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Additive number theory

Let S be a subset of the natural numbers N = {0,1,2,...}.
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Let S be a subset of the natural numbers N = {0,1,2,...}.

The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S.
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The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S.

Probably the most famous example
is Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and
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Let S be a subset of the natural numbers N = {0,1,2,...}.

The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S.

Probably the most famous example
is Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and

(b) three squares do not suffice for numbers of the form 42(8k + 7).
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Additive number theory

Let S be a subset of the natural numbers N = {0,1,2,...}.

The principal problem of additive number theory is to determine whether
every natural number (or every sufficiently large natural number) can be
written as the sum of some constant number of elements of S.

Probably the most famous example
is Lagrange’s theorem (1770):

(a) every natural number is the sum of four squares; and
(b) three squares do not suffice for numbers of the form 42(8k + 7).
(Conjectured by Bachet in 1621.)
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Additive bases

Let S C N.

We say that a subset S is an basis of order h if every natural number can
be written as the sum of h elements of S, not necessarily distinct.
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N
Additive bases

Let S CN.

We say that a subset S is an basis of order h if every natural number can
be written as the sum of h elements of S, not necessarily distinct.

We say that a subset S is an asymptotic basis of order h if every
sufficiently large natural number can be written as the sum of h elements
of S, not necessarily distinct.
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Gauss's theorem for triangular numbers

A triangular number is a number of the form n(n+ 1)/2.
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Gauss's theorem for triangular numbers
A triangular number is a number of the form n(n+1)/2.

Gauss wrote the following in his diary on July 10 1796:

Jeffrey Shallit Automata and Additive Number Theory



Gauss's theorem for triangular numbers

A triangular number is a number of the form n(n+ 1)/2.

Gauss wrote the following in his diary on July 10 1796:

i.e., The triangular numbers form an additive basis of order 3
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Waring's problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is
— the sum of 4 squares
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Waring's problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is

— the sum of 4 squares

— the sum of 9 cubes
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Waring's problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is

— the sum of 4 squares

— the sum of 9 cubes

— the sum of 19 fourth powers
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Waring's problem for powers

Edward Waring (1770) asserted, without
proof, that every natural number is

— the sum of 4 squares

— the sum of 9 cubes

— the sum of 19 fourth powers

— “and so forth”.

9. Omnis integer numerus vel cft cubus; vel e duobus, tribus, 4, 5,
6,7, 8, vel novem cubis compofitus: eft etiam quadrato-quadratus; vel
e duobus, tribus, &c. ufque ad novemdecim compofitus, & fic dein-
ceps: confimilia etiam affirmari dpof{'unt (exceptis excipiendis) de eo-
dem numero quantitatum earundem dimenfionum.
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Waring's problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.
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Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k'th powers.
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Waring's problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k'th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.
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Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k'th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G(2) = 4.
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Waring's problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k’th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G(2) = 4.
Hilbert proved in 1909 that g(k) and G(k) exist for all k.
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Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k’th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G(2) = 4.
Hilbert proved in 1909 that g(k) and G(k) exist for all k.
By Wieferich and Kempner we know g(3) = 9.
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Waring's problem

Let g(k) be the least natural number m such that every natural number is
the sum of m k'th powers.

Let G(k) be the least natural number m such that every sufficiently large
natural number is the sum of m k’th powers.

Proving that g(k) and G(k) exist, and determining their values, is
Waring’s problem.

By Lagrange we know g(2) = G(2) = 4.
Hilbert proved in 1909 that g(k) and G(k) exist for all k.
By Wieferich and Kempner we know g(3) = 9.

We know that 4 < G(3) < 7, but the true value is still unknown.
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What other sets can be additive bases?

Not the powers of 2 — too sparse.
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Other additive bases?

What other sets can be additive bases?
Not the powers of 2 — too sparse.

Need a set whose natural density is at least Nk for some k.
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N
Other additive bases?

What other sets can be additive bases?
Not the powers of 2 — too sparse.
Need a set whose natural density is at least Nk for some k.

How about numbers with palindromic base-b expansions?
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Palindromes

@ A palindrome is any string that is equal to its reversal
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@ A palindrome is any string that is equal to its reversal

@ Examples are level, deified, ...
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Palindromes

@ A palindrome is any string that is equal to its reversal
@ Examples are level, deified, ...

@ We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome
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Palindromes

@ A palindrome is any string that is equal to its reversal
@ Examples are level, deified, ...

@ We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

o Examples are 16 = [121]3 and 297 = [100101001],.
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Palindromes

@ A palindrome is any string that is equal to its reversal
@ Examples are level, deified, ...

@ We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

e Examples are 16 = [121]3 and 297 = [100101001]5.

@ Binary palindromes (b = 2) form sequence A006995 in the On-Line
Encyclopedia of Integer Sequences (OEIS):

0,1,3,5,7,9,15,17,21,27, 31,33, 45,51,63, ...
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Palindromes

@ A palindrome is any string that is equal to its reversal
@ Examples are level, deified, ...

@ We call a natural number a base-b palindrome if its base-b
representation (without leading zeroes) is a palindrome

e Examples are 16 = [121]3 and 297 = [100101001]5.

@ Binary palindromes (b = 2) form sequence A006995 in the On-Line
Encyclopedia of Integer Sequences (OEIS):

0,1,3,5,7,9,15,17,21,27, 31,33, 45,51,63, ...

o They have density ©(N/?).

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 10 / 33


https://oeis.org/A006995

NN
The problem

Do the base-b palindromes form an additive basis, and if so, of what order?
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The problem

Do the base-b palindromes form an additive basis, and if so, of what order?

William Banks (2015) showed
that every natural number
is the sum of at most 49

base-10 palindromes.
(INTEGERS 16 (2016), #A3)
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The problem

Do the base-b palindromes form an additive basis,

William Banks (2015) showed
that every natural number

is the sum of at most 49
base-10 palindromes.
(INTEGERS 16 (2016), #A3)

Javier Cilleruelo, Florian Luca, and
Lewis Baxter (2018) showed that for
all bases b > 5, every natural number
is the sum of three base-b palindromes.
(Math. Comp. 87 (2018), 3023-3055.)

Jeffrey Shallit Automata and Additive Number Theory
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What we proved

However, the case of bases b = 2, 3,4 was left unsolved. We proved
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What we proved

However, the case of bases b = 2,3, 4 was left unsolved. We proved
Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number
4 is optimal.
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What we proved

However, the case of bases b = 2,3, 4 was left unsolved. We proved
Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number
4 is optimal.

For example,

10011938 = 5127737 + 4851753 + 32447 + 1
= [10011100011111000111001],
+ [10010100000100000101001],
+[111111010111111]5 + [1]2
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What we proved

However, the case of bases b = 2,3, 4 was left unsolved. We proved

Theorem (Rajasekaran, JOS, Smith)

Every natural number N is the sum of 4 binary palindromes. The number
4 is optimal.

For example,

10011938 = 5127737 + 4851753 + 32447 + 1
= [10011100011111000111001],
+ [10010100000100000101001],
+[111111010111111]5 + [1]2

4 is optimal: 10011938 is not the sum of 2 binary palindromes.
AMS Fall Meeting 2025 12 / 33



Previous proofs were complicated (1)

Excerpt from Banks (2015):

2.4. Inductive passage from Ny ;(57;¢1) to No_y 541(57;¢2).
Lemma 2.4. Let (k€ N, { = k + 6, and ¢, € D be given. Given n € Ny (5"; ¢1), one
can find digits ay, . .., aig, by, ..., bis € D\{0} and c, € D such that the number
18
n— Z Ge-11(a;,b;)
j=1
lies in the set No_y 41(57; ¢2).

Proof. Fix n € Nyx(5%;¢;), and let {rSJ}ﬁ;f) be defined as in (1.1) (with L := ().
Let m be the three-digit integer formed by the first three digits of n; that is,
m = 10081 + 100s_2 + d¢_3.

Clearly, m is an integer in the range 500 < m < 999, and we have

-1 —4
n= Y1070, = 10°m + 3" 10/5;. (2.4)
j=k =k

Let us denote
S = {19,29,39, 49, 59}.
In view of the fact that
08 = S+ +8 = {171,181,191,...,531},
—_
Tine copies
it is possible to find an element h € 9§ for which m — 80 < 2h < m — 60. With
h fixed, let s, ..., sy be elements of S such that

S1+ -+ 59 =h.
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Previous proofs were complicated (2)

Excerpt from Cilleruelo et al. (2018)

IL.2 ¢, = 0. We distinguish the following cases:

T1.24) Ym # 0.
Om | Om—1 Om | Om—1
0 0 . 1 1
* | Ym * | Ym —1
* * * *
T1.2.ii) ypm = 0.
11.2.i.8) Ym—1 # O.
Om | Om—1 Om—2 O Im—1 Om—2
0 0 * . 1 1 *
Ym-1| 0 Yma Ym1—1] 9-2  yma-—1
* Zm-1  Zm—1 * Zm—1+1 zZmo+1

The above step is justified for z,_; # g — 1. But if z,_; = g — 1, then
Cm-1 2 (Ym-1+2m-1)/9 21,50 ¢m = (Zm-1+cm-1)/g = (g—1+1)/g =1,
a contradiction.

L20ih) Ymo1 = 0, Zm_1 # 0.

Om | Sm-1 Om-2 6] Om o2 |
0o o * 0 0 X
0 0 0 1 1 1
Zm—1—1 Zm—1—1

*

* [ Am-1 Zm-1

I1.2.ii.¢) Ym—1 = 0, Zm—1 = 0.
If also ¢, = 0, then &,,—; = 0, which is not allowed. Thus, ¢;,—; = 1.
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Previous proofs were complicated (3)

@ Proofs of Banks and Cilleruelo et al. were long and case-based
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Previous proofs were complicated (3)

@ Proofs of Banks and Cilleruelo et al. were long and case-based
o Difficult to establish
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Previous proofs were complicated (3)

@ Proofs of Banks and Cilleruelo et al. were long and case-based
o Difficult to establish

@ Difficult to understand
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Previous proofs were complicated (3)

Proofs of Banks and Cilleruelo et al. were long and case-based
Difficult to establish
Difficult to understand

Difficult to check, too: the original Cilleruelo et al. proof had some
minor flaws that were only noticed when the proof was implemented
as a Python program
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Previous proofs were complicated (3)

Proofs of Banks and Cilleruelo et al. were long and case-based
Difficult to establish
Difficult to understand

Difficult to check, too: the original Cilleruelo et al. proof had some
minor flaws that were only noticed when the proof was implemented
as a Python program

@ ldea: could we automate such proofs?
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The main idea of our proof

e Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 16 / 33



The main idea of our proof

e Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

@ Allow the automaton to nondeterministically “guess” a representation
of the input as a sum of palindromes
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The main idea of our proof

e Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

@ Allow the automaton to nondeterministically “guess” a representation
of the input as a sum of palindromes

@ The machine accepts an input if it “verifies” its guess
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The main idea of our proof

e Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

@ Allow the automaton to nondeterministically “guess” a representation
of the input as a sum of palindromes

@ The machine accepts an input if it “verifies” its guess

@ Then use a decision procedure to establish properties about the
language of representations accepted by this machine (e.g.,
universality — does it accept every possible input?)
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The main idea of our proof

e Construct a finite-state machine (automaton) that takes natural
numbers as input, expressed in the desired base

@ Allow the automaton to nondeterministically “guess” a representation
of the input as a sum of palindromes

@ The machine accepts an input if it “verifies” its guess

@ Then use a decision procedure to establish properties about the
language of representations accepted by this machine (e.g.,
universality — does it accept every possible input?)

@ We build the machine, but never run it! What we run is an algorithm
that decides a property of the machine.
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Our proof strategy

Algorithm B: given an
automaton A, does A

accept all possible inputs?
N

roblem: is every natural
number the sum of 4
binary palindromes?

Automaton A that on input n
"guesses" four summands, checks
that they are palindromes, and adds
them together and accepts if sum is

Result of running B on the description
of A: Ais universal (accepts everything),
so the answer to the problem is "yes".

Jeffrey Shallit Automata and Additive Number Theory
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Basics of automata

@ An automaton is a mathematical model of a very simple computer
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Basics of automata

@ An automaton is a mathematical model of a very simple computer

@ It takes as input a finite list of symbols x = ajas - - - a,, called a
“string” or “word")
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Basics of automata

@ An automaton is a mathematical model of a very simple computer

@ It takes as input a finite list of symbols x = ajas - - - a,, called a
“string” or “word")

@ The automaton does some computation and then either “accepts” or
“rejects” its input
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Basics of automata

An automaton is a mathematical model of a very simple computer

It takes as input a finite list of symbols x = ajay - - - a,, called a
“string” or “word")

The automaton does some computation and then either “accepts” or
“rejects” its input

The set of all accepted strings is called the language recognized by
the automaton
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Parts of an automaton

@ The finite set of states: each state corresponds to some knowledge
that has been gained about the input
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Parts of an automaton

@ The finite set of states: each state corresponds to some knowledge
that has been gained about the input

@ The start state
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Parts of an automaton

@ The finite set of states: each state corresponds to some knowledge
that has been gained about the input

@ The start state

@ The set of accepting states
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Parts of an automaton

@ The finite set of states: each state corresponds to some knowledge
that has been gained about the input

@ The start state
@ The set of accepting states

@ The transition function that specifies, for each state and each input
symbol, which state to enter
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Example of an automaton

A double circle represents an accepting state.

What is the language accepted by this automaton?
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Example of an automaton

A double circle represents an accepting state.

What is the language accepted by this automaton?

It is the set of all strings having no two consecutive a’s.
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Decision algorithms for automata

@ Given an automaton, we can decide various things about the language
it recognizes.
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Decision algorithms for automata

@ Given an automaton, we can decide various things about the language
it recognizes.

@ For example, is the language empty? Or infinite?
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Decision algorithms for automata

@ Given an automaton, we can decide various things about the language
it recognizes.

@ For example, is the language empty? Or infinite?

@ Here “decide” means there is an algorithm that, given the automaton
as input, halts and says (for example) either “language is empty” or
“language is not empty”.
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Decision algorithms for automata

@ Given an automaton, we can decide various things about the language
it recognizes.

@ For example, is the language empty? Or infinite?

@ Here “decide” means there is an algorithm that, given the automaton
as input, halts and says (for example) either “language is empty” or
“language is not empty”.

@ In some cases, we can also decide universality: the property of
accepting all strings.

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 21 /33



Picking an automaton for palindromes

What kind of automaton should we choose?
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Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes
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@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 22 /33



Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)
@ it should be possible to add the summands and compare to the input
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palindromes
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@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)
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What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)
@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)

However
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Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)
@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)

However

@ Can’t add summands with these machine models unless they are
guessed in parallel
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Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)
@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)

However

@ Can’t add summands with these machine models unless they are
guessed in parallel

@ Can’t check if summands are palindromes if they are wildly different
in length & presented in parallel
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Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)
@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)

However
@ Can’t add summands with these machine models unless they are
guessed in parallel

@ Can’t check if summands are palindromes if they are wildly different
in length & presented in parallel

@ Universality is not decidable for PDA's
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Picking an automaton for palindromes

What kind of automaton should we choose?

@ it should be possible to check if the guessed summands are
palindromes

e can be done with a pushdown automaton (PDA)

@ it should be possible to add the summands and compare to the input
o can be done with a finite automaton (DFA or NFA)

However
@ Can’t add summands with these machine models unless they are
guessed in parallel

@ Can’t check if summands are palindromes if they are wildly different
in length & presented in parallel

@ Universality is not decidable for PDA's
What to do?
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A trick

There is a trick that allows us to use finite automata.

The basic idea is the following: there is an 8-state finite automaton that
takes four inputs in parallel—numbers represented by strings

X, Y,z,w—and accepts if and only if x = ta and y = ub and

[tatR]s + [ubu’] = [z2wR],. Here x and y must start with 1 and so must z.
What we get is a description of those n bit numbers that are the sum of
two (n — 1)-bit palindromes.

So we can implicitly represent palindromes by xx® and xax® and add them
implicitly.
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Idea of the proof

@ To prove our result, we built two automata:
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Idea of the proof

@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 24 /33



|
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@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
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Idea of the proof

@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
en—1,n—2,n-—3.

e B accepts all valid representations of odd integers of length n > 8
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binary palindromes of length either

enn—2 n—3, or
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e B accepts all valid representations of odd integers of length n > 8

@ We then prove that all inputs accepted by B are accepted by A
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@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
en—1,n—2,n-—3.

e B accepts all valid representations of odd integers of length n > 8

@ We then prove that all inputs accepted by B are accepted by A

@ Thus every odd integer > 256 is the sum of three binary palindromes.
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Idea of the proof

@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
en—1n—-2 n-—3.

e B accepts all valid representations of odd integers of length n > 8
@ We then prove that all inputs accepted by B are accepted by A
@ Thus every odd integer > 256 is the sum of three binary palindromes.

@ For even integers, we just include 1 as one of the summands.
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Idea of the proof

@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
en—1n—-2 n-—3.

e B accepts all valid representations of odd integers of length n > 8
We then prove that all inputs accepted by B are accepted by A
Thus every odd integer > 256 is the sum of three binary palindromes.

For even integers, we just include 1 as one of the summands.

The numbers < 256 are easily checked by brute force.
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Idea of the proof

@ To prove our result, we built two automata:

o A accepts all n-bit odd integers, n > 8, that are the sum of three
binary palindromes of length either

enn—2 n—3, or
en—1n—-2 n-—3.

e B accepts all valid representations of odd integers of length n > 8
We then prove that all inputs accepted by B are accepted by A
Thus every odd integer > 256 is the sum of three binary palindromes.
For even integers, we just include 1 as one of the summands.

The numbers < 256 are easily checked by brute force.

And so we've proved: every natural number is the sum of four binary
palindromes.

Jeffrey Shallit Automata and Additive Number Theory AMS Fall Meeting 2025 24 /33



Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Jeffrey Shallit Automata and Additive Number Theory



Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Theorem

Every natural number N > 64 is the sum of at most three base-4
palindromes.
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Other results

Theorem

Every natural number N > 256 is the sum of at most three base-3
palindromes.

Theorem

Every natural number N > 64 is the sum of at most three base-4
palindromes.

This completes the classification for base-b palindromes for all b > 2.
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More results

Using NFA's we can establish an analogue of Lagrange's four-square
theorem.

Jeffrey Shallit Automata and Additive Number Theory


https://oeis.org/A020330

More results

Using NFA's we can establish an analogue of Lagrange’s four-square
theorem.

@ A square is any string that is some shorter string repeated twice
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@ A square is any string that is some shorter string repeated twice

@ Examples are hotshots and murmur
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theorem.
@ A square is any string that is some shorter string repeated twice
@ Examples are hotshots and murmur

@ We call an integer a base-b square if its base-b representation is a
square
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More results

Using NFA's we can establish an analogue of Lagrange’s four-square
theorem.
@ A square is any string that is some shorter string repeated twice
@ Examples are hotshots and murmur

@ We call an integer a base-b square if its base-b representation is a
square

e Examples are 36 = [100100], and 3 = [11]o.
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More results

Using NFA's we can establish an analogue of Lagrange’s four-square
theorem.

@ A square is any string that is some shorter string repeated twice

@ Examples are hotshots and murmur

@ We call an integer a base-b square if its base-b representation is a
square

e Examples are 36 = [100100], and 3 = [11]o.
@ The binary squares form sequence A020330 in the OEIS

3,10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, . ..
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Results

Theorem
Every natural number N > 686 is the sum of at most 4 binary squares. J
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Results

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares. J

For example:

10011938 = 9291996 + 673425 + 46517

= [100011011100100011011100], + [10100100011010010001],
+[1011010110110101]>
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Results

Theorem

Every natural number N > 686 is the sum of at most 4 binary squares.

For example:

10011938 = 9291996 + 673425 + 46517

= [100011011100100011011100], + [10100100011010010001],
+[1011010110110101]>

We also have the following result
Theorem

Every natural number is the sum of at most two binary squares and at
most two powers of 2.
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Generalizing: Waring's theorem for binary k'th powers

Recall Waring's theorem: for every k > 1 there exists a constant g(k)
such that every natural number is the sum of g(k) k'th powers of natural
numbers.
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Could the same theorem hold for binary k'th powers?
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Generalizing: Waring's theorem for binary k'th powers

Recall Waring's theorem: for every k > 1 there exists a constant g(k)
such that every natural number is the sum of g(k) k'th powers of natural
numbers.

Could the same theorem hold for binary k'th powers?

Two issues:

@ 1 is not a binary k'th power, so it has to be “every sufficiently large
natural number” and not “every natural number”.
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Generalizing: Waring's theorem for binary k'th powers

Recall Waring's theorem: for every k > 1 there exists a constant g(k)
such that every natural number is the sum of g(k) k'th powers of natural
numbers.

Could the same theorem hold for binary k’th powers?

Two issues:

@ 1 is not a binary k'th power, so it has to be “every sufficiently large
natural number” and not “every natural number”.

@ The gcd g of the binary k'th powers need not be 1, so it actually has
to be “every sufficiently large multiple of g".
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gcd of the binary k'th powers

Theorem
The gcd of the binary k'th powers is gcd(k, 2K — 1). J
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gcd of the binary k'th powers

Theorem
The gcd of the binary k'th powers is gcd(k, 2K — 1). J

Example:
The binary 6'th powers are

63,2730, 4095, 149796, 187245, 224694, 262143, 8947848, 10066329, . . .

with ged equal to ged(6,63) = 3.
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Very recent results

Theorem

Every sufficiently large multiple of gcd(k, 2% — 1) is the sum of a constant
number (depending on k) of binary k'th powers.
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Very recent results

Theorem

Every sufficiently large multiple of gcd(k, 2% — 1) is the sum of a constant
number (depending on k) of binary k'th powers.

Obtained with Daniel Kane and Carlo Sanna.
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 27, and express N in base 2".
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 2", and express N in base 2",

@ use linear algebra to change the basis and instead express x as a

linear combination of cx(n), ck(n+1),...,ck(n+ k — 1) where
2kn — 1
Ck(n) = ﬁ
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 2", and express N in base 2",

@ use linear algebra to change the basis and instead express x as a

linear combination of cx(n), ck(n+1),...,ck(n+ k — 1) where
2kn — 1
ck(n) = T

@ Such a linear combination would seem to provide an expression for x
in terms of binary k'th powers, but there are three problems to
overcome:
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 2", and express N in base 2",

@ use linear algebra to change the basis and instead express x as a

linear combination of cx(n), ck(n+1),...,ck(n+ k — 1) where
2kn — 1
ck(n) = T

@ Such a linear combination would seem to provide an expression for x
in terms of binary k'th powers, but there are three problems to
overcome:

(a) the coefficients of ck(i), n < i < n+ k, could be much too large;
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 2", and express N in base 2",

@ use linear algebra to change the basis and instead express x as a

linear combination of cx(n), ck(n+1),...,ck(n+ k — 1) where
2kn — 1
ck(n) = T

@ Such a linear combination would seem to provide an expression for x
in terms of binary k'th powers, but there are three problems to
overcome:

(a) the coefficients of ck(i), n < i < n+ k, could be much too large;
(b) the coefficients could be too small or negative;
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Outline of the proof

Given a number N we wish to represent as a sum of binary k'th powers:

@ choose a suitable power of 2, say 2", and express N in base 2",

@ use linear algebra to change the basis and instead express x as a

linear combination of cx(n), ck(n+1),...,ck(n+ k — 1) where
2kn — 1
ck(n) = T

@ Such a linear combination would seem to provide an expression for x
in terms of binary k'th powers, but there are three problems to
overcome:

(a) the coefficients of ck(i), n < i < n+ k, could be much too large;
(b) the coefficients could be too small or negative;
(c) the coefficients might not be integers.

All of these problems can be handled with some work.
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Other results

Call a set S of natural numbers b-automatic if the language of the base-b
expansions of its members is regular (accepted by a finite automaton).
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Other results

Call a set S of natural numbers b-automatic if the language of the base-b
expansions of its members is regular (accepted by a finite automaton).

Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive
basis (resp., asymptotic additive basis) of finite order.
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Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive
basis (resp., asymptotic additive basis) of finite order.
If it does, the minimum order is also computable.
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Other results

Call a set S of natural numbers b-automatic if the language of the base-b
expansions of its members is regular (accepted by a finite automaton).

Theorem (Bell, Hare, JOS)

It is decidable, given a b-automatic set S, whether it forms an additive
basis (resp., asymptotic additive basis) of finite order.
If it does, the minimum order is also computable.

The proof uses, in part, a decidable extension of Presburger arithmetic.
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Congratulations, Eric!

Eric Bach, Gunsight Pass Trail, Glacier National Park, 1987
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