Periodicity, Morphisms, and Matrices

Jeffrey Shallit
Department of Computer Science*
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@graceland.uwaterloo.ca
http://www.math.uwaterloo.ca/~shallit

* currently visiting University of Arizona on sabbatical

This talk is about joint work with S. Cautis, F. Mignosi, M.-w. Wang, and S. Yazdani.
Periodicity

Periodicity is an important property of words, with applications to

- string searching algorithms (e.g., Knuth-Morris-Pratt)
- formal languages (e.g., pumping lemmas)
- combinatorics on words (e.g., theorems of Thue, Lyndon-Schützenberger)
Periodicity

We say a sequence \((f_n)_{n \geq 0}\) is periodic with period length \(h \geq 1\) if \(f_n = f_{n+h}\) for all \(n \geq 0\). The following is a classical “folk theorem”:

Theorem. If \((f_n)_{n \geq 0}\) is a sequence which is periodic with period lengths \(h\) and \(k\), then it is periodic with period length \(\gcd(h, k)\).

Proof. By the extended Euclidean algorithm, there exist integers \(r, s \geq 0\) such that \(rh - sk = \gcd(h, k)\). Then we have

\[
f_n = f_{n+rh} = f_{n+rh-sk} = f_{n+\gcd(h,k)}
\]

for all \(n \geq 0\). ■
The 1965 Theorem of Fine & Wilf

Theorem. Let \((f_n)_{n \geq 0}\), \((g_n)_{n \geq 0}\) be two periodic sequences, of period lengths \(h\) and \(k\) respectively.

(a) If \(f_n = g_n\) for \(0 \leq n < h + k - \gcd(h, k)\), then \(f_n = g_n\) for all \(n \geq 0\).

(b) The conclusion in (a) would be false if \(h + k - \gcd(h, k)\) were replaced by any smaller number.

Proof of (a). For the moment assume \(\gcd(h, k) = 1\). The proof is easy when \(h = k = 1\), so assume wlog \(h > k\). Then we have

\[
\begin{align*}
 f_i &= g_i = g_{i+k} = f_{i+k} = f_{i+k} \mod h
\end{align*}
\]

for \(0 \leq i < h - 1\).

Start with \(f_{k-1}\) and apply this relation \(h - 1\) times. We get

\[
\begin{align*}
 f_{k-1} &= f_{2k-1} = \cdots = f_{(h-1)k-1} = f_{hk-1},
\end{align*}
\]
where the indices are taken \((\text{mod } h)\). Since
\[
gcd(h, k) = 1,
\]
it follows that all \(h\) indices \((\text{mod } h)\) are represented in this equation. Hence \(f_i = f_0\) for all \(i\), and the same result holds for \(g_i\).

Now let us remove the restriction \(\gcd(h, k) = 1\). If \(\gcd(h, k) = d\), group the symbols of \(f\) and \(g\) into groups of \(d\) symbols; call the result \(f'\) and \(g'\). If \(f\) and \(g\) agree on the first \(h + k - \gcd(h, k)\) symbols, then \(f'\) and \(g'\) agree on the first \(\frac{h}{d} + \frac{k}{d} - 1\) symbols. Furthermore \(f'\) is periodic of period \(\frac{h}{d}\) and \(g'\) is periodic of period \(\frac{k}{d}\). From the results above \(f' = g'\) and so \(f = g\).
The Fine and Wilf Theorem

Proof of (b). Define strings $\sigma(h, k)$ as follows:

$$
\sigma(h, k) = \begin{cases}
0, & \text{if } h = 0; \\
0^{k-1}1, & \text{if } h \mid k; \\
\sigma(r, h)^q \sigma(r', r), & \text{if } h > 1 \text{ and } \\
k = qh + r, \\
h = q'r + r'.
\end{cases}
$$

Then it can be shown that if we construct periodic sequences f, g such that

- f is of period length k and has period $\sigma(h, k)$

- g is of period length h and has period $\sigma(k, h)$

then f and g agree on a prefix of a length

$$h + k - \gcd(h, k) - 1,$$

but disagree at the $h + k - \gcd(h, k)$’th term.
The Fine and Wilf Theorem

Remark. The maximal counter-examples in part (b) play a role in the Knuth-Morris-Pratt string-matching algorithm. For example, if \(h = 5 \) and \(k = 8 \) the maximal counter-examples are

\[
\begin{align*}
f &= 1011010110101101011010110 \\
g &= 1011010110101101011010110101 \\
\end{align*}
\]
Variations on Fine & Wilf

Theorem. Let \(f = (f_n)_{n \geq 0}, \ g = (g_n)_{n \geq 0} \) be two periodic sequences of real numbers, of period lengths \(h \) and \(k \), respectively, such that

\[
\sum_{0 \leq i < h} f_i \geq 0
\]

(1)

and

\[
\sum_{0 \leq j < k} g_j \leq 0.
\]

(2)

Let \(d = \gcd(h, k) \).

(a) If

\[
f_n \leq g_n \quad \text{for } 0 \leq n < h + k - d
\]

(3)

then

(i) \(f_n = g_n \) for all \(n \geq 0 \); and

(ii) \(\sum_{j \leq i < j + d} f_i = \sum_{j \leq i < j + d} g_i = 0 \) for all integers \(j \geq 0 \).

(b) The conclusion (a)(i) would be false if in the hypothesis \(h + k - d \) were replaced by any smaller integer.
Sketch of Proof, Part (a)(i)

Define
\[P(z) = 1 + z + \cdots + z^{h-1} = (z^h - 1)/(z - 1); \]
\[Q(z) = 1 + z + \cdots + z^{k-1} = (z^k - 1)/(z - 1); \]
\[R(z) = (z^k - 1)/(z^d - 1); \]
\[S(z) = (z^h - 1)/(z^d - 1). \]

By hypothesis \(P \circ f \geq 0 \), where by \(\circ \) we mean take the dot product of the coefficients of \(P \) to consecutive windows of \(f \). Then \(R \circ (P \circ f) \geq 0. \) But then \(RP \circ f \geq 0. \)

Similarly, by hypothesis \(Q \circ (-g) \geq 0. \) Then \(SQ \circ (-g) \geq 0. \) But \(RP = SQ \), so
\[\sum_{0 \leq i < h+k-d} e_i(f_i - g_i) \geq 0. \] (4)

where \(R(z)P(z) = \sum_{0 \leq i < h+k-d} e_i z^i. \)

It can be shown that the \(e_i \) are strictly positive, so since \(f_n \leq g_n \) for \(0 \leq n < h+k-d \), we get \(f_n = g_n \) for \(0 \leq n < h+k-d \). By the Fine & Wilf theorem, \(f_n = g_n \) for \(n \geq 0. \)
Maximal Counter-Examples

The maximal counter-examples in (b) turn out to be just the first differences of the maximal counter-examples to Fine & Wilf.

For example, for \(h = 5, \ k = 8 \) we have

\[
\begin{array}{cccccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 f_n & -1 & 1 & -1 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & -1 & 1 & -1 \\
 g_n & 0 & 1 & -1 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & -1 & 0 & 1 \\
\end{array}
\]
Formal Languages

Let Σ denote a finite nonempty set of symbols, called an alphabet.

Let Σ^* denote the set of all finite words over Σ.

For example, if $\Sigma = \{0, 1\}$, then

$$\Sigma^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000 \ldots\},$$

where ϵ is the empty word.

We write $|x|$ to denote the length of a word.

We write $|x|_a$ to denote the number of occurrences of the letter a in x.
Morphisms

A morphism is a map h from Σ^* to Δ^* such that

$$h(xy) = h(x)h(y)$$

for all words x, y.

It follows that h can be uniquely specified by providing its image on each letter of Σ.

For example, let

$$h(0) = r$$
$$h(1) = em$$
$$h(2) = b$$
$$h(3) = er$$

Then

$$h(011233) = rememberer.$$

If $\Sigma = \Delta$ we can iterate h. We write

$$h^2(x) \text{ for } h(h(x)),$$
$$h^3(x) \text{ for } h(h(h(x))),$$

etc.
Iterated Morphisms

Iterated morphisms appear in many different areas (often under the name L-systems), including:

- models of plant growth in mathematical biology
- computer graphics
An Example from Biology

For example, consider the map φ defined by

$$\varphi(a_r) = a_l b_r$$
$$\varphi(a_l) = b_l a_r$$
$$\varphi(b_r) = a_r$$
$$\varphi(b_l) = a_l$$

Iterating φ on a_r gives

$$\varphi^0(a_r) = a_r$$
$$\varphi^1(a_r) = a_l b_r$$
$$\varphi^2(a_r) = b_l a_r a_r$$
$$\varphi^3(a_r) = a_l a_l b_r a_l b_r$$

$$\vdots$$

Here the a’s represent fat cells and the b’s represent thin cells.

This models the development of the blue-green bacterium *Anabaena catenula*.
Iterated Morphisms and Computer Graphics

Szilard and Quinton [1979] observed that many interesting pictures, including approximations to fractals, could be coded using iterated morphisms.

A beautiful book by Prusinkiewicz and Lindenmayer provides many examples.
Iterated Morphisms and Computer Graphics

For example, we could code a picture using a “turtle graphics” model where R codes a move followed by a right turn, L codes a move followed by a left turn, and S codes a move straight ahead with no turn.

Consider the map g defined as follows:

\[
g(R) = RLLSRRRLR
\]
\[
g(L) = RLLSRRLLL
\]
\[
g(S) = RLLSRRRLS
\]

By iterating g on $RRRR$ we get

\[
g^0(R) = RRRR
\]
\[
g^1(R) = RLLSRRRLRRLLSSRRLRRLLS \cdots
\]
\[
g^2(R) = RLLSRRRLRRLLSSRRLRRLLS \cdots
\]

These strings code successive approximations to a von Koch fractal curve.
The Matrix Associated with a Morphism

Given a morphism \(\varphi : \Sigma^* \rightarrow \Sigma^* \) for some finite set \(\Sigma = \{a_1, a_2, \ldots, a_d\} \), we define the incidence matrix \(M = M(\varphi) \) as follows:

\[
M = (m_{i,j})_{1 \leq i, j \leq d}
\]

where \(m_{i,j} \) is the number of occurrences of \(a_i \) in \(\varphi(a_j) \), i.e., \(m_{i,j} = |\varphi(a_j)|_{a_i} \).

Example. Consider the morphism \(\varphi \) defined by

\[
\varphi : a \rightarrow ab \\
b \rightarrow cc \\
c \rightarrow bb.
\]

Then

\[
M(\varphi) = \begin{bmatrix}
1 & 0 & 0 \\
1 & 0 & 2 \\
0 & 2 & 0
\end{bmatrix}
\]

The Matrix Associated with a Morphism

The matrix $M(\varphi)$ is useful because of the following proposition.

Proposition. We have

$$
\begin{bmatrix}
|\varphi(w)|_{a_1} \\
|\varphi(w)|_{a_2} \\
\vdots \\
|\varphi(w)|_{a_d}
\end{bmatrix}
= M(\varphi)
\begin{bmatrix}
|w|_{a_1} \\
|w|_{a_2} \\
\vdots \\
|w|_{a_d}
\end{bmatrix}.
$$

Proof. We have

$$
|\varphi(w)|_{a_i} = \sum_{1 \leq j \leq d} |\varphi(a_j)|_{a_i} |w|_{a_j}.
$$

Corollary.

$$
\begin{bmatrix}
|\varphi^n(w)|_{a_1} \\
|\varphi^n(w)|_{a_2} \\
\vdots \\
|\varphi^n(w)|_{a_d}
\end{bmatrix}
= (M(\varphi))^n
\begin{bmatrix}
|w|_{a_1} \\
|w|_{a_2} \\
\vdots \\
|w|_{a_d}
\end{bmatrix}.
$$
The Matrix Associated with a Morphism

Hence we find

Corollary.

\[|\varphi^n(w)| = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix} M(\varphi)^n \begin{bmatrix} \begin{vmatrix} w \end{vmatrix}_{a_1} \\ \begin{vmatrix} w \end{vmatrix}_{a_2} \\ \vdots \\ \begin{vmatrix} w \end{vmatrix}_{a_d} \end{bmatrix} \]
The Length Sequence of an Iterated Morphism

We can now ask questions about the sequence of lengths

$$|x|, \ |h(x)|, \ |h^2(x)|, \ldots$$

These questions were very popular in mathematical biology (L-systems) in the 1980’s.

For example, here is a classical result:

Theorem. Suppose $h : \Sigma^* \rightarrow \Sigma^*$ is a morphism, and suppose there exist a word $w \in \Sigma^*$ and a constant c such that

$$c = |w| = |h(w)| = \cdots = |h^n(w)|,$$

where $n = |\Sigma|$. Then $c = |h^i(w)|$ for all $i \geq 0$.

Proof of the Theorem

It suffices to show $|h^{n+1}(w)| = c$, because then the theorem follows by induction on n.

Let M be the incidence matrix of h. By the Cayley-Hamilton theorem,

$$M^n = c_0 M^0 + \cdots + c_{n-1} M^{n-1}$$

for some constants $c_0, c_1, \ldots, c_{n-1}$.

Define $f_i = |h^i(w)|$ and let

$$v = [|w|_{a_1} |w|_{a_2} \cdots |w|_{a_n}]^T.$$

Then for $0 \leq i < n$ we have

$$f_{i+1} - f_i = [1 1 \cdots 1][M^{i+1} - M^i]v$$

$$f_{i+1} - f_i = [1 1 \cdots 1]M^i(M - I)v$$

$$= [1 1 \cdots 1]M^i v'$$

$$= 0,$$

where $v' := (M - I)v$.

21
Now

\[f_{n+1} - f_n = [1 1 \cdots 1] M^n v' \]

\[= [1 1 \cdots 1](c_0 + \cdots + c_{n-1} M^{n-1})v' \]

\[= \sum_{0 \leq i < n} c_i [1 1 \cdots 1] M^i v' \]

\[= 0, \]

since each summand is 0. Hence \(f_{n+1} = f_n \). \qed
Another Question

We might also ask, how long can the sequence of lengths
\[|x|, |h(x)|, |h^2(x)|, \ldots \]
strictly decrease?

This question arose naturally in a paper with Ming-wei Wang on the two-sided infinite fixed points of morphisms, i.e., those two-sided infinite words w such that $h(w) = w$.
The Length Sequence of an Iterated Morphism

If Σ has n elements, we can easily find a decreasing sequence of length n. For example, for $n = 5$, define h as follows:

\[
\begin{align*}
 h(a) &= b \\
 h(b) &= c \\
 h(c) &= d \\
 h(d) &= e \\
 h(e) &= \epsilon
\end{align*}
\]

Then we have

\[
\begin{align*}
 h(\text{abcde}) &= \text{bcde} \\
 h^2(\text{abcde}) &= \text{cde} \\
 h^3(\text{abcde}) &= \text{de} \\
 h^4(\text{abcde}) &= \epsilon \\
 h^5(\text{abcde}) &= \epsilon
\end{align*}
\]

so

\[
\begin{align*}
 |\text{abcde}| &> |h(\text{abcde})| > |h^2(\text{abcde})| > |h^3(\text{abcde})| \\
 &> |h^4(\text{abcde})| > |h^5(\text{abcde})| = 0.
\end{align*}
\]
The Decreasing Length Conjecture

Conjecture. If $h : \Sigma^* \to \Sigma^*$, and Σ has n elements, then

$$|w| > |h(w)| > \cdots > |h^k(w)|$$

implies that $k \leq n$.

Another way to state the Decreasing Length Conjecture is the following:

Conjecture. Let M be an $n \times n$ matrix of with non-negative integer entries. Let v be a column vector of non-negative integers, and let u be the row vector $[1 \ 1 \ 1 \ \cdots \ 1]$. If

$$uv > uMv > uM^2v > \cdots > uM^k v$$

then $k \leq n$.
Path Algebra

There is a nice correspondence between directed graphs and non-negative matrices, as follows:

If G is a directed graph on n vertices, we can construct a non-negative matrix

$$M(G') = (m_{i,j})_{1 \leq i, j \leq n}$$

as follows: let

$$m_{i,j} = \begin{cases}
1, & \text{if there is a directed edge from vertex } i \text{ to vertex } j \text{ in } G; \\
0, & \text{otherwise}.
\end{cases}$$

Then the number of distinct walks of length n from vertex i to vertex j in G is just the i,j’th entry of M^n.

Similarly, given a non-negative $n \times n$ matrix $M = (m_{i,j})_{1 \leq i, j \leq n}$ we may form its associated graph $G(M)$ on n vertices, where we put a directed edge from vertex i to vertex j iff $m_{i,j} > 0$.
A Useful Lemma

Lemma. Let $r \geq 1$ be an integer, and suppose there exist r sequences of real numbers $b_i = (b_i(n))_{n \geq 0}$, $1 \leq i \leq r$, and r positive integers h_1, h_2, \ldots, h_r, such that the following conditions hold:

(a) $b_i(n + h_i) \geq b_i(n)$ for $1 \leq i \leq r$ and $n \geq 0$;

(b) There exists an integer $D \geq 1$ such that

$$\sum_{1 \leq i \leq r} b_i(n) > \sum_{1 \leq i \leq r} b_i(n + 1) \quad \text{for} \quad 0 \leq n < D.$$

Then $D \leq h_1 + h_2 + \cdots + h_r - r$.

Proof of the Decreasing Length Conjecture

Theorem. Suppose \(M \) is an \(n \times n \) matrix with non-negative integer entries. If there exist a row vector \(u \) and a column vector \(v \) with non-negative integer entries such that

\[
uv > uMv > uM^2v > \cdots > uM^k v,
\]

then \(k \leq n \). Also \(k = n \) only if \(M^n = 0 \).

Proof.

- Let \(M \) be the matrix in the statement of the theorem and \(G \) its associated graph.
- Let \(u = (u_1, u_2, \ldots, u_n) \) and \(v = (v_1, v_2, \ldots, v_n)^T \).
- Let \(V \) be the set of vertices in \(G \).
- Consider some maximal set of vertices forming disjoint cycles \(\{C_1, C_2, \ldots, C_r\} \) in \(G \).
- Then \(V \) can be written as the disjoint union

\[
V = C_1 \cup C_2 \cup \cdots \cup C_r \cup W,
\]

where \(W \) is the set of vertices which do not lie in any of the disjoint cycles.
• Any directed walk in G of length $|W|$ or greater must intersect some cycle C_i, for otherwise the walk would contain a cycle disjoint from C_1, C_2, \ldots, C_r.

• Associate each walk of length $\geq |W|$ with the first cycle C_i it intersects.

• Define $P_{i,j,l}^s$ to be the number of directed walks of length s from vertex i to vertex j associated with cycle l.

• Also define
\[
T_l^s := \sum_{1 \leq i,j \leq n} u_i v_j P_{i,j,l}^s.
\]

• Then for any $s \geq |W|$ we have
\[
u M^s w = \sum_{1 \leq l \leq r} T_l^s.
\] (5)

• Then
\[
T_l^s \leq T_l^{s+|C_l|},
\]
since any walk of length s associated with cycle C_l can be extended to a walk of length $s + |C_l|$ by traversing the cycle C_l once.
• From the inequality \(uM^sw > uM^{s+1}w \) for \(0 \leq s \leq k - 1 \) and Eq. (5) we have
\[
\sum_{1 \leq l \leq r} T_l^s > \sum_{1 \leq l \leq r} T_l^{s+1}
\]
for \(|W| \leq s < k \).

• Now for \(1 \leq i \leq r \) and \(j \geq 0 \) define \(b_i(j) = T_i^{|W|+j} \) and \(h_i = |C_i| \).

• Then the conditions of the previous Lemma are satisfied.

• We conclude that
\[
k - |W| \leq |C_1| + |C_2| + \cdots + |C_r| - r.
\]

• Moreover
\[
|C_1| + |C_2| + \cdots + |C_r| + |W| = |V| = n
\]
and so \(k \leq n - r \).

• Finally \(k = n \) implies that \(r = 0 \), so \(G \) is acyclic and \(M^n = 0 \).
For Further Reading

