Automata and Rational Numbers

Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
Canada
shallit@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~shallit
Representations of integers

- \(\Sigma_k = \{0, 1, \ldots, k - 1\} \)
- Numbers are represented in base \(k \) using digits in \(\Sigma_k \)
- So numbers are represented by words in \(\Sigma_k^* \)
- Canonical representation of \(n \) denoted \((n)_k \), without leading zeroes
- Set of all canonical representations of integers is

\[
C_k = \Sigma_k^* \setminus 0\Sigma_k^*
\]

- If \(w \in \Sigma_k^* \) then \([w]_k \) is the integer represented by \(w \)
- Sometimes useful to use least-significant-digit-first representation; sometimes most-significant-digit-first.
A k-automatic set of (non-negative) integers A corresponds to a regular (rational) subset of $\Sigma_k^* \setminus 0\Sigma_k^*$

Example:

$$t = 0110100110010110 \cdots$$

Let T be the positions of the 1’s in t:

$$T = \{1, 2, 4, 7, 8, 11, 13, 14, \ldots\},$$

i.e., those integers with an odd number of 1’s in their base-2 representation.

T is accepted by a DFA reading numbers expressed in base 2.
The Thue-Morse automaton
The class of k-automatic sets is

- Closed under complement
 - interchange “finality” of states
- Closed under union, intersection:
 - use “direct product” construction
- Closed under the sum operation
 \[A + B = \{ a + b : a \in A, \ b \in B \} . \]
 - On input n, “guess” a and b, add and check if equal to n
- Closed under multiplication by constants
Decidability

Given a k-automatic set $A \subseteq \mathbb{N}$, can we decide properties of A?

When we say “given a k-automatic set A”, we really mean given a DFA M accepting A.

- Given A and n, we can decide if $n \in A$
- We can easily decide if $A = \emptyset$ (use DFS)
- We can easily decide if $|A| < \infty$ (look for useful cycles)
Representing rational numbers

- Represent rational number $\alpha = p/q$ by pair of integers (p, q), represented in base k; pad shorter with leading zeroes
- So representations of rationals are over the alphabet $\Sigma_k \times \Sigma_k$
- For example, if $w = [3, 0][5, 0][2, 4][6, 1]$ then $[w]_{10} = (3526, 41)$.
- Define $\text{quo}_k(x) = [\pi_1(x)]_k / [\pi_2(x)]_k$, where π_i is the projection onto the i’th coordinate
- So $\text{quo}_k(w) = 3526/41 = 86$.
- Canonical representations lack leading $[0, 0]$’s
- Every rational has infinitely many canonical representations, e.g., as $(1, 2), (2, 4), (3, 6), \ldots$, etc.
Automatic sets over $\mathbb{Q}^{\geq 0}$

- $\text{quo}_k(L) = \bigcup_{x \in L} \{\text{quo}_k(x)\}$
- $A \subseteq \mathbb{Q}^{\geq 0}$ is a k-automatic set of rationals if $A = \text{quo}_k(L)$ for some regular language $L \subseteq (\Sigma_k \times \Sigma_k)^*$.

Examples

Example 1. Let $k = 2$, $B = \{[0, 0], [0, 1], [1, 0], [1, 1]\}$, and consider

$$L_1 := B^* \{[0, 1], [1, 1]\} B^*.$$

Then L_1 consists of all pairs of integers where the second component has at least one nonzero digit — the point being to avoid division by 0. Then $\text{quo}_k(L) = \mathbb{Q}_{\geq 0}$, the set of all non-negative rational numbers.

Example 2. Consider

$$L_2 = \{w \in (\Sigma_k^2)^* : \pi_1(w) \in 0^* C_k \text{ and } \pi_2(w) \in 0^* 1\}.$$

Then $\text{quo}_k(L_2) = \mathbb{N}$.
Example 3. Let $k = 3$, and consider the language

$$L_3 := [0, 1] \{[0, 0], [2, 0]\}^*.$$

Then $\text{quo}_k(L_3)$ is the 3-adic Cantor set, the set of all rational numbers in the “middle-thirds” Cantor set with denominators a power of 3.

Example 4. Let $k = 2$, and consider

$$L_4 := [0, 1] \{[0, 0], [0, 1]\}^* \{[1, 0], [1, 1]\}.$$

Then the numerator encodes the integer 1, while the denominator encodes all positive integers that start with 1. Hence

$$\text{quo}_k(L_4) = \{\frac{1}{n} : n \geq 1\}.$$
Example 5. Let $k = 4$, and consider

$$S := \{0, 1, 3, 4, 5, 11, 12, 13, \ldots \}$$

of all non-negative integers that can be represented using only the digits 0, 1, −1 in base 4. Consider the language

$$L_5 = \{(p, q)_4 : p, q \in S\}.$$

It is not hard to see that L_5 is $(\mathbb{Q}, 4)$-automatic. The main result in Loxton & van der Poorten [1987] can be rephrased as follows: quo$_4(L_5)$ contains every odd integer. In fact, an integer t is in quo$_4(L_5)$ if and only if the exponent of the largest power of 2 dividing t is even.
Example 6. Consider

\[L_6 = \{ w \in (\Sigma_k^2)^* : \pi_2(w) \in 0^*1^+0^* \}. \]

An easy exercise using the Fermat-Euler theorem shows that that
\(\text{quo}_k(L_6) = \mathbb{Q}^{\geq 0}. \)
Example 7. For a word x and letter a let $|x|_a$ denote the number of occurrences of a in x. Consider the regular language

$$L_7 = \{ w \in (\Sigma_2^2) : |\pi_1(w)|_1 \text{ is even and } |\pi_2(w)|_1 \text{ is odd} \}.$$

Then it follows from a result of Schmid [1984] that

$$\text{quo}_2(L_7) = \mathbb{Q}^\geqslant_0 - \{ 2^n : n \in \mathbb{Z} \}.$$
Note that $\text{quo}_k(L_1 \cup L_2) = \text{quo}_k(L_1) \cup \text{quo}_k(L_2)$ but the analogous identity involving intersection need not hold.

Example 8. Consider $L_1 = \{[2, 1]\}$ and $L_2 = \{[4, 2]\}$. Then $\text{quo}_{10}(L_1 \cap L_2) = \emptyset \neq \{2\} = \text{quo}_{10}(L_1) \cap \text{quo}_{10}(L_2)$.
Not the same as previous models of automatic rationals

– e.g., Boigelot-Brusten-Bruyère or Adamczewski-Bell

Example 9. Define

\[S = \{(k^m - 1)/(k^n - 1) : 1 \leq m < n\}; \]

this is easily seen to be a \(k \)-automatic set of rationals.

However, the set of its base-\(k \) expansions is of the form

\[\bigcup_{0<n<m<\infty} 0.(0^{n-m}(k-1)^m)^\omega, \]

where by \(x^\omega \) we mean the infinite word \(xxx \cdots \).

A simple argument using the pumping lemma shows that no Büchi automaton can accept this language.
Don’t demand lowest terms

Why not consider only representations p/q with $\gcd(p, q) = 1$?

Two problems:

- the language of all such representations

$$\{ w \in (\Sigma_k^2)^* : \gcd(\pi_1(w), \pi_2(w)) = 1 \}$$

is not even context-free

- given a DFA accepting $(S)_k$, where $S \subseteq \mathbb{N} \times \mathbb{N}$, can we decide if $\gcd(p, q) = 1$ for all $(p, q) \in S$? Not known to be decidable!
No known way to represent $\mathbb{Q}^{\geq 0}$ as a regular language with every rational represented only a finite number of times.
Automatic sets of rationals are closed under

- union;
- $S \rightarrow S + \alpha$ for $\alpha \in \mathbb{Q}^{\geq 0}$
- $S \rightarrow S \div \alpha$ for $\alpha \in \mathbb{Q}^{\geq 0}$
- $S \rightarrow \alpha \div S$ for $\alpha \in \mathbb{Q}^{\geq 0}$
- $S \rightarrow \alpha S$ for $\alpha \in \mathbb{Q}^{\geq 0}$
- $S \rightarrow \{\frac{1}{x} : x \in S \setminus \{0\}\}$.

Basic decidability properties

Given a DFA M accepting a language L representing a set of rationals S, can decide

- if $S = \emptyset$
- given $\alpha \in \mathbb{Q}_{\geq 0}$, whether there exists $x \in S$ with $x = \alpha$ (resp., $x < \alpha$, $x \leq \alpha$, $x > \alpha$, $x \geq \alpha$, $x \neq \alpha$, etc.)
- if $|S| = \infty$
- given a finite set $F \subseteq \mathbb{Q}_{\geq 0}$, if $F \subseteq S$ or if $S \subseteq F$
- given $\alpha \in \mathbb{Q}_{\geq 0}$, if α is an accumulation point of S
Deciding if $S \subseteq \mathbb{N}$

Important concept: let $S \subseteq \mathbb{N} \setminus \{0\}$. We say S is k-finite if there exist

- an integer $n \geq 0$,
- n positive integers g_1, g_2, \ldots, g_n and
- n ultimately periodic sets $W_1, W_2, \ldots, W_n \subseteq \mathbb{N}$ such that

$$S = \bigcup_{1 \leq i \leq n} \{g_i k^j : j \in W_i\}.$$

Theorem. Suppose there is a finite set of prime numbers D such that each element of $S \subseteq \mathbb{N}$ is factorable into a product of powers of elements of D.

Then S is k-automatic if and only if S is k-finite.
Furthermore, there is an algorithm that, given the DFA M accepting $(S)_k$, will determine if S is k-finite and if so, will produce the decomposition

$$S = \bigcup_{1 \leq i \leq n} \{g_ik^j : j \in W_i\}.$$

(Use reversed representations; follow path from start state on 0’s; from each such state there can only be finitely many paths to an accepting state.)
Suppose M is a DFA with n states accepting L representing a set of rationals S.

Case 1: If $\alpha \in S$ and α is “small”, say $\alpha \leq k^n$, then we can intersect S with $[0, k^n]$, remove all representations of integers $0, 1, \ldots, k^n$, and see if any word is left. If so, then S is not a subset of \mathbb{N}.
Case 2: If $\alpha \in S$ and α is “big”, say $\alpha > k^n$, then the numerator can be pumped, but the denominator stays the same. So the denominator must divide $[uvw]_k - [uw]_k$. But this is $k^{|w|}([uv]_k - [u]_k)$, and $|uv| \leq n$, so each denominator must divide a bounded number, times a power of k. So the set of all prime factors of all denominators is finite.

So the projection onto the set of denominators is k-finite.

We can easily remove powers of k. For the remaining finite set of denominators we can check if each denominator divides the numerator.
sup \(A\) is rational or infinite

Given a DFA \(M\) accepting \(L \subseteq (\Sigma_k \times \Sigma_k)^*\) representing a set of rationals \(A \subseteq \mathbb{Q}_{\geq 0}\), what can we say about sup \(A\)?

Theorem. sup \(A\) is rational or infinite.

Proof ideas: quo\(_k(\text{uv}^i\text{w})\) forms a monotonic sequence. Defining

\[
\gamma(u, v) := \frac{[\pi_1(\text{uv})]_k - [\pi_1(u)]_k}{[\pi_2(\text{uv})]_k - [\pi_2(u)]_k}
\]

one of the following three cases must hold:

(i) quo\(_k(uw) < \text{quo}_k(\text{uvw}) < \text{quo}_k(\text{uv}^2\text{w}) < \cdots < U\);
(ii) quo\(_k(uw) = \text{quo}_k(\text{uvw}) = \text{quo}_k(\text{uv}^2\text{w}) = \cdots = U\);
(iii) quo\(_k(uw) > \text{quo}_k(\text{uvw}) > \text{quo}_k(\text{uv}^2\text{w}) > \cdots > U\).

Furthermore, \(\lim_{i \to \infty} \text{quo}_k(\text{uv}^i\text{w}) = U\).
It follows that if $\sup A$ is finite, and the DFA M has n states, then $\sup A = \max T$, where

$$T = T_1 \cup T_2$$

and

$$
T_1 = \{ \text{quo}_k(x) : |x| < n \text{ and } x \in L \};
$$

$$
T_2 = \{ \gamma(u, v) : |uv| \leq n, |v| \geq 1, \delta(q_0, u) = \delta(q_0, uv), \text{ and there exists } w \text{ such that } uvw \in L \}.
$$
\[\sup A \text{ is computable} \]

We know that \(\sup A \) lies in the finite computable set \(T \).

For each of \(t \in T \), we can check to see if \(t \geq \sup A \) by checking if \(A \cap (t, \infty) \) is empty.

Then \(\sup A \) is the least such \(t \).
We say a word w is a p/q power if we can write

$$w = xx \cdots x x'$$

where

- $n = \lfloor p/q \rfloor$;
- x' is prefix of x; and
- $p/q = n + |x'|/|x|$.

For example, the French word *entente* is a $7/3$-power.

The *exponent* of a finite word w is defined to be the largest rational number α such that w is an α power.

Given an infinite word w, its *critical exponent* is defined to be the supremum, over all finite factors x of w, of $\exp(x)$.
Critical exponents

Examples of critical exponent:

- the Thue-Morse word

\[t = 0110100110010110 \cdots \]

has critical exponent 2 (Thue)

- the Fibonacci word

\[f = 01001010 \cdots \]

has critical exponent \((5 + \sqrt{5})/2\) (Mignosi & Pirillo)

- Previously known to be computable for fixed points of uniform morphisms (Krieger)
Theorem. If \(w \) is a \(k \)-automatic sequence, then its critical exponent is rational or infinite. Furthermore, it is computable from the DFAO \(M \) generating \(w \).

Proof sketch. Given \(M \), we can transform it into another automaton \(M' \) accepting

\[\{(m, n) : \text{there exists } i \geq 0 \text{ such that } w[i..i+m-1] \text{ has period } n \} . \]

We then apply our algorithm for computing \(\sup(\text{quo}_k(L)) \) to \(L(M') \).
Leech [1957] showed that the fixed point \(l \) of the morphism

\[
\begin{align*}
0 & \rightarrow 0121021201210 \\
1 & \rightarrow 1202102012021 \\
2 & \rightarrow 2010210120102
\end{align*}
\]

is squarefree.

We used our method to compute the critical exponent of this word. It is \(15/8 \).

Furthermore, if \(x \) is a \(15/8 \)-power occurring in \(l \), then \(|x| = 15 \cdot 13^i \) for some \(i \geq 0 \).
The *Diophantine exponent* of an infinite word w is defined to be the supremum of the real numbers β for which there exist arbitrarily long prefixes of w that can be expressed as uv^e for finite words u, v and rationals e such that $|uv^e|/|uv| \geq \beta$.

(concept due to Adamczewski, Bugeaud)

Theorem. The Diophantine exponent of a k-automatic sequence is either rational or infinite. Furthermore, it is computable.
A sequence a is said to be *recurrent* if every factor that occurs in a occurs infinitely often.

It is linearly recurrent if consecutive occurrences of factors of length ℓ appear at distance bounded by $C\ell$, for some constant C independent of ℓ.

For example, the Thue-Morse word

$$t = 0110100110010110 \cdots$$

is linearly recurrent, but the Barbier infinite word

$$b = 110111001011101111000 \cdots$$

is recurrent but not linearly recurrent.

Theorem. It is decidable if a given k-automatic sequence is linearly recurrent. If so, the optimal constant of linear recurrence is computable.
The Rudin-Shapiro sequence

\[0001001000011101\ldots\]

counts the parity of the number of 11’s occurring in the binary representation of \(n\).

We used our method to compute the recurrence constant for this sequence; it is 41.
How about lim sup?

I don’t know how to compute \(\limsup(\text{quo}_k(L)) \) in general, where \(L \subseteq (\Sigma_k \times \Sigma_k)^* \) is a regular language.

However, the largest \textit{special point} can be computed.

A real number \(\beta \) is a special point if there exists an infinite sequence \((x_j)_{j \geq 1}\) of distinct words of \(L \) such that

\[
\lim_{j \to \infty} \text{quo}_k(x_j) = \beta.
\]

Thus, a special point is either an accumulation point of \(\text{quo}_k(L) \), or a rational number with infinitely many distinct representations.

Luckily, special points suffice for most applications involving \(\limsup \).
Application 4: Goldstein quotients

Let x be an infinite word and $\rho_x(n)$ its subword complexity, the number of distinct factors of length n.

I. Goldstein [2011] showed that in some cases the quantities

$$\limsup_{n \geq 1} \frac{\rho_x(n)}{n} \quad \text{and} \quad \liminf_{n \geq 1} \frac{\rho_x(n)}{n}$$

are computable.

We can show that these are computable when x is a k-automatic sequence.

We can construct a DFA accepting

$$L := \{(\rho_x(n), n)_k : n \geq 1\}$$

and then find the largest (resp., smallest) special point. This corresponds to the lim sup (resp., lim inf).
Are the following problems decidable?

Given a DFA M accepting a language L representing a set of pairs of integers $S \subseteq \mathbb{N} \times \mathbb{N}$:

- does there exist a pair $(p, q) \in S$ with $p \mid q$?
- does there exist infinitely many pairs $(p, q) \in S$ with $p \mid q$?
Is there a regular language $L \subseteq (\Sigma_k \times \Sigma_k)^*$ representing $\mathbb{Q}^\geq 0$ such that each rational has only finitely many representations?
Open Problem 3: Cobham’s theorem

Prove or disprove: let $S \subseteq \mathbb{Q}^{\geq 0}$ be a set of non-negative rational numbers. Then S is simultaneously k-automatic and ℓ-automatic, for multiplicatively independent integers $k, \ell \geq 2$, if and only if there exists a semilinear set $A \subseteq \mathbb{N}^2$ such that $S = \{p/q : [p, q] \in A\}$.
For Further Reading

Thanks, JPA, for 28 years of collaboration!