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Additive number theory

Let S be a subset of the natural numbers N = {0, 1, 2, . . .}.

The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S .

Probably the most famous example
is Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and

(b) three squares do not suffice for numbers of the form 4a(8k + 7).

(Conjectured by Bachet in 1621.)
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Additive bases

Let S ⊆ N.

We say that a subset S is an basis of order h if every natural number can
be written as the sum of h elements of S , not necessarily distinct.

We say that a subset S is an asymptotic basis of order h if every
sufficiently large natural number can be written as the sum of h elements
of S , not necessarily distinct.
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Gauss’s theorem for triangular numbers

A triangular number is a number of the form n(n + 1)/2.

Gauss wrote the following in his diary on July 10 1796:

i.e., The triangular numbers form an additive basis of order 3
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Waring’s problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is
– the sum of 4 squares

– the sum of 9 cubes
– the sum of 19 fourth powers
– “and so forth”.
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Waring’s problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k ’th powers.

Let G (k) be the least natural number m such that every sufficiently large
natural number is the sum of m k ’th powers.

Proving that g(k) and G (k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G (2) = 4.

Hilbert proved in 1909 that g(k) and G (k) exist for all k .

By Wieferich and Kempner we know g(3) = 9.

We know that 4 ≤ G (3) ≤ 7, but the true value is still unknown.
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Other additive bases?

What other sets can be additive bases?

Not the powers of 2 – too sparse.

Need a set whose natural density is at least N1/k for some k.

How about numbers with palindromic base-b expansions?
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Palindromes

A palindrome is any string that is equal to its reversal

Examples are level, deified, . . .

We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

Examples are 16 = [121]3 and 297 = [100101001]2.

Binary palindromes (b = 2) form sequence A006995 in the On-Line
Encyclopedia of Integer Sequences (OEIS):

0, 1, 3, 5, 7, 9, 15, 17, 21, 27, 31, 33, 45, 51, 63, . . .

They have density Θ(N1/2).
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The problem

Do the base-b palindromes form an additive basis, and if so, of what order?

William Banks (2015) showed
that every natural number
is the sum of at most 49
base-10 palindromes.
(INTEGERS 16 (2016), #A3)

Javier Cilleruelo, Florian Luca, and
Lewis Baxter (2018) showed that for
all bases b ≥ 5, every natural number
is the sum of three base-b palindromes.
(Math. Comp. 87 (2018), 3023–3055.)
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What we proved

However, the case of bases b = 2, 3, 4 was left unsolved. We proved

Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number
4 is optimal.

For example,

10011938 = 5127737 + 4851753 + 32447 + 1

= [10011100011111000111001]2

+ [10010100000100000101001]2

+ [111111010111111]2 + [1]2

4 is optimal: 10011938 is not the sum of 2 binary palindromes.
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Previous proofs were complicated (1)

Excerpt from Banks (2015):

EVERY NATURAL NUMBER IS THE SUM OF FORTY-NINE PALINDROMES 5

In the case that 10 ď m ď 43, we write m “ 10a ` b with digits a, b P D,
a ‰ 0. Using (2.2) we have

n ´ qL,0pa, bq “ n ´ p10L´1a ` 10L´2b ` a ` bq
“ n ´ p10L´2m ` a ` bq

“
L´1ÿ

j“0

10jδj ´ 10L´2p10δL´1 ` δL´2 ´ 6q ´ a ´ b

“ 6 ¨ 10L´2 `
L´3ÿ

j“0

10jδj ´ a ´ b,

and the latter number lies in NL´1,0p5`; cq, where c ” pδ0 ´a´ bq mod 10. Since
qL,0pa, bq is the sum of two palindromes, we are done in this case as well. �

2.4. Inductive passage from Nℓ,kp5`; c1q to Nℓ´1,k`1p5`; c2q.

Lemma 2.4. Let ℓ, k P N, ℓ ě k ` 6, and cℓ P D be given. Given n P Nℓ,kp5`; c1q, one
can find digits a1, . . . , a18, b1, . . . , b18 P Dzt0u and c2 P D such that the number

n ´
18ÿ

j“1

qℓ´1,kpaj , bjq

lies in the set Nℓ´1,k`1p5`; c2q.

Proof. Fix n P Nℓ,kp5`; c1q, and let tδjuℓ´1
j“0 be defined as in (1.1) (with L ..“ ℓ).

Let m be the three-digit integer formed by the first three digits of n; that is,

m ..“ 100δℓ´1 ` 10δℓ´2 ` δℓ´3.

Clearly, m is an integer in the range 500 ď m ď 999, and we have

n “
ℓ´1ÿ

j“k

10jδj “ 10ℓ´3m `
ℓ´4ÿ

j“k

10jδj . (2.4)

Let us denote
S ..“ t19, 29, 39, 49, 59u.

In view of the fact that

9S ..“ S ` ¨ ¨ ¨ ` S
nine copies

“ t171, 181, 191, . . . , 531u,

it is possible to find an element h P 9S for which m ´ 80 ă 2h ď m ´ 60. With
h fixed, let s1, . . . , s9 be elements of S such that

s1 ` ¨ ¨ ¨ ` s9 “ h.

Finally, let ε1, . . . , ε9 be natural numbers, each equal to zero or two: εj P t0, 2u
for j “ 1, . . . , 9. A specific choice of these numbers is given below.
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Previous proofs were complicated (2)

Excerpt from Cilleruelo et al. (2018)

EVERY POSITIVE INTEGER IS A SUM OF THREE PALINDROMES 15

II.1 cm = 1. We do nothing and the temporary configuration becomes the final

one.

II.2 cm = 0. We distinguish the following cases:

II.2.i) ym 6= 0.

δm δm−1

0 0

∗ ym

∗ ∗

−→

δm δm−1

1 1

∗ ym − 1

∗ ∗
II.2.ii) ym = 0.

II.2.ii.a) ym−1 6= 0.

δm δm−1 δm−2

0 0 ∗
ym−1 0 ym−1

∗ zm−1 zm−1

−→

δm δm−1 δm−2

1 1 ∗
ym−1 − 1 g − 2 ym−1 − 1

∗ zm−1 + 1 zm−1 + 1

The above step is justified for zm−1 6= g − 1. But if zm−1 = g − 1, then

cm−1 ≥ (ym−1+zm−1)/g ≥ 1, so cm = (zm−1+ cm−1)/g = (g−1+1)/g = 1,

a contradiction.

II.2.ii.b) ym−1 = 0, zm−1 6= 0.

δm δm−1 δm−2

0 0 ∗
0 0 0

∗ zm−1 zm−1

−→

δm δm−1 δm−2

0 0 ∗
1 1 1

∗ zm−1 − 1 zm−1 − 1

II.2.ii.c) ym−1 = 0, zm−1 = 0.

If also cm−1 = 0, then δm−1 = 0, which is not allowed. Thus, cm−1 = 1.

This means that xm−1 ∈ {g − 1, g − 2}. Since xi ∈ {0, 1, 2} for i ≥ 3, it

follows that m = 3 and we are in one of the cases A.5) or A.6). Further,

δ2 = 1. In this case we change the above configuration to:

δm+1 δm δm−1 δm−2

xm−1 − 1 1 1 xm−1 − 1

∗ g − 1 g − 4 g − 1

0 ∗ 2 2

II.3 cm = 2. In this case it is clear that zm−1 = ym = g − 1 (otherwise

cm 6= 2). Note also that if ym−1 = 0, then cm−1 6= 2 and then cm 6= 2. Thus,
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Previous proofs were complicated (3)

Proofs of Banks and Cilleruelo et al. were long and case-based

Difficult to establish

Difficult to understand

Difficult to check, too: the original Cilleruelo et al. proof had some
minor flaws that were only noticed when the proof was implemented
as a Python program

Idea: could we automate such proofs?
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The main idea of our proof

Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

Allow the automaton to nondeterministically “guess” a representation
of the input as a sum of palindromes

The machine accepts an input if it “verifies” its guess

Then use a decision procedure to establish properties about the
language of representations accepted by this machine (e.g.,
universality – does it accept every possible input?)

We build the machine, but never run it! What we run is an algorithm
that decides a property of the machine.
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Our proof strategy
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Basics of automata

An automaton is a mathematical model of a very simple computer

It takes as input a finite list of symbols x = a1a2 · · · an, called a
“string” or “word”)

The automaton does some computation and then either “accepts” or
“rejects” its input

The set of all accepted strings is called the language recognized by
the automaton
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Parts of an automaton

The finite set of states: each state corresponds to some knowledge
that has been gained about the input

The start state

The set of accepting states

The transition function that specifies, for each state and each input
symbol, which state to enter
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Example of an automaton

A double circle represents an accepting state.

What is the language accepted by this automaton?

It is the set of all strings having no two consecutive a’s.
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Decision algorithms for automata

Given an automaton, we can decide various things about the language
it recognizes.

For example, is the language empty? Or infinite?

Here “decide” means there is an algorithm that, given the automaton
as input, halts and says (for example) either “language is empty” or
“language is not empty”.

In some cases, we can also decide universality: the property of
accepting all strings.
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Picking an automaton for palindromes

What kind of automaton should we choose?

it should be possible to check if the guessed summands are
palindromes

can be done with a pushdown automaton (PDA)

it should be possible to add the summands and compare to the input

can be done with a finite automaton (DFA or NFA)

However

Can’t add summands with these machine models unless they are
guessed in parallel

Can’t check if summands are palindromes if they are wildly different
in length & presented in parallel

Universality is not decidable for PDA’s

What to do?
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A trick

There is a trick that allows us to use finite automata.

The basic idea is the following: there is an 8-state finite automaton that
takes four inputs in parallel—numbers represented by strings
x , y , z ,w—and accepts if and only if x = ta and y = ub and
[tatR ]2 + [ubur ] = [zwR ]2. Here x and y must start with 1 and so must z .
What we get is a description of those n bit numbers that are the sum of
two (n − 1)-bit palindromes.

So we can implicitly represent palindromes by xxR and xaxR and add them
implicitly.
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Idea of the proof

To prove our result, we built two automata:

A accepts all n-bit odd integers, n ≥ 8, that are the sum of three
binary palindromes of length either

n, n − 2, n − 3, or
n − 1, n − 2, n − 3.

B accepts all valid representations of odd integers of length n ≥ 8

We then prove that all inputs accepted by B are accepted by A

Thus every odd integer ≥ 256 is the sum of three binary palindromes.

For even integers, we just include 1 as one of the summands.

The numbers < 256 are easily checked by brute force.

And so we’ve proved: every natural number is the sum of four binary
palindromes.
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Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Theorem

Every natural number N > 64 is the sum of at most three base-4
palindromes.

This completes the classification for base-b palindromes for all b ≥ 2.
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More results

Using NFA’s we can establish an analogue of Lagrange’s four-square
theorem.

A square is any string that is some shorter string repeated twice

Examples are hotshots and murmur

We call an integer a base-b square if its base-b representation is a
square

Examples are 36 = [100100]2 and 3 = [11]2.

The binary squares form sequence A020330 in the OEIS

3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, . . .

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 26 / 33
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Results

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares.

For example:

10011938 = 9291996 + 673425 + 46517

= [100011011100100011011100]2 + [10100100011010010001]2

+ [1011010110110101]2

We also have the following result

Theorem

Every natural number is the sum of at most two binary squares and at
most two powers of 2.
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Generalizing: Waring’s theorem for binary k ’th powers

Recall Waring’s theorem: for every k ≥ 1 there exists a constant g(k)
such that every natural number is the sum of g(k) k’th powers of natural
numbers.

Could the same theorem hold for binary k ’th powers?

Two issues:

1 is not a binary k ’th power, so it has to be “every sufficiently large
natural number” and not “every natural number”.

The gcd g of the binary k’th powers need not be 1, so it actually has
to be “every sufficiently large multiple of g”.
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gcd of the binary k ’th powers

Theorem

The gcd of the binary k’th powers is gcd(k , 2k − 1).

Example:
The binary 6’th powers are

63, 2730, 4095, 149796, 187245, 224694, 262143, 8947848, 10066329, . . .

with gcd equal to gcd(6, 63) = 3.
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Very recent results

Theorem

Every sufficiently large multiple of gcd(k, 2k − 1) is the sum of a constant
number (depending on k) of binary k’th powers.

Obtained with Daniel Kane and Carlo Sanna.
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Outline of the proof

Given a number N we wish to represent as a sum of binary k ’th powers:

choose a suitable power of 2, say 2n, and express N in base 2n.

use linear algebra to change the basis and instead express x as a
linear combination of ck(n), ck(n + 1), . . . , ck(n + k − 1) where

ck(n) =
2kn − 1

2n − 1
.

Such a linear combination would seem to provide an expression for x
in terms of binary k’th powers, but there are three problems to
overcome:

(a) the coefficients of ck(i), n ≤ i < n + k, could be much too large;
(b) the coefficients could be too small or negative;
(c) the coefficients might not be integers.

All of these problems can be handled with some work.
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Other results

Call a set S of natural numbers b-automatic if the language of the base-b
expansions of its members is regular (accepted by a finite automaton).

Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive
basis (resp., asymptotic additive basis) of finite order.
If it does, the minimum order is also computable.

The proof uses, in part, a decidable extension of Presburger arithmetic.
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Congratulations, Eric!

Eric Bach, Gunsight Pass Trail, Glacier National Park, 1987
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