorname{sep}\left(w^{R}, x^{R}\right)=2
$$

Open Problem 5 (£10):
Is

$$
\left|\operatorname{sep}(x, w)-\operatorname{sep}\left(x^{R}, w^{R}\right)\right|
$$

unbounded?

More Variations on Separating Words

- Two words are conjugates if one is a cyclic shift of the other.
- Is the separating words problem any easier if restricted to pairs of conjugates?

Another Kind of Separation

Suppose you have regular languages R_{1}, R_{2} with $R_{1} \subseteq R_{2}$ and $R_{2}-R_{1}$ infinite.

Then it is easy to see that there is a regular language R_{3} such that $R_{1} \subseteq R_{3} \subseteq R_{2}$ such that $R_{2}-R_{3}$ and $R_{3}-R_{1}$ are both infinite.

This is a kind of topological separation property.

Another Kind of Separation

In 1980, Bucher asked:
Open Problem 6 (£100): Is the same true for context-free languages?

That is, given context-free languages L_{1}, L_{2} with $L_{1} \subseteq L_{2}$ and $L_{2}-L_{1}$ infinite, need there be a context-free language L_{3} such that $L_{1} \subseteq L_{3} \subseteq L_{2}$ such that $L_{2}-L_{3}$ and $L_{3}-L_{1}$ are both infinite?

Not even known in the case where $L_{2}=\Sigma^{*}$.

The primitive words problem

Speaking of context-free languages, it's still not known if the primitive words over $\{0,1\}$ are context-free.

A word is primitive if it is a non-power.
This is Open Problem 7 (£200).
A forthcoming 500-page book by Dömösi, Horváth, and Ito called Context-Free Languages and Primitive Words will appear in June 2014.

The Thue-Morse sequence

The Thue-Morse sequence

$$
\mathbf{t}=t_{0} t_{1} t_{2} \cdots=011010011001011010010110 \cdots
$$

can be described in many ways

- by the recurrence $t_{2 n}=t_{n}$ and $t_{2 n+1}=1-t_{n}$
- as the fixed point of the map $0 \rightarrow 01$ and $1 \rightarrow 10$
- as the sequence generated by the following DFA, where the input is n expressed in base 2

Avoidability

- One of the beautiful properties of the Thue-Morse word is that it avoids overlaps
- An overlap is a subword (factor) of the form axaxa, where a is a single letter, and x is a word
- We'd like to generalize this
- One possible generalization involves Hankel determinants

Avoidability

- An $n \times n$ Hankel determinant of a sequence $\left(a_{i}\right)_{i \geq 0}$ is a determinant of a matrix of the form

$$
\left[\begin{array}{cccc}
a_{k} & a_{k+1} & \cdots & a_{k+n-1} \\
a_{k+1} & a_{k+2} & \cdots & a_{k+n} \\
a_{k+2} & a_{k+3} & \cdots & a_{k+n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k+n-1} & a_{k+n} & \cdots & a_{k+2 n-2}
\end{array}\right]
$$

- If a sequence of real numbers has an overlap

then the corresponding $n \times n$ Hankel matrix has the first and last rows both equal to axa, and so the determinant is 0 .

Avoidability

- Is there a sequence on two real numbers for which all the Hankel determinants (of all orders) are nonzero?
- No - a simple backtracking argument proves that the longest such sequence is of length 14 . For example,

$$
1,1,2,1,1,2,2,1,2,1,1,2,1,2 .
$$

- How about sequences over three numbers?

Open Problem 8 (£100): Is there a sequence on three real numbers for which all the Hankel determinants are nonzero?

Avoidability

Indeed, a backtracking algorithm easily finds such a sequence on $\{1,2,3\}$ with 200 terms.

What is interesting is that this algorithm never had to backtrack!
The sequence begins

$$
1,1,2,1,1,2,2,1,2,1,1,2,1,2,3,1,1,2,1, \ldots
$$

Avoidability

Furthermore, the following morphism seems to generate such a sequence on 4 symbols:
$1 \rightarrow 12,2 \rightarrow 23,3 \rightarrow 14,4 \rightarrow 32$.
This generates the sequence

$$
1223231423141232 \ldots .
$$

Open Problem 9 (£50): Does this sequence have all nonzero Hankel determinants? We have checked up to length 800.

The Endrullis-Hendriks Problem on Transducers

- For two infinite words \mathbf{w} and \mathbf{x}, we write $\mathbf{w} \leq \mathbf{x}$ if we can transform \mathbf{x} into \mathbf{w} by a finite-state transducer.
- If $\mathbf{w} \leq \mathbf{x}$ and $\mathbf{x} \leq \mathbf{w}$ then we write $\mathbf{w} \equiv \mathbf{x}$.
- We call an infinite word \mathbf{w} prime if whenever $\mathbf{x} \leq \mathbf{w}$ either $\mathbf{x} \equiv \mathbf{w}$ or \mathbf{x} is ultimately periodic.

The Endrullis-Hendriks Problem on Transducers

- Example: the infinite word

is prime.
Open Problem 10 (£20): are there any other (inequivalent) prime words over two letters?

Open Problem 11 (£20): is the Thue-Morse word prime?

The Oldenburger-Kolakoski problem

Speaking of transducers, consider the following transducer:

The fixed point of this transducer is

$$
\mathbf{k}=12211212212211211221211 \cdots,
$$

the Oldenburger-Kolakoski word.
Open Problem 12 (£100): Do the frequencies of letters exist? Are they $\frac{1}{2}$?

Primes and automata

Open Problem 13 (£50): Is the following question recursively solvable?

Given a DFA M over the alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$, does M accept the base- k representation of at least one prime number?

If it were, we could decide if there are any more Fermat primes after the largest known one $\left(2^{16}+1\right)$.

Divisibility and automata

Open Problem 14 (£50): Is the following question recursively solvable?

Given a DFA M over the alphabet $\Sigma_{k} \times \Sigma_{k}$, does it accept the base- k representation of a pair of integers (x, y) with $x \mid y$?

A universality problem

Classical problem: given M, a machine of some type (e.g., DFA, NFA, PDA), decide if $L(M)=\Sigma^{*}$.

- Unsolvable, if M is a PDA;
- PSPACE-complete, if M is an NFA;
- Solvable in polynomial time if M is a DFA.

A universality problem

A simple variation:
Given M, does there exist an integer $n \geq 0$ such that $\Sigma^{n} \subseteq L(M)$?

- Still unsolvable for PDA's
- NP-complete for DFA's
- PSPACE-hard for NFA's - but is it in PSPACE? This is Open Problem 15 (£25).

A universality problem

It would follow that this problem is in PSPACE if we knew that if $\Sigma^{r} \subseteq L(M)$ for some n, then there always exists a "small" such r (e.g., $r \leq \exp (p(n))$ for some polynomial p).

To see this, on input the DFA, we just examine every length I up to the bound r and nondeterministically guess a string of length I (symbol-by-symbol) that fails to be accepted. All this can be done in NPSPACE and hence PSPACE by Savitch's theorem.

A related problem

Here is a related problem.
Open Problem 16 (£25): what is the complexity of the following problem: given a finite language L, is $\overline{L^{*}}$ infinite?

If L is represented by a regular expression, this problem is NP-hard.

Another related problem

Open Problem 17 (£25): What is the complexity of the following problem: given a finite list of words L over an alphabet Σ, is $\operatorname{Fact}\left(L^{*}\right)=\Sigma^{*}$?

Here by "Fact" we mean the set of all factors (contiguous subwords).

Similarly, we'd like to find good bounds on the length of the shortest word in $\Sigma^{*}-\operatorname{Fact}\left(S^{*}\right)$, given that $\operatorname{Fact}\left(L^{*}\right) \neq \Sigma^{*}$. This is Open Problem 18 (£200). Currently examples of quadratic length are known, but the best upper bound is doubly-exponential in the length of the longest word in S.

One More for Dessert: Pierce Expansions

Let $a>b>0$ be integers. Define $b_{0}=b$ and $b_{i+1}=a \bmod b_{i}$ for $i \geq 0$.

Let $P(a, b)$ be the least index n such that $b_{n}=0$.

One More for Dessert: Pierce Expansions

An example with $a=35, b=22$:

$$
\begin{aligned}
& b_{0}=22 \\
& b_{1}=35 \bmod 22=13 \\
& b_{2}=35 \bmod 13=9 \\
& b_{3}=35 \bmod 9=8 \\
& b_{4}=35 \bmod 8=3 \\
& b_{5}=35 \bmod 3=2 \\
& b_{6}=35 \bmod 2=1 \\
& b_{7}=35 \bmod 1=0 .
\end{aligned}
$$

So $P(35,22)=7$.

One More for Dessert: Pierce Expansions

Open Problem 19 (£200): Find good estimates for how big $P(a, b)$ can be, as a function of a.

The problem is interesting because it is related to the so-called "Pierce Expansion" of b / a :

$$
\frac{22}{35}=\frac{1}{1}\left(1-\frac{1}{2}\left(1-\frac{1}{3}\left(1-\frac{1}{4}\left(1-\frac{1}{11}\left(1-\frac{1}{17}\left(1-\frac{1}{35}\right)\right)\right)\right)\right)\right) .
$$

This is called a Pierce expansion.

One More for Dessert: Pierce Expansions

It is known that $P(a, b)=O\left(a^{1 / 3}\right)$. However, the true behavior is probably $O\left((\log a)^{2}\right)$. There is a lower bound of $\Omega(\log a)$, which can be obtained by choosing

$$
\begin{gathered}
a=\operatorname{Icm}(1,2, \ldots, n)-1 \\
b=n .
\end{gathered}
$$

I offer $£ 200$ for a significant improvement to either the known upper or lower bound.

For Further Reading

- J. M. Robson, Separating words with machines and groups, RAIRO Info. Theor. Appl. 30 (1996), 81-86.
- J. Currie, H. Petersen, J. M. Robson, and J. Shallit, Separating words with small grammars, J. Autom. Lang. Combin. 4 (1999), 101-110.
- N. Rampersad, J. Shallit, Z. Xu, The computational complexity of universality problems for prefixes, suffixes, factors, and subwords of regular languages, Fundam. Inform. 116 (1-4) (2012), 223-236.

