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ABSTRACT. We examine some aspects of the history of computational num-
ber theory, with emphasis on the problems of integer factorization and
primality testing.

1. Introduction

We revel in the details of history because they are the source of our being.
Stephen Jay Gould

During the last twenty years, the field of computational number theory has
achieved the status of a discipline in its own right. This development is due, in
large part, to the invention of cryptosystems (methods for encoding and decod-
ing messages) whose security is based on the presumed computational difficulty
of certain number-theoretic problems such as integer factorization. Also quite in-
fluential was the development of the theory of computational complexity, which
enabled the comparison of different algorithms to be placed on a firmer mathe-
matical footing. Because of the influence of these two areas, one may legitimately
ask whether computational number theory is properly a part of mathematics or
computer science.

But, of course, the most profound influence upon the establishment of com-
putational number theory is the development of the computer. From the very
beginning of computer technology (and, as we will see, even before then), num-
ber theorists were using whatever “hardware” was available to aid them in their
research.
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Computational number theory, unlike many other areas of mathematics, is
properly a science: experimental method is a significant component in practice.
Those who develop number-theoretic algorithms are often concerned with their
eventual implementation, and a great deal can be learned from such experimen-
tation.

The release from the immense drudgery of hand calculation afforded by elec-
tronic computers leads to a much more thorough development and testing of
algorithms, and gives us new insight into the theorems on which those algo-
rithms are based. Furthermore, it becomes possible to use algorithms that are
extremely complicated: many powerful modern methods would be completely
unusable if only hand computation were available.

Given this, why should we even consider computational number theory before
the age of electronic computers? The answer is that the subject was studied
for centuries before computers were available, and it is in this work that the
modern subject claims its origins. It is important to understand and appreciate
the ingenuity and tireless energy of the pioneers of our discipline. It is easy to
be condescending toward these people; after all, they did not express their ideas
using modern terms such as “polynomial time” or “succinct certificate” that we
casually use today. Although they had not formulated such language, they often
understood the ideas implicitly.! Since they did their calculations by hand or
with the aid of simple mechanical tools, they had to be concerned with efficiency
and accuracy. .

Why did the early workers in computational number theory not use machines?
The answer is that they did: not only did they make use of whatever calculating
device was available at the time, on occasion they even developed new machines,
as we will see later. One great difficulty that frequently plagued these researchers
was that the technology of the day was simply not equal to the demands of
the mechanisms they envisaged. For examplé, according to some historians,
Babbage’s failures with the differential engine were due in part to the inadequacy
of the British machine-tool industry at the time (but for a different view, see
[176]). A sieving device described by Lawrence in 1896 was only constructed
successfully by Carissan in 1919. Furthermore, it was not until 1932 that Lehmer
was able to make a sieve mechanism run at a fairly rapid rate without human
intervention. Another problem, easy to appreciate by researchers of today, was
the difficulty in obtaining research funding for these projects. .

We do not intend in this paper to provide anything like a complete history
of the development of computational number theory. For our purposes, it will
suffice to illustrate our points by concentrating”on one particular problem which
is still of great interest today: the integer factoring problem. Indeed, the only
“proof” that this problem is intractible (a very important issue in modern cryp-
tography) is based on its history. More precisely, we will study the computational

1In making this observation, we hope, of course, to avoid the fallacy of interpreting historical
events solely in the light of modern understanding.
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history of both factoring and primality testing. These two problems really do
belong together, because if we wish to obtain the complete factorization of an
integer N as a product of prime powers, we must be able to show that the primes
involved in this representation are indeed primes. Also, as we will see below, a
partial factorization of numbers like N — 1 and N + 1 proves useful if one wants
to prove that N is prime.

These problems have a very long history, but, with the exception of the inven-
tion of the Eratosthenian sieve, nothing truly significant was done until the time
of Fermat. From then on, progress has been steady (if not always spectacular)
up to the present day.

We emphasize here that early researchers in computational number theory
were often uninterested in general methods for factorization or primality testing;
rather, particular classes of numbers (such as 2" + 1 and 10" £ 1) served as
stimuli for their efforts. The reader is no doubt familiar with the stories of
Mersenne’s discussion of the primality of 2™ — 1, and Fermat’s incorrect belief
that all numbers of the form 22" +1 are prime. In 1856, Reuschle [159] published
(among other items) a table of factors of 2" — 1 and 10" — 1 for n < 42, and in
1869, Landry [63] published a table of factors of 2" £1 for n < 64. The “holes” in
these and other tables provided a source of challenges in factoring and primality
testing that occupied the energies of many workers over several decades, as do
the holes in the Cunningham Table [13] even today.

Our main focus in this paper is on the computational history of factoring and
primality testing from 1750 to about 1950 (although we discuss modern work in
§14). (For citations before 1750, the reader may consult Volume 1 of Dickson’s
History of the Theory of Numbers [20].) Nevertheless, it may be of some interest
for comparison’s sake to mention what can currently be done. The largest prime
currently known is 276839 — 1, a number of 227832 decimal digits. This was
discovered by Slowinski and Gage on 19 February 1992; see Ewing [23]. One of
the largest integers ever proved prime by a general method? is (23%3° +1)/3, a
number with 1065 decimal digits; see Atkin and Morain [3] and Bosma and van
der Hulst [10]. D. Bernstein and A. K. Lenstra announced the factorization of
2523 _ 1, a 158-digit number, on 29 October 1992; they used the lattice sieve, a
version of the number-field sieve. The largest integer ever factored by a general
method is a 116-digit divisor of 104241, by A. K. Lenstra, M. Manasse, and the
assistance of many others; see [98]. For further information on this subject, we
refer the reader to the papers of Williams [186], Silverman [172], and the books
of Riesel [161], Bressoud [11], and the Cunningham project book of Brillhart et
al. [13].

2By a general method we understand an algorithm that does not depend on any special
properties of its input. For example, a primality testing algorithm that applies only to numbers
of the form 2™ — 1 would not be a general method.
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2. Primality testing

We begin our discussion of the history of computational number theory with
the problem of testing a positive integer for primality.

From a modern point of view, the definition of the term “primality test” is not
universally agreed upon. (Indeed, the authors of this paper are not in complete
agreement!) In general usage, a test can mean a “procedure for determining the
presence or absence of some property”; consider, for example, “gyphilis test”.
As the term is generally understood, a test may not be accurate with 100%
confidence. It is also possible for a test to return the result “inconclusive”.

This intuitive usage of the term “test” is what is generally meant by most
complexity theorists. By a “primality test”, most complexity theorists under-
stand any randomized algorithm? that recognizes either the set of prime numbers
or the set of composite numbers. More precisely, any Atlantic City algorithm
is regarded as satisfactory; here, Atlantic City refers to an algorithm with the
property that the output may be incorrect, but the probability of error is no
more than 1/2 — ¢, for some fixed positive constant e. It is important to note
that the probability of error does not depend on the input N; rather it is com-
puted by considering all possible sequences of coin flips used by the algorithm.
If a set is accepted by an Atlantic City algorithm running in polynomial time,
then we say that the set is in the complexity class BPP (bounded away from zero
probabilistic polynomial time). It is known that the set of prime numbers are
in this class; thus, complexity theorists and cryptographers are generally happy
with the algorithms of Solovay-Strassen [173] and Miller-Rabin [156].

However, many number theorists find this rather general definition unsatis-
factory, since Atlantic City primality tests do not, in general, provide a proof
that a prime number really is prime - only good evidence that this is the case.
(However, the Solovay-Strassen and Miller-Rabin algorithms actually have one-
sided error, and hence if they reply “composite” on input IV, then a proof that
N is composite is provided by the details of the computation.) In contrast, most
number theorists do not object on philosophical grounds to the so-called Las
Vegas tests: these use a source of random numbers, but their output does pro-
vide a proof that the number in question is either prime or composite. Only the
running time, not the conclusion, of a Las Vegas algorithm is probabilistic. If a
set is accepted by a Las Vegas algorithm running in expected polynomial time,
then we say that the set is in the complexity class ZPP (zero efror probabilistic
polynomial time). -

As most of the early workers tended to regard a primality test as being a
technique which would yield a rigorous proof of primality, we will adopt for use
throughout this paper the following more narrow definition of “primality test”:

DEFINITION 2.1. A primality test on a given integer N is the computational

3A randomized algorithm is one that has access to a sequence of random, unbiased flips of
a fair coin.
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verification of the hypothesis of a theorem whose conclusion is that N is prime.

Some have also called such a test a “primality proof’.

Many such tests can be described. For example, consider Wilson’s theorem
(which was probably known to Leibniz; see Vacca [185] and Mahnke [127]):
N > 1is a prime if and only if N divides (N — 1)! + 1. However, this test seems
to be computationally impractical, since there is no known way to compute
(N —1)!'+1 (mod N) in any reasonable length of time for large N. (Note that
Wilson’s Theorem actually gives a necessary and sufficient test for primality,
something not explicitly required by our definition.)

Having described what we mean by a primality test, we now give four features
that are desirable: the test should be efficient, the test should be universally
applicable, the test should be robust, and the test should produce an efficiently
verifiable certificate of primality.

The term “efficient” is, of course rather vague and subject to interpretation,
but most would agree that the obvious implementation of Wilson’s theorem
is not efficient. Today we might say that an algorithm is efficient if it runs in
polynomial time, that is, if its running time is bounded by a polynomial in log N,
where N is the input. This definition has its problems in real life, however, since
the polynomial referred to may have high degree or very large coefficients. For
example, although it is a great theoretical advance, the Las Vegas primality test
of Adleman and Huang [1] is probably not useful in practice for precisely these
reasons.

The second feature, universal applicability, means that the test should work
for all prime numbers. This is a desirable goal, but one that not all otherwise
useful tests satisfy. As we will see below, many of the early practical primality
tests only worked for numbers of special forms: Lucas’ test for numbers of the
form 2P — 1, for example.

The third desirable feature of a primality test is robustness. Robustness is a
vague notion which is difficult to express precisely; we use it to mean that errors
that take place during the course of the computation will be detectable. Here
is an example: suppose we are trying to determine if a number a is a quadratic
residue modulo some given odd prime p. By Euler's criterion, it suffices to
compute a?~1/2 (mod p). The result, if computed correctly, will be +1 or —1,
according to whether a is a residue ot nonresidue. Nearly every mistake made
in this computation will be detectable, since most will result in an answer which
is neither +1 nor —1. .

Robustness was especially important in the days before computers, when hand
computation was very error-prone, and checking a computation was not simply
a matter of running a program again on another machine. Lucas’ necessary and
sufficient test for primality of numbers of the form 2?7 — 1 depends on obtaining
the result 0 after a long series of hand calculations involving numbers with p
bits. If the result is 0, then one may be reasonably confident that it is correct,
and hence the number in question is prime, since the probability of obtaining 0
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after a random series of multiplications and additions of numbers this large is
quite small. On the other hand, if the result is not 0, the theory implies that
the number in question is composite. But since almost any error introduced into
the computation would also give a nonzero result, one’s confidence in this result
is necessarily smaller.

The last criterion, that of producing an easily verifiable certificate of primality,
was explicitly pointed out for the first time by Pratt in 1975 [150]. He showed
that, for any given prime p, it is possible to obtain a “succinct certificate” that
proves p prime and which can be verified in polynomial time. It is, of course,
quite conceivable that actually finding such a certificate may require more than
polynomial time.

Note that we have not discussed what may happen if the input to a primality
test is composite. There are several possibilities: the algorithm may diverge (run
forever); the algorithm may reply that the test is inconclusive; or the algorithm
may provide a proof that the input is indeed composite. While this behaviour
was a legitimate concern in the past, today a proof of compositeness may be
given in polynomial expected time using the strong pseudoprime test (as in
Miller-Rabin).

Having discussed some abstract principles, we now move on to the history
of primality testing. In 1588, Cataldi proved that N; = 524287 = 21° — 1 is
a prime by trial division by all the primes less than the square root of Nj.
(The method of trial division was known to Fibonacci in 1202.) Until 1772, this
seems to have been the largest prime known. At that time, Euler proved that
N, = 2147483647 = 23! — 1 is a prime. He did this by improving upon the
algorithm used by Cataldi.

Euler was aware that if any prime q is a divisor of 2P — 1, where p is an odd
prime, then ¢ = 1 (mod 2p), a result known to Fermat. He also realized that
since 2Ny = (2'6)2 — 2, then 2 must be a quadratic residue of ¢; hence ¢ = +1
(mod 8). By combining these observations, Euler could assert that if g is a prime
divisor of Ny, then ¢ = 248k + 1 or ¢ = 248k + 63 for some integer k > 0. If
g < /Ny, then there are only at most 186 values of k to check. Thus, after
performing at most 372 trial divisions (fewer if one eliminates composite trial
values of g), Euler was able to show that N, is a prime. Thus, Euler’s test was
more efficient than Cataldi’s.

In 1859, F. Landry [61], who at that time believed that 23! — 1 was still the
largest known prime?, attempted to give a shorter proof of its primality .than
Euler’s. By using a number of clever tricks he was able to do this; in fact, by
1867 he was able to claim [62] that he had so reduced the calculations necessary
to effect the verification of the primality of N, that they would fit on a single
slip of paper. Furthermore, in this same paper Landry goes on to state that he
had proved the primality of the thirteen-digit divisor 1133836730401 of 275 + 1.

4In fact, according to Reuschle [159, p. 3], Looff had proved in 1851 that 999999000001,
the 12-digit factor of 108 + 1, is prime.
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What he said next we quote here, in translation from the French:
At this point we are, if not uneasy, then at least somewhat
embarrassed.
Indeed, when one has succeeded in factoring a number, and has
given its factors, this can be verified immediately. But it is a
different matter when the methods used fail to discover any fac-
tor, and one then asserts that the number is prime. How could
one then transmit to another such a totally personal conviction?
Who would be convinced, without having redone all the calcu-
lations, and without having understood the principles on which
those calculations were based?
We understand well that our claim is valid only as an assertion,
worthwhile until someone proves the contrary, or until we make
known our methods and enable others to apply them.

Today, we would say that Landry was struggling with the difficulty of pro-
viding a succinct certificate. Landry clearly anticipated the basic idea of what
would become famous a hundred years later in computational complexity theory:
the class NP. Even today, providing such a certificate is a difficult problem, and
those who have been involved in primality testing can easily understand and
appreciate Landry’s concern.

In 1869, Landry [63] went on to state that he had proved that the 14-digit
number (252 + 1)/(3 - 107) is prime. This was the largest prime known until
1876, when Lucas made his breakthrough. Incidentally, Landry did not describe
in [62, 63] how he had carried out his impressive factorizations. It was not until
1880, when he wrote a letter [64] to Charles Henry, that he revealed his method.
Landry’s technique had been known to Fermat and will be described later. (It
was this convergence of techniques that particularly struck Landry and caused
him to write his letter.) After Landry’s work in 1869, only the following four
numbers of the form 2" + 1 (n < 64) remained unfactored:

259 1,261 1,260 11,98 4+ 1.

By 1878, Landry (according to Lucas [114, pp. 239-240]) had factored 25° —1;
we will discuss the investigation of the others later. It is interesting to note in
passing that Landry suspected that 281 — 1, (26! + 1)/3, and 2% + 1 were all
primes, but he never seems to have said that he had proved the primality of
any of them. Indeed, in [63] he stated that these had resisted his efforts, and in
1880 he said [64] that the first two still remain to be investigated (the third is
composite).

2.1. Babbage. Charles Babbage, the English pioneer of the modern com-
puter, was one of the first to apply computational ideas to number theory.

Legendre and Euler had both noticed that the polynomials z2 + z -+ 41 had
the unusual property of generating nothing but primes for small values of z. The
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relationship between this curiosity and the class number of Q(+/—163) was not
explained until 1912 by Frobenius and Rabinovitch. Babbage knew about these
polynomials, and one of the first tasks he set his Difference Engine to was the
computation of values of ar_:2 + z +41. In June 1822, he wrote:
With this machine I have constructed ... a table from the sin-
gular formula z2 + 1 + 41, which comprises amongst its terms
S0 many prime numbers.
His machine could only display results, and not print them. Babbage employed
a friend to write down the results. In a letter to Sir Humphrey Davy the next
month, Babbage discussed the speed of his machine:
[The Difference Engine] proceeded to make a table from the
formula 22 +x +41. In the earlier numbers my friend, in writing
quickly, rather more than kept pace with the engine; but as soon
as four figures were required, the machine was at least equal in
speed to the writer.
The letter also mentioned a possibility for a future machine (perhaps the
Analytical Engine):
T have also certain principles by which, if it should be desirable,
a table of prime numbers might be made, extending from 0 to
ten millions.
See Babbage’s collected letters and papers [4] for more details.

3. Lucas’ discovery

In order to discuss the work of Edouard Lucas, it is first necessary to introduce
the functions that today carry his name. The Lucas functions Up and V;, (or
Un(P,Q) and V,,(P,Q)) are defined by

U, = U‘n.(Pv Q) = (an - ﬁn)/(a - /B)v
Vo =Va(P,Q) =a™ + g,

where o, 8 are the zeros of the polynomial 22 — Pz + @, and P,Q are coprime
integers.

These functions did not originate with Lucas; they (or functions very similar
to them) had been studied by Euler, Lagrange, Legendre, and Gauss. Several
combinatorial and number-theoretic properties of the function &, had been dis-
covered by Siebeck [171] almost thirty years previous to Lucas’ work. Also,
Genocchi [33] had used properties of functions very similar to U, and V, in
order to demonstrate the infinitude of primes of the forms az +1 and az ~ 1,
for any given a. Nevertheless, in our opinion the functions are properly called
the Lucas functions because of Lucas’ singular contribution to their study, only
a part of which we will discuss here.

In early January of 1876, it appears that Lucas [102] had considered the
functions U,, and V,, as we see them above, but he was mainly interested in the
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particular case of U, (P, Q) where P = 1 and @ = —1. Today, these numbers are
called Fibonacci numbers, but at the time it was common to call the sequence

(3.1) 0,1,1,2,3,5,8,13,21,34, ...

the series of Lamé. That was because Lamé [60] in 1844 had used these numbers
to investigate the number of steps performed by the Euclidean algorithm to
compute the greatest common divisor of two numbers. Lamé had shown that the
worst case of the Euclidean algorithm occurred when the inputs were successive
Fibonacci numbers, a fact that had been given without proof by Léger [69] in
1837. This is one of the earliest results in the analysis of algorithms. Lamé
further showed that the number of division steps in the Euclidean algorithm was
always bounded by five times the number of decimal digits in the smaller of the
two inputs. It was Lucas, however (see [103] and [112]), who discovered that
these numbers had been known to Fibonacci six centuries earlier, and in Lucas’
next paper [103] dated May of 1876, he calls (3.1) the Fibonacci series.

There are several results mentioned in [102], all given without proof, but the
most striking of these are results such as the following.

THEOREM 3.1. If N = 43 (mod 10}, N|Uny1, and NfUy for all divisors d
of N+ 1 [with d < N + 1], then N is a prime.

The reason for the importance of this theorem will be fully discussed later.
Lucas pointed out that it permits one to know that a number is prime or compos-
ite without the need of a table of primes, i.e., without employing trial division.
Notice that this is somewhat similar in spirit to Wilson’s theorem in that to
show that N is a prime it is necessary to show that it divides a certain number.
However, Lucas was the first individual to devise an efficient test for primality
or compositeness, which did not necessarily have to reveal the factors, if any, of
the number being tested. He then goes on to say:

It is with the aid of this theorem that I think that I have shown
that the number N = 2127 — 1 is a prime.

This N = 170141183460469231731687303715884105727 is a number of 39 dig-
its, far greater than the largest prime known at the time. (Lucas at this time
was unaware of the work of Looff and Landry and thought that 23! — 1 was the
largest known prime.)

Lucas had clearly made a most remarkable discovery, and when we think
about his statement today, there are at least four important questions that we
are led to ask:

(i) How did Lucas discover this test?

(i) Why did he test 2'27 — 1, and not some other number?
(iii) How did he test 2127 — 17
(iv) Why was he unsure of the result?

We will attempt to answer the first two of these questions in this section,
leaving for later sections the answers to the others. Previous to his paper [102],
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Lucas had written only one other paper [101] on factoring. In this paper he at-
tempts to factor various numbers of the form g™ + 1 by determining the possible
linear forms of the prime divisors (as did Euler) and then performing trial divi-
sions by taking logarithms of the numbers involved and subtracting. This work,
which appeared in November of 1875, seems much less sophisticated than the
work of the following January. What happened? In {118, p. 14] Lucas himself
provides us with the answer. In commenting on [102] he says:

This note is the point of departure for new investigations by the

author in the theory of prime numbers. After having decom-

posed by means of a table of prime divisors the early terms [of

the Fibonacci numbers], the observations of the forms of these

divisors led the author to the demonstration of a certain num-

ber of theorems which allowed him to develop some new and

general considerations concerning the theory of prime numbers.

One finds here for the first time an indication of a new method

for finding prime numbers, which is independent of a previously

constructed table of prime numbers.

As to why Lucas selected 2127 —1 to test, we can only speculate. Probably he
wanted to find a prime of the form M,, = 2" —1; after all, Euler himself had been
interested in such primes and Euclid had shown that 2"~1M,, is a perfect number
when M, is a prime. Also, it is easy to find all of the divisors of M, +1=2";
thus, the theorem of Lucas quoted earlier is easy to apply (see §4 below). Lucas
knew that any prime value of M,, would require that n be prime and he also
knew all the primes of the form M,, that had been identified by 1876:

221,28 ~1,2° - 1,27~ 1,218 _ 1 217 1 919 4 931 _ g

Notice that some of these values of n (ie., 3, 7, 31) are also of the form M.
The next possible prime value for such an n is 127 and Mior = -3 (mod 10);
thus, his theorem could be used. We don’t really know that this was how Lucas
was thinking, but in a later letter [111] he speculates on the existence of a
sequence of primes of the form 2" —1,2™ —1 272 — 1,..., where n; = 2"~ 1,
ng = 2™ — 1, etc.; thus, it’s quite likely that he was thinking along the lines
of our speculation. According to [118], Lucas wrote a thesis for presentation to
the Faculty of Science at Paris. This thesis, dated September 24, 1877, was a
development of the paper [102] and could perhaps cast some further light on
these problems. Unfortunately, all attempts by the authors to locate a copy of
it have so far failed.

4. Implementation of Lucas’ test

In order to discuss how Lucas actually used his theorem to test Myq7, we
provide the following simple identities satisfied by U, and V,:

U2n = UnVn;
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Van, = V,g - 2Qn

On examining these identities and referring back to Lucas’ theorem, it is easy to
see that if N = 2" —1 and N|Upn.1 but N|Uy for any proper divisor d of N +1,
then N|Viyt1)2. Thus, if we define Sy = Voe (1,1}, then Sk = SZ_,—2for
k > 2. We have the following test:

If M, = +3 (mod 10), then M, is a prime if M,|5,_;, where 5; = 3 and
Sy =52_, —2 (mod M,) (k=2,3,..,n—1). .

Notice that this test for primality certainly possesses the features of efficiency
and robustness discussed in §2. As he mentions in [112], this is the form of the
test that Lucas used. By December of 1876 he [107] has modified this rgsult as

follows:

THEOREM 4.1. Let p = 24™+% _ 1, where the exponent is a prime. If one
forms the sequence

3,7,47,2207,...

withr; =3 and 1 = rfL — 2, then p is a prime when the least value of k such
that p|ry is 4m + 2. The number is composite if none of the first 4m + 2 values
of T is divisible by p. Finally, if o denotes the first value of k such that plr,
then the prime] divisors of p have the form 2t + 1 combined with those forms
which can divide z> — 2y.

So we know what sort of test Lucas used, but how did he actually perform
-the arithmetic? Remember Mo is a number of 39 digits; the kind of arithmetic
needed here would involve numbers larger than any used previously. In several
papers Lucas [103, 106, 108, 114] alludes to the use of binary arithm.etic for
doing this, but he does not really describe how he actually did it. Finally, in [1.1?,
p. 152 ff] he is more explicit. The solution to this problem is very charactems.tlc
of him; he made the performance of this tedious arithmetic into something like
a game. He said he used a 127 x 127 chessboard to effect the computations. To
illustrate his idea he used a simple example which we will discuss here.

Consider (instead of Mygy) My =27 —1=127. Wehave §; =3, 52 = 7,
S3 = 47, Sy = 472 — 2 = 48 (mod 127), S5 = 482 — 2 = 16 (mod 127),
S¢ = 162 — 2 = 0 (mod 127); hence, we have a proof of the primality of 127.
Lucas notes that if M,, = 2" — 1, then

(4.1 2mt™ = 9™ (mod M,,).
The main operation of testing involves squaring, subtracting 2, and reduction

modulo M,,. If we try to perform this on S3 to obtain Sy (using My) we first
consider the binary representation of S3 which is 101111 We can then begin to
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compute its square by simply multiplying as usual

10111
101111
101111
101111
101111
101111
00 0O0O0OUO0
101 1 1 1

However, because we only need to find the answer modulo 27 — 1, we can use
(4.1) to put the information between the horizontal lines into a neat 7 x 7 square
because each row wraps around cyclically.

7161514 (3|2]1
0f1j0j1(1(1|1
1]0|1]1/1(1]0
Oj1]1]1)110(1
ij1j1|1]of1]0
1j1]1|0]1]0(1
0jofojojojofo
1l1|of1]lo0]1{1

In order to avoid a lot of writing, Lucas suggests the use of a 7 x 7 chessboard
with pawns in squares representing the positions of the ones and empty squares
representing the positions of the zeros.

Once we have this array of pawns on our chessboard we make use of two rules:

(1) Take (when possible but only once) a pawn away from column 2. This
corresponds to the subtraction of 2 from the square. If a pawn never
appears in column 2, then 2 must be subtracted from the final answer.

(ii) For each pair of pawns in any column remove one from the board and
move the other into the column to the left. Remember that the column
to the left of the left-most column (column 7 here) is column 1 because
of (4.1).

Continue performing these operations until the only pawns, rémaining are in
the first row. In our case we get the first row to be

71615141321

which represents 01 100 0 0 or 48 in decimal.

Lucas said that with a little training one can succeed in becoming quite quick
at the manoeuvre (i) above. By making use of a 127 x 127 chessboard, this was
how Lucas performed his test on Migy. The advantage of not having to write
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anything down (contrary to Lehmer’s criticism in [71]) is to some degree offset
by having nothing left at the end of the process but an answer. If an error were
made, it would be difficult to detect. Depending on how quickly Lucas could
execute the operations needed to perform this test, we estimate that it must
have taken between 170-300 hours for him to complete it. This explains why he
only performed this test of M127 a single time (see [112, p. 152]), and this may
be why he was a little unsure of his result, but we’ll discuss this more fully in §5.

One thing that is very striking about Lucas’ technique is how easy it should
be to mechanize (and how much more accurate the results would be if it were).
Certainly, Lucas thought so. In several of his papers [103, 105, 106, 107]; and
[114, p. 305] he mentions the possibility of constructing a machine for doing
this. For example in [103] he says: '

The construction of this mechanism allows for the rapid calcu-
lation in the binary number system of residues of the V,, with
respect to the number whose decomposition we are seeking. It
is based on the preceding theorems and the mathematical laws
of the geometry of weaving.

In [106] he goes so far as to say:

I have conceived ... the plan of a mechanism which allows ... for
the determination of prime numbers having a thousand digits in
the decimal system.

The reference to the geometry of weaving is not as outlandish as it may seem.
Lucas knew a great deal about weaving and wrote or presented several papers
on this subject. Also, there were mechanisms in existence at that time which
did allow for the construction of a fabric with the properties of the chessboard
representation of the square of an integer (mod M, ) discussed above. In this
representation a 1 might be denoted by a vertical thread passing over a horizontal
one, whereas a zero would then be represented by a vertical thread passing under
a horizontal one. Nevertheless, by the time Lucas published in 1878 his main
work [114] on the Lucas Functions, his claims are much more subdued. Also,
in his major paper on the geometry of weaving [119] (see [126] for a French
translation) he makes no mention of using his ideas for constructing a machine.
However, he never forgot these ideas, and in 1887 he says [121]:

1 will add that Mr. Genaille is currently constructing for me a
machine that will enable us to [find all primes of the form 2" —1]
which have no more than 150 digits.

Henri Genaille was a very prolific inventor of calculating mechanisms. Lucas
praises him very warmly in his paper on calculating devices, which was reprinted
in Vol. III of Récréations [125]. He is credited with constructing over 28 such
devices in [129], all of which were donated in 1886-1888 to the Conservatoire
National des Arts et Métiers in Paris. Also, he and Lucas worked together on
a number of various computing devices (see [2]), and in 1891 we learn in an
all-too-brief mention [32] that he had constructed an Arithmetic Piano, a device
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which was to be used for determining primes of the form 2% — 1. We quote the

article {32] in full:
The Arithmetic piano allows one to put into practice the method
formulated by Mr. E. Lucas, at the Congress of Clermont-
Ferrand, for the verification of large prime numbers. By the
simple manoeuvering of some pegs, the verification of prime
numbers of the form 2™ — 1 is reduced in the greater number
of cases to a labour of a few hours. This machine, which can
manage to carry out automatically calculations of the greatest
importance, will effect one day the realization of a calculating
machine which performs arithmetic operations by itself.

We have currently no idea what happened to this machine. Unfortunately,
Lucas died at the early age of 49 a few weeks after the meeting at which the
machine was exhibited and nothing seems to have been heard about it since.

Gérardin [40], writing in 1912, claimed that Genaille had not constructed
anything, but this is certainly not the sense of [31], where it is explicitly stated
that the machine was admired by all the members of the session. Indeed, in
view of the facts that 1) Genaille was a skilled fabricator of calculation machines
and 2) that he had been working on this device for a period of about 4 years,
it is difficult to believe that he would have discussed a nonexistent mechanism.
However, it is possible that the device was not in a completely finished state.
Very likely the machine was in the possession of Genaille when Lucas died, and
there being no further use for it, Genaille probably abandoned the project. We
wonder if somewhere in France this machine might still exist.

It is curious.to note that both Fauquembergue [25] in 1912 and Mason [128]
in 1914 described devices based on Lucas’ ideas for testing the primality of
M,,, devices which were based on the same multiplication technique of Cauchy
[18], even though it appears that Mason was unaware of [18]. In the case
of Fauquembergue, a device resembling a rather large slide rule was actually

constructed and used. Mason’s device, which was more sophisticated in concveptb

than that of Fauquembergue, seems never to have been constructed.

5. Lucas and Mersenne

The most difficult-to-answer of all the questions posed in §3 is (iv). This is
because it does not appear that Lucas had ever settled this question in his own
mind. What is particularly remarkable is his failure to mention the primality of
M;27 in several of his papers where it would have been appropriate, especially in
his memoir [114], the notice of his works [118], or his book [122]. In many ways
his doubts or caveats, expressed in one way or another in [102, 112, 120, 121,
123, 124] seem strange to us today. For, after going through all the labour
necessary to find Siz6 (mod Mig7) and finding it to be the particular residue
zero, and considering all the possibilities for error, he would almost certainly
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have had the correct answer. The probability that it would be wrong is very
remote indeed. However, this is not necessarily the way that Lucas thought
about these matters. Remember that he had just discovered this test and did
not have all the experience in these matters that we have today.

He was evidently of two minds concerning his result; nowhere is this better
illustrated than in his paper [120], written in 1886. This note seems to have
been in response to one of Seelhoff [165] (see also [164]) in which, among other
matters, it was stated that there were only eight perfect numbers known. Lucas
replied that there were nine (his italics) such numbers and listed 2126097 as
one. Since from the time of Euler, it has been known that the only even perfect
numbers are those of the form 27~ 1M,,, where M, is a prime, it is clear at this
point that Lucas considered Miy7 a prime. However, on the next page of this
same note he gave a list of 24 values of n up to 257 which includes the number
127. Of this list of values he stated that it remains to study (meaning in this
context to determine the prime or composite character of) the values of 2" — 1,
for these n-values, a statement he also made in [122, p. 376].

The likely cause of Lucas’ difficulties was a statement of Mersenne. In 1644,
Mersenne asserted (without giving any reason) that of the 55 prime values of
n < 257, M, is a prime for only the following 11 values:

n=23,5,713,17,19,31,67, 127, 257.

Mersenne was a correspondent of many of the great mathematical thinkers of
his time such as Descartes, Fermat, and Frenicle; thus, this statement carried
a lot of weight. The attentive reader might well ask why it was not this list
that caused Lucas to attempt to prove My, a prime? (The symbol M here
commemorates Mersenne and numbers of the form M,,, where n is a prime, are
called Mersenne numbers today.) The answer to that question is that Lucas was
unaware of Mersenne'’s list when he tested My,7. He was informed of it later in
a paper [34] of Genocchi, where the list is mentioned in a lengthy footnote.
While it is hard for us to understand this today, it is important to realize that
throughout most of his academic life, Lucas attached considerable importance
to Mersenne’s list. We now know that it contains five errors (Mgy and Masr are
composite and Mgy, Mgg, Mig7 are primes). In fact, in [113] Lucas declared that
Mersenne was in possession of arithmetical methods that are now lost. In [114,
p. 237] he went on to say that Mersenne’s method would probably not deviate
from the principles of Fermat, and as a consequence, would not differ essentially
from the method he (Lucas) had deduced. Another part of the reason he believed
in this list is that until 1887 every factoring result concerning Mersenne numbers,
of which Lucas was aware, confirmed the truth of it. Indeed, the 24 values of
n mentioned earlier were all that remained to be tested of the original 55. His
faith in Mersenne’s list was so strong that he seems to have refused to believe
the results of his own calculations on Mg7. In [103] he states that he does not
think that 67 belongs in the list because he had already applied his method to
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it. But later in [114, p. 307] he says:
One could thus construct diagrams for prime numbers of the
form 24973~ 1. .. we hope ultimately to give these for the num-
bers 267 — 1 and 2127 — 1.
These diagrams were depictions of n x n chessboards whose rows represented
in binary the residues S, modulo M, for k = 0 (Sy = 0), 1,2,...,n — 1. For
example, the diagram for My would appear as

6/5|4/3|2[1]0
.
oo
e|eie
. elelo|e

DOl W | =]

In fact, Lucas [112] went to some trouble to compute such a diagram for Mj;.
This represented his attempt at producing a succinct certificate for its primality.
He [104] also issued, as a challenge, the problem of proving Mz, a prime without
the use of a table of primes.

In 1887, Lucas [121] learned that Me; is a prime. Seelhoff [168] had shown
this in 1886, and Hudelot, after 54 hours of labour, in 1887 confirmed Seelhoff’s
result. This confirmation was very much needed, as Seelhoff’s proof is certainly
not complete. He appears to have done little more than verify that

31 =1 (mod N)

for N = Mg;. This is certainly a necessary condition for primality, but it is not
sufficient, as Lucas himself well knew. Hudelot made use of the following test of
Lucas {124] (see also [110]).

THEOREM 5.1. Ifp =29+ — 1 where dm +1 is a prime, then p is a prime
if p|Sym, where S; =4 and S, = S¢_, — 2 (mod p) (k=2,3,... ,4m).

Hudelot’s result is correct, but in fact Pervouchine (see Tmchenetzki and Bou-
niakowsky [49] or Raik [157]), by using the same test, showed that Mg, is prime
in 1883. So Mersenne’s list was known to Lucas in 1887 to be wrong; this
should have discouraged Lucas’ belief in it, but according to Tannery [177], Lu-
cas looked at more of what Mersenne had written on this topic and attributed
the following “proposition” to Fermat:

CONJECTURE 5.1. For 27 — 1 to be prime, it is necessary and sufficient that
p be a prime of one of the forms 22" 41, 227 + 3 92+l .
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This is very close (without the attribution to Fermat) to the modern conclu-
sion of Drake [21] concerning the numbers in Mersenne’s list. Of course, under
this rule, 61 should be included in the list. Possibly, then, Lucas rationalized
that Mersenne's failure to include 61 was just an oversight. At any event the dis-
covery of the primality of Ms; did not appear to shake Lucas’ belief in Mersenne
(Fermat), but it did seem to affect how he felt about Mig7; for, he says in [121]
that Mg is the largest prime currently known, and in none of his subsequent
publications does he ever mention that M3 is a prime; he does however reaf-
firm in the year of his death (see [122, p. 376]) his belief that Mersenne was
in possession of an important method. Today we believe, as did Tannery, that
Mersenne’s list is most likely an empirical result (see [21] or Heyworth [47]).

To confuse further this picture, we mention that in [122, p. 376] Lucas stated
that he thought he had shown by very lengthy calculations that Mgy and Mgy
are not primes. But according to Tannery [178], Lucas thought to the end of his
life that Mgy was nevertheless a prime. As to why he included this statement
about Mgy and Mgy, we can again only speculate. Lucas had a correspondent
named Reuss, and according to Fauquembergue [25], Reuss had written Lucas
in January of 1877, saying that he had shown by using Lucas’ test that Mgy
is not a prime and that his (Reuss’) computations required about 240 hours
of work. In September of 1888, Reuss [160] wrote Lucas and informed him
that he had shown that Mgz is not a prime. Fortunately, he lists his values of
Si, S2, ..., 56 (mod Ms7) and we are able to see that he made an error in
determining the value of Sgq, and that all subsequent values are also incorrect.
Thus, for the wrong reason, Reuss arrived at the correct conclusion. Possibly it
was these computations that in some way confirmed Lucas’ results and caused
him to include the remark about Mg and Msg in his book.

The only explanation we can offer for Lucas’ behaviour is that he did not
believe the results of his own computations. Since he did not have faith in these
calculations, he was unable to state anything consistent about the primality of
M7 or Mg7. He praises Hudelot’s work on proving Mg, a prime very highly,
saying it is one of the most beautiful numerical memoirs that he has ever seen.
Unfortunately, he seems to have little praise for his own calculations. This is a
pity because he had almost certainly proved Mjs7 a prime and may very well
have proved that Mgy is composite. _

As a postscript to this section, we note that in 1894 Fauquembergue [24],
by a then unpublished process of computation, declared that Mgy is composite.
Later in 1912 he says in {25] that he used his device (see §4) to prove that Mgr
is composite and it required only 20 hours of work to do this. Unfortunately, he
did not publish his calculations as he did later for other numbers. Furthermore,
in 1914 [42], he used his device to confirm that Mjy; is a prime. In 1911,
Powers [148] proved that Mgy is a prime (a result confirmed in 35 hours by
Fauquembergue [25]) and in 1914 Fauquembergue also determined that Mgy is
a prime. In fact, according to |26}, he had proved Myg7 a prime in February of
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1914, Gérardin [41] states that Fauquembergue let him know of his result on
June 7 of that year and that Powers [149] had communicated the same result (as
determined by him) to the London Mathematical Society on June 11. However,
in [42] Gérardin points out that Powers had cabled his result to Bromwich on
June 1. Several of these computations were published in [42]. It is somewhat
ironic that Fauquembergue should be the one to confirm Lucas’ result on Myo;.
We do not have his calculations for Mgz and Mgy, but of the six numbers that he
investigated (M101: M103, M107, Mlog, M127, M137 in [42] and [27]) for which
we do have his calculations, he gets the wrong answer for S,_; for four of them:
M101, M103, Mlog, M137. (See Robinson [162])

6. Lucas and necessity

In 1877, Lucas [109] turned his attention from tests for the primality of
Mersenne numbers to those for the primality of the Fermat numbers F,. In 1640
Fermat had conjectured that any number of the form F,, = 22" +1 is prime. This
is certainly the case for n = 0,1,2,3,4, but when n = 5, Euler showed in 1747
that 641 is a divisor of F,,. This is where matters stood when Lucas began to
consider the question of the primality of F,,. In [109] he presented the following
test (with some modifications and two misprints corrected):

THEOREM 6.1. Let F,, = 2"4+1 (r = 2") and T} = 3. If we define the sequence
{Ti} by i1 =2T2 — 1 (i = 1,2,3,...), then F, is a prime if the first term of
this sequence which is divisible by F,, is T,._;. Also, F, is composite if none of
these terms up to T,_, is divisible by F,,. Finelly, if k denotes the rank of the
first term which is divisible by F,,, the prime divisors of F, must have the form
2k+ig 41,

Later in {114], Lucas gives this result in a somewhat different form (again
with our modifications and corrections):

THEOREM 6.2. Let Fr, = 2"+1 (r = 27) and 51 = 6 = V3(2, —1). If we define
the sequence {S;} by S;y1 = S? — 2, then F,, is a prime when Fy|Sy for some k
such that r/2 < k < 7 —1. Also, F,, is composite if FofSy for any k < r — 1.
Finally, if F,|Sk with k < r/2, then any prime divisor of F, must have the form
2F+1g+ 1.

One simple difference here from the earlier version is that S; = 2T;. But the
more important difference is that primality is determined as soon as F,,|Sk-for
k > r/2. We see, of course, that this easily follows from the statement of the
previous version. For, if k > r/2, then

n—1
2lg+1> 2" 11> /F,,

which means that F,, must be prime.
A few weeks after the appearance of [109], Pepin [138] noted that Lucas’ test
was only sufficient for the primality of F,,, but not necessary. He then proved
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that F, is a prime if and only if 5(F»~1/2 = _1 (mod F,,). Pepin also noted
that this could be made into a simple Lucas-like test by defining T} = 52, and
Tiy1 =T (i =1,2,...). In this case, F, is a prime if and only if F,|T—1 + 1.
Pepin also mentioned that the number 10 could also be used here instead of 5.
In this case the values of the T;’s could be very easily evaluated as powers of
10. (In this remark Pepin demonstrates his ignorance of the actual use of these
tests; for in usage, as noted by Lucas [109], we want to keep the.values of our
intermediate terms as small as possible. Hence, we compute them modulo the
number being tested. Given this, no real advantage accrues on the use of 10 as
opposed to 5.)

We should point out here that the test, often called “Pepin’s test”, today has
a 3 in place of the 5 used above. Indeed, shortly after the appearance of Pepin’s
paper, Lucas ([110], [114, p. 313]) showed that any integer a can be used for
the 5 in Pepin’s test as long as the Jacobi symbol (F“;) = —1. Actually, though,
it was Proth [153] in 1878 who mentioned the use of the 3. He seemed, however,
to be unable to give a complete proof of his result (in spite of the existence of
[110]), but Lucas [116] later supplied him with one. Thus, the test that we call
Pepin’s test is actually Proth’s test with a proof supplied by Lucas.

It appears that the first time Lucas ever came to grips with the problem of
the necessity of his tests was when he read Pepin’s paper. With respect to Lucas
and necessity, Lehmer [82] stated the following:

A great deal of confusion exists in Lucas’s writings about the
exact enunciation and actual proofs of these tests for primality.
Nevertheless, it is evident that Lucas was in possession of the
facts needed to prove the sufficiency of his tests. The confusion
arose from the fact that he was unable or unwilling to consider
the necessity also.

As we shall see, Lucas was certainly able to consider the problem of necessity,
but he was rather strangely unwilling to do so in his tests. On this subject
we allow Lucas to speak (with some minor errors corrected) for himself [110,
p. 165):

Meanwhile one should observe that if the method indicated by
Father Pepin leads to a form more clear and precise to state,
which thus becomes similar to that of the Theorem of Wilson,
it is preferable to keep for application to the form which we
have adopted. For, the application of these theorems rests on
a hypothesis, that of considering as prime a number of certain
form taken arbitrarily; it is more likely to suppose, on the con-
trary, that the number is composite, as seems to be indicated
by the assertion of Father Mersenne. As a consequence, instead
of postponing the verification to the extreme limit by the use of
quadratic nonresidues, it would be more practical to use one of
the ¢(22""") numbers which belong to the exponent 22*”" for
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the modulus F,, considered as a prime. This cuts the process
short by one half; but a direct search [for these numbers] is most
difficult. Meanwhile one can assure oneself that by our previous
procedure it suffices to demonstrate that (F, F3, Fy) are primes
by executing respectively 3, 6, 12 operations instead of the max-
imum number of 4, 8, 16 which would be required by the other
method; as to the numbers Fy and Fg, they are composite.

Lucas seems to be a little confused here. He claims, rightly, that numbers
of the forms under consideration are more likely to be composite rather than
prime; but his test, like that of Pepin, must go to the extreme limit to verify
this. This could be improved if one could solve a very difficult problem, but he
doesn’t know how to do it. Anyway, he concludes that his test works better on
F3, F3, Fy than does Pepin’s. Although this all seems somewhat self-serving, it
is curious to note that by using a modern result we can offer some support to
his point of view. For, since

Fo= (2 4 1= (@7 —1)2 4202277,

we can use a result of E. Lehmer [97] to show that if F), is a prime, then F,|S;,
where ¢t <7 —5 (n > 4). Thus, if F, is composite, Lucas’ test could be modified
to be possibly a little shorter than Pepin's. (But see the implementation of
Pepin’s test by Morehead and Western [132].)

We should add here that Lucas [110] used his test to show that Fy is com-
posite. Note that Fg = 254 + 1, one of the numbers Landry thought to be a
prime. On learning of the composite nature of Fg, Landry set out to work on its
factorization. After a labour of several months, and at the age of 82, he discov-
ered by a rather clever method (see Williams [187]) adapted from his technique
[61] for showing that Mz, is a prime, that Fy is divisible by 274177 and that
the other factor is a prime (see [124]). In 1905, Morehead and Western [131}
independently used Proth’s test (a = 3) to show that F; is composite and in
1909, Morehead and Western [132], working together in one of the great feats
of hand calculation (and perhaps the first example of a distributed computa-
tion in number theory!), showed that Fy is composite by using a modification of
this same test. Robinson [162] has verified by computer the correctness of this
incredible piece of numerical work.

In spite of Lucas’ lack of interest in the idea of necessity in practical applica-
tions, he did provide some tests that were both necessary and sufficient for the
primality of Mersenne numbers. We mention two of these taken from [115].

THEOREM 6.3. For p = Magr3 to be a prime, it is necessary and sufficient

that
<M> 2 +(1_\/3> ' =0 (mod p).

2 2
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THEOREM 6.4. For p = Mynqiant1 to be a prime, it is necessary and suffi-
cient that

Bl 21
(2”+ 22n+1) : +(2"—\/22n+1) " =0 (mod p).

We can only assume that Lucas left his tests in these forms because he was
not really very interested in using them in any application. For, if one examines
the first of these, one sees that

FESY Ny EESY
1++v5) ° 1-v5) 7
Sagi2 = Vip1)2(1,-1) = < 2 ) + (—2 ) ;

that is, the test given in §3 is both sufficient and necessary for primality, contrary
to a remark of Lehmer [76, p. 444]. It is difficult to believe that this simple fact
escaped the notice of Lucas, but he never mentioned it.

The second. of these tests is even more interesting; for, if we put ¢ = 0,

a =2"++/22n 41, f = 2" — /22" 4+ 1, we see that the theorem states that
p = My, 41 is a prime if and only if

Mani1|Vip1)/2(2771, —1).
If we put S; = Va:(2"*1, —1) (a trick Lucas often uses), then
Sy = Va(2nH!,—1) = 222 1+ 2 = 4 (mod Mani1)-

Thus, if we put Sy = 4 and define S, = S2_, — 2 (mod Mzn41) (K =2,3,...),
we see that My, 41 is a prime if and only if My, 41]S2,. This is the celebrated
Lucas-Lehmer test for the primality of Mersenne numbers. Lucas seems to have
known this test only as a sufficiency test (see [124]); it was Lehmer [76] who in
1930 showed that it was also necessary. Lucas had already done that in 1878,
but his feelings about necessity blinded him to the result. This test has achieved
a well-deserved fame. It is simple, elegant, and the means by which all of the
large Mersenne primes have been verified. Many different proofs have been given
for it (see [186] for references), the most recent being that of Rosen [163].

7. General primality tests

In [106] and [114, p. 302], Lucas presented the following theorem for primality
testing. .

THEOREM 7.1. If |e| = 1, p|Upte, and pfUy for all divisors k of p + € such
that k < p+ ¢, then p is a prime.

Lucas did not seem to be greatly interested in general primality tests, and
did not, therefore, attempt to take this result much further. He did present
in [107, 110, 115] and [114, pp. 309-311] a number of tests for numbers of
the particular forms N = Ar™ +1 (r = 2,3,5), but these, of course, were such
that N + € could be easily factored. In spite of this favourable circumstance,
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several of his tests are not properly stated (in several of them he should have
said something about limiting the size of A to A < +/N, but did not), and they
often contain other minor errors.

Lucas has been criticized for his many errors and omissions, especially by
Carmichael [17]; however, there can be no doubt that Lucas understood very
well the basic principles behind his results. It is true that his statements and
proofs thereof often leave something to be desired; but, on the other hand, these
deficits are usually very easily repaired and do not require the machinery that
Carmichael thought necessary. Indeed, it is the authors’ opinion that Carmichael
muddied the waters rather than clarified them; certainly his presentation lacks
the charm and infectious enthusiasm that so characterizes Lucas’ work. It should
be kept in mind that during the brief time during which Lucas was developing
his seminal work on primality testing (according to his publication list [118] and
that of Harkin [45], this is represented by 13 papers published between January
of 1876 and January of 1878) he wrote at least 70 papers on many other subjects.
Considering this immense outpouring of activity during such a brief time period,
it is easy to forgive him for the few easily correctable deficiencies that we have
mentioned.

The Theorem of Fermat states that if a is an integer and p is a prime such
that pfa, then ! = 1 (mod p). Lucas knew that the strict converse of this
theorem is false; for in [110] he gives the example 237731 = 1 (mod 37-73). In
fact, in [110] he singles out the following particular case of the theorem given at
the beginning of this section as the proper converse of Fermat’s theorem.

THEOREM 7.2. If a® — 1 is divisible by N for k = N — 1, and is not divisible
by N for any k [< N —1 and] a divisor of N — 1, then N is a prime.

It is strange that later in [114, p. 302] he presented this result in & weaker
form.

THEOREM 7.3. Ifa* —1 is divisible by N when k = N — 1 and is not divisible
by N for k < N —1, then N is a prime.

However, by the time he published his book, he had returned to the earlier
result as the converse of Fermat’s theorem (see [122, p. 441]). There is no
evidence that Lucas ever used this result (even when N — 1 is easy to factor)
to prove any numbers prime. This was possibly because he was unaware of a
fast method for exponentiation (mod N) when the exponent is large, but this is
difficult to believe because the technique is mentioned in Legendre’s Théorie des
Nombres, a book that Lucas must have read. Nevertheless, there is no indication
in any of his published work that he knew of this device.

The next important contribution that was made to the problem of primality
testing for a general N was a remarkable half page of theorems (without proof)
given by Proth [152] in December of 1878. We state the two most interesting of
these below.
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THEOREM 7.4. N is a prime if NJa®—1 forn = N~1 and ged(a" -1, N) =1
for every value of n such that n|N —1 and n < V/N.

THEOREM 7.5. Let N = m2* + 1, where 2f{m and 2* > m. If the Jacobi
symbol (&) = —1, then N is a prime if and only if aN=1/2 = —1 (mod N).

Notice that the first of these is an improvement on Lucas’ converse of Fermat’s
theorem, and the second is a generalization of the result of Pepin mentioned in
§6. While no proofs of these results were offered, it is almost certain that Proth
must have had correct proofs. He says in a letter to a Dr. Pein (see [155, p. 156])
that his proofs were long and that he did not have the time to copy them. The
statements are correct as given, and it is difficult to believe that Proth would
have had these correct statements if he did not have proofs, especially in the case
of the first result which, as noted by Poulet in [147], even Dickson [20, p. 92]
states incorrectly.

It is unfortunate that this work was never expanded upon; Proth certainly
had intentions of doing this, but this remarkable, self-educated farmer was dead
in January of 1879 at the age of 27 [38]. Also, because Proth was often guilty of
making unsubstantiated claims (see, for example, [151]), it is likely that these
results were ignored by many that might otherwise have taken up this work. As
an interesting example of one of Proth’s claims see [154] where it appears that
he was aware of Gilbreath’s conjecture [50] eighty years before Gilbreath. It
seems that he thought he had a proof of it, something that still eludes us today.

The next important observation on this subject came from Pocklington [144]
in 1914. He proves a result which can be stated as follows:

THEOREM 7.6. If N — 1 = q"R, where q is a prime, g/ R and for some a we
have a™—1 =1 (mod N) and ged(@V—1/9 — 1, N) = 1, then each prime factor
p of N is of the form p =1+ kq™.

Notice that, although Pocklington was apparently ignorant of the work of
both Lucas and Proth, he produced a result which is a generalization of their
work. He was also aware that if one needed to evaluate a® (mod m) (0 < a,b <
m), then this could be done in O{(logm)?) elementary arithmetic operations;
consequently, his test was computationally practical.

The computational model used by most number theorists today is that of
“naive bit complexity”. In this model, one can add two numbers of n bits
using O(n) operations, multiply two n-bit numbers in O(n?) operations, etc.
Pocklington seems to have been the first to analyze a number-theoretic algorithm
using this model. In his 1910 paper [143], he gave an algorithm to find ord, a,
the least positive e such that a® = 1 (mod p), when the prime factorization of
p -1 is known. He remarked:

We notice that the labour required here is proportional to a
power of the logarithm of the modulus, not to the modulus itself
or its square root as in the indirect processes, and hence see that
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in the case of a large modulus the direct process will be much
quicker than the indirect.

Perhaps Pocklington also deserves credit as the inventor of the randomized
algorithm. In a 1917 paper [145], he gave an algorithm for computing square
roots modulo a prime p which used O((logp)?) steps and observed “the labour
varies roughly as the cube of the number of digits in the modulus, and so remains
moderate for large moduli.” His algorithm depended on finding a quadratic non-
residue of a special form by trial and error. He must have viewed this use of
randomness as unsatisfactory, for he explained in a footnote:

We have to do this [find the nonresidue| by trial, using the Law
of Quadratic Reciprocity, which is a defect in the method. But
as for each value of u half the values of ¢ are suitable, there
should be no difficulty in finding one.

In modern language, we would say that his method is a random polynomial-
time algorithm, with each iteration having failure probability 1/2.

Pocklington’s primality test was ignored for several years until D. H. Lehmer
[72] realized its significance. Lehmer [73] also extended Pocklington’s result to
give the forms of the factors of N/§ in the case when § = ged(a(V-1/9—1 N} > 1,
but his most important contribution was that of showing how these tests could
be used in the actual practice of primality testing. In the course of doing this, he
was able to demonstrate that large numbers which are not of simple forms like
Ar™ £ 1 could still be tested for primality fairly expeditiously. As an example
we mention that in [72] Lehmer proved that (103! +1)/11 is a prime. Lehmer’s
ideas will be discussed more fully in later sections, but in order to do this, we
must now begin our discussion of the factoring problem.

8. Factoring

As has been mentioned earlier, the verification of a partial factorization of
an integer N into N = ab with a,b > 1 is a much simpler process than the
verification that a prime value of N is indeed that. Nevertheless, the problem
of factorization seems, at least empirically, to be much more difficult than that
of primality testing. Also, of course, if a factorization algorithm is guaranteed,
within a fixed bound on the time required, to find a nontrivial factor of N and
one is not found, then we have a primality test for N. Thus, progress on the
factorization problem has always seemed to be somewhat less dramatic than-on
the primality testing problem. For example, we have already seen that Lucas
was able to verify the primality of a 39-digit number in 1876, but it was only in
1970 (and by use of a computer) that it was finally possible to factor a 39-digit
number (see Morrison and Brillhart [138]). It should be emphasized here that
when we speak, as above, of factorization of a number N , the assumption being
made is that the value of N under consideration is not trivially factorable, i.e.,
N has at least two large prime factors.
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The first interesting factorization idea is that of Fermat (28] in 1643. (See also
Henry [46].) We note that if N is composite and odd, then N = rs with r, s odd
andr < VN. Ifwe put a = (r +5)/2, b= (s —)/2, then vV'N < a < (N +1)/2
and N = a? — b2. Thus, in order to factor N, one need only search values of
z=a?—Nasa=|vVN|+1,|VN|+2,...,(N —1)/2 until one finds a perfect
square. This process can be simplified by using differences; that is, if we define
z; = (|WN]+0)2 — N; y; =2|VN|+142i, then 743 = i+ 15, yir1 = % + 2.

Fermat also points out that one can shorten the search somewhat by rejecting
any of the values of z whose last few digits could not be those of a perfect square;
for example, if the value of z is 46619, then because the last two digits are 19
and there is no b such that 4% = 19 (mod 100), then x cannot be a perfect square.
Thus, Fermat was aware of an idea that we will later call modular exclusion. It
is this technique that Landry and Le Lasseur (see [64]) rediscovered and used to
effect their factorizations. We emphasize that the method as presented here is
really only going to be of some value when r and s are relatively close in value.
If s is very much larger than r, then the technique is very ineffective.

In 1798, Legendre proposed finding square-free values of a such that there
exist integers z,y, z for which

(81) z% — kNz% = ay®.

Notice that regardless of the value of k, if p is any prime divisor of N, then
the Legendre symbol (%) = 1. For a given a such values of p can only have
certain linear forms; for example, if a = 2, then p = £1 (mod 8); if a = 3, then
p = %1 (mod 12); and if a = 5, then p = &1 (mod 5), etc. Legendre tabulated
these forms for various values of a.

If, for example, we could solve (8.1) for ¢ = 2,3,5, then if p|N, we must
have p = 1,49,71,119 (mod 120). As any prime (# 2,3,5) can be congruent
modulo 120 to x(120) = 32 possible values, we see that this knowledge allows
us to reduce the amount of possible trial division by a factor of 8. In general, if
we have 7 such independent conditions, the number of trial divisions of N can
be reduced to about 277w (v/N) trials, where by 7(x) we mean the number of
primes which do not exceed z.

In 1929, D. N. Lebmer [94] and D. H. Lehmer (see [89]) produced a set of
factor stencils which could be used to factor numbers up to 485932 = 2361279649.
For each value of a up to 250 in absolute value, a stencil was created as a matrix
of 100 rows and 50 columns. A hole was punched in any spot corresponding to
those of the first 5000 primes for which a is a quadratic residue; that is, (%) =1
for these particular primes p. (D. N. Lehmer considered 1 to be a prime; thus, his
first 5000 primes begin at 1 and end at 48593). The stencils were approximately
20cm by 43cm, and were provided in a wooden box with a glass cover. To use
the stencils (see [95]), one first discovers the values of a such that |a| < 250
and (8.1) is solvable. Then the corresponding stencils are stacked on top of each
other and placed on top of the glass cover. An electric light is then introduced
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into the box to shine through the holes (an early example of a user interface!).
These holes correspond to the only possible primes that could divide N. In 1939
Elder [22] put these stencils on 2000 Hollerith cards (i.e., IBM punch cards). ,

There may be a question about the use of k in (8.1). Normally one would
think that & could simply be put equal to one, but it is often convenient to use
other values of k, especially if (%) = —1 for many of the smaller primes, in order
to solve (8.1). Today we call these values of & ‘multipliers’. They are used rather
extensively in certain factoring techniques.

We are now left with the problem of how to solve (8.1). Legendre suggested
using the continued fraction expansion of v&EN. For if

(8.2) VEN = g+ L
a1+ 1
g2 + 1
T
Gn—1 011,
where 0, = (P, + VEN)/Q, (P,,Q, € Z), then 0 < Qrn < 2vkN (n > 0), and
we can use the values of qg,¢1,... ,g,—1 to compute easily integers A,_1, B,
such that
(8.3) Ai-l - kNszt—l =(-1)"Qn.

TI-ILIS, a can be taken as the square-free part of (-1)"Q,. For the purpose
of this technique, however, we shall see that there is no need for the coefficient
of kN in (8.1) to be a perfect square. We would be content to know that there
exists a value of z such that

(8.4) 7% = a (mod N)

Such values of a are called quadratic residues of N. The determination of
small (in absolute value) quadratic residues of IV is still considered to be a very
difficult task. We shall discuss this further in what follows.

We conclude this section by mentioning a very important observation of Gauss
[30, Art. 320]. Suppose f(z),g(z) € Z[z], and we wish to solve the Diophantine
equation "

(8.5) flz) = g(y)
for ifltegers z and y. (Gauss only treats the équation a + mg = 32, but the idea
applies more generally.) Select different (exclusion) moduli Ey, B, ... , E,. We

must have f(z) = g(y) (mod E;) for 1 < ¢ < r for any solution (z,y) of (8.5).
For each value, then, of y = 0,1,2,. .. »E; — 1, find the possible residues classes
for  modulo E;. Combine these to find the permissible residue classes for x
modulo the least common multiple of the E;’s.
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To use Gauss’ example, suppose we want to solve 22+ 97z = y2. We consider
E, =3,E, =4, E; = 5, E4 = 7. Permissible values of x modulo E; are
0,2; modulo E; are 2,3; modulo E3 are 1,2,4; and modulo E4 are 0,1,4,6.
It is easy to see that the least integer satisfying all of these is 11, and in fact
224+97-11 = 332. Notice that with one exception the E;-values here are distinct
primes; thus, on using a new E;-value, we eliminate about half of the previous
candidates for n in this problem. In subsequent sections we shall illustrate the
importance of Gauss’ idea of exclusion. We should mention that Gauss had
several other ideas for factorization techniques (see [30, Arts. 329-334]), but
only the exclusion idea has turned out to be of real practical importance.

9. Seelhoff and Pepin

In this section we discuss some of the important work on factorization tech-
niques done by two individuals whose contributions appear to have been largely
ignored. We use the term ‘appear’ here because it is not entirely clear whether
or not their work was taken over and expanded by others. In any event their
ideas were important and merit some attention.

Between the years 1885 and 1887 Paul Seelhoff published a number of papers
on factorization and primality testing. Some of this work was not of very high
quality (we have already mentioned his less than adequate proof of the primality
of Mg;), but at least one of his papers contained some interesting ideas.

In [166] he presented a method of factorization which first requires that for
a given N we find a number of different values of a such that (8.4) holds. He
attacked this problem by putting N = w? + r, where w = |[/N|. If p is any
prime such that (%) =1, solve p? = N (mod p*) and put & = w= (p+yp*). We
then have N = (w — )2 + b, where b = a(2w — @) + 7 and p*[b. The point here
is that, if the |a|-values are near p*, then the corresponding b-values will tend to
be of size about 2p*+/N, and since they are already divisible by p*, they should
be somewhat easy to factor. On putting b = at?, we have a value of a satisfying
(8.4).

Seelhoff suggested that for values of N of about 15 digits, the values of p* to
try are the primes from 7 to 97 with k < 2; 5 with k£ < 4; 3 with k¥ < 6; and 2
with k& < 10. (Of course, only those primes p for which (%) = 1 would be used.)

His next step is best illustrated by using an example. He selected for that
purpose N = 7234 4+ 1 and took as his collection of possible values of p the set

{2,5,7,11,19,31,37,47,53,67, 71,93, 127}.

We have N = 3467832 + 635200.
After several trials he found that for

a=1950 (a=0 (mod 5),a = 581 (mod 37%));

a=143432 (a =3 (mod 11), @ = 14400 (mod 127%));
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a=-3836 (a=3 (mod 11),a =271 (mod 372))

one has

=
I

3448332 + 2. 7. 11 - 29602
2033512 4 7. 1061722
= 350619% — 2. 11-110262.

il

From the first two of these he obtained
11 - 832082029% = 2 - 150479740 (mod N).
He combined this with the third and found
5045995048467% = 263805279795302 (mod N)
or
N|(5045995048467 — 26380527979530) x (5045995048467 + 26380527979530).

In fact, ged(5045995048467 — 26380527979530, N) = 317306291 and N =
379 - 317306291. Those who are familiar with modern factoring techniques will
be struck by the similarity of this method to those which make use of the idea
of combining congruences, such as the Quadratic Sieve and CFRAC (see below).
Of course, we have more sophisticated methods now for effecting the divisions
needed to determine the a-values (indeed, no divisions need be performed if
the techniques of the Quadratic Sieve are employed) and for assembling the
dependencies® in order to get values of  and y such that 22 = 32 (mod N), but
Seethoff seems to have understood the basic idea behind some of our modern
methods back in 1886. He used his method [167, 170] to factor some numbers
of the form A2" + 1, as he was interested in these as possible factors of Fermat
numbers.

Father Théophile Pepin S.J. is best known today for the primality test which
bears his name. However, Pepin did a lot of work on factoring. His most useful
techniques, one of which we will discuss here, was pretty well developed in 1890
(see [139]), but in a series of papers [140, 141, 142] (see Statuti [174] for
a partial bibliography of Pepin’s work) he continued to refine and apply it to
various numbers of the form (a™ — 1)/(a — 1). Numbers of this type were of
particular interest to Pepin because of their importance in the study of perfect
numbers. ’

To factor N = (a” —1)/(a— 1) with n odd, we first notice that N is odd 2ad
that if p|V, then p = 1 (mod 2n). We now consider the more general problem of
factoring any odd N whose factors must be of the form 2nz -+ 1 with 1 odd. We
first demonstrate that N has no prime factor less than or equal to m (by trial
division, say).

5By a dependency we mean a collection of possible values for @ whose product is a perfect
integral square. In the previous example the product of —2-7-11, —7, 2- 11 is the perfect
square (2-7-11)2
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Suppose N = s159; since sp > m, we have N/(ms;) > 1; hence 0 < s; —m <
(s1 —m)N/(ms;) and 81 + s = 51 + N/s1 < m + N/m.

Furthermore, by using the results at the beginning of §8, we also see that
514 s3 > 2¢/N. If we put L=m+N/m, s;1 =2nz+1, s = 2ny + 1, we get

vN -1 L-2
(9.1) - <z+y< o

Also, since dn’zy + 2n(z +y) = N — 1 = 2nN', it follows that if N’ = 2nN" +r,
then

(9-2) z+y=r+2nz
Putting = — y = u and noting that dzy = (z + y)% — (z — y)?, we get
(2nz+1)% —u? + 42 = 4N".

If 2|, we can replace u by 2u’ and divide by 4. In any event, we get an expression
of the form

(9.3) az’ +2bz + c=u?,

where a,b,c are known integers and the value of z is bounded by using (9.1)
and (9.2). So far, all this really represents is a more sophisticated version of the
difference of squares method of Fermat. The equation (9.3) is a Diophantine
equation which can be solved by using Gauss’ method of modular exclusion.

As one of several examples of his method, Pepin considered N =
(6% — 1)/4 = 305175781. Since any prime divisor of N is of the form 26z + 1
and since there is no such prime divisor less than 1000, he was able to say
that if N = (26z + 1)(26y + 1), then 1343 < z + y < 5946. Furthermore,
26zy 4+ +y = (N — 1)/26 = 11737530; hence, z + y = 26z -+ 12 and

(9.4) 1692 + 157z — 451407 = 4/*
with
(9.5) 51 < z < 229.

Using 8,9,5,7,11,13 as exclusion moduli, he found, by using a technique like
the Sieve of Eratosthenes, that there are no candidates for 2 satisfying (9.4) and
(9.5). Thus, N is a prime. : .

Pepin went on to factor many numbers by using this technique or some variant
thereof. If one examines [62] in the light of [64] it seems that Landry must have
used a technique very like this to effect his factorizations in [63]. Indeed, in 1880
Landry [65] essentially proved that if p is any prime and N = a? — b* (mod p),
then there are precisely (p+ (%)) /2 possible values of a modulo p. This, of course,
is why the exclusion principle works; each additional prime exclusion modulus
cuts the number of possible values for a to one half their former number. It is
possible that Pepin’s ideas did not receive the currency they merited because of
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the rather obscure journals in which they were published. The method, however,
became the most important factorization technique until well after the arrival of
computers. '

10. An example of Cole

In §5 we mentioned that Fauquembergue (and possibly Lucas) had shown by
1891 that Me7 is composite. In 1903, Cole [19] succeeded in finding the factors of
Me7. This marvelous feat of hand calculation has been justly celebrated through
the story related by Bell [9].

I should like here to preserve a small bit of history before all

the American mathematicians of the first half of the twentieth

century are gone. When I asked Cole in 1911 how long it had

taken him to crack Mgz, he said “three years of Sundays.” But

this, though interesting, is not the history. At the October, 1903,

meeting in New York of the American Mathematical Society,

Cole had a paper on the program with the modest title On the

factorization of large numbers. When the chairman called on

him for his paper, Cole — who was always a man of very few

words — walked to the board and, saying nothing, proceeded to

chalk up the arithmetic for raising 2 to the sixty-seventh power.

Then he carefully subtracted 1. Without a word he moved over

to a clear space on the board and multiplied out, by longhand,

193,707,721 x 761,838,257,287. The two calculations agreed.

Mersenne’s conjecture — if such it was — vanished into the

limbo of mathematical mythology. For the first and only time

on record, an audience of the American Mathematical Society

vigorously applauded the author of a paper delivered before it.

Cole took his seat without having uttered a word. Nobody asked

him a question.
(Given Bell’s accuracy on other matters, aspects of this story may be apoc-
ryphal.) What seems to be much less known is how Cole actually achieved this
factorization. He appears to have been unaware of Fauquembergue’s work, but
he did take seriously Lucas’ comment in [122] concerning the composite charac-
ter of Mg,. It was this that caused him to seek its factors. He began by finding
a collection of quadratic residues of Mg;. These he listed as  ~ '

2,-3,-7,13,~23-53,37,41, 61, 67, - 71, 23 -83,89,97,101,...

etc. He did not say exactly how he discovered these, but as he refers to the work
of Seelhoff mentioned in §9, he likely used Seelhoff’s technique. He made the
important observation (refined later by Kraitchik) that if a prime r (taken with
the proper sign) is a quadratic residue of N, then there can be at most (r +3) /4
possible values of a modulo r satisfying N = a2 — b2 (mod r). Notice that this
is an improvement on the upper bound of (r + 1)/2 mentioned in §9.
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Next, by using the same reasoning as Euler concerning M3, he noted that
any prime factor of Mgy must be of the form 536k + 1 or 536k + 135. Since —3
is a quadratic residue of Mgy, these forms can be further refined to 1608k + 1
or 1608k +1207. By using these forms and some of his other quadratic residues
of N, he eliminated (but not entirely convincingly) all possible prime factors
< 16000000.

He then attempted to solve N = a? — b. He found that

671 (mod 672),

= 0 (mod 8),

1,4 (mod 5),

= 1,3" (mod 7),

= 0,1%,12 (mod 13),

= 10,37,46",64 (mod 81).

& 8 2 8 2 @
I

There are 48 possible residue classes here for ¢ modulo 1323536760 = 8 - 5 -
7-13-81- 672, but only one is the correct one. After what must have been a
great deal of work, Cole selected that class indicated by the asterisks; that is,
a = 1323536760z +1160932384. This was used to find an equation like (9.3). The
exclusion moduli 23, 37,41, 53,61 were then used to narrow = down to 287 from
which Cole obtained a = 381015982504, b = 380822274783 and his factorization.

11. The sieve

During the years 1894-1897, Lawrence |66, 67, 68] rediscovered the difference
of squares technique and some of Pepin’s refinements to it. In fact in [68], he
was able to use his method to prove that the factors of 10%° — 1 and 10%° — 1
found by Looff [100] are primes. However, the most important contribution of
Lawrence occurs in [67], where he discussed a means of mechanizing the process
of solving (9.3) by the use of exclusion moduli. He first described a technique
for doing this that made use of moveable paper strips, but it is his second idea
which is really of interest to us here. He suggested the construction of a machine
in which gears of m teeth would be used for each exclusion modulus m; thus,
each such gear would represent (as it rotates) an endless paper strip. The gears
(each with the same tooth size) would be driven by the same driving gear, and,
as they would be of differing diameters, would have to be mounted on different
shafts. The teeth on each m-toothed gear would be numbered 0,1,2,...,m—1,
and a brass stud would penetrate through it at the point(s) of an acceptable
(mod m) residue (one for which (9.3) could hold for z (mod m)). When studs
from each of the gears were all in contact a circuit would be completed and a bell
would ring or the machine would stop, indicating to the operator that a solution
of (9.3), modulo the least common multiple of the exclusion moduli, had been
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detected. Of course, in order to determine the z-value, a count would have to be
recorded of the number of rotations of the driving gear.

Several other details for the construction of this machine are also provided, but
it seems that Lawrence never actually built such a device, being instead content
simply to describe it in principle. His description is not complete, as he admitted,
but it is sufficient to convince anyone that the basic idea of mechanizing the
modular exclusion principle for solving (9.3) is a real possibility.

This idea of mechanizing the solution of (9.3) seems to have been forgotten
until 1912, when a flurry of activity, apparently inspired by Andre Gérardin,
began to produce some results. This may have originated through Gérardin’s
publishing in 1910 a French translation of Lawrence’s paper [67] in his peculiar
Jjournal/newsletter called Sphinz-Oedipe. The first machine announced was that
of Maurice Kraitchik in February of 1912 [37]. Kraitchik had read the version of
Lawrence’s paper which was published in Sphinz- Oedipe because he [52] refers to
it in an earlier issue. Furthermore, the machine, when it is described in {39] (or
in somewhat less detail in [53, pp. 43-44]), is rather similar to that of Lawrence,
except that the gears representing the various exclusion moduli are each mounted
on the same shaft. Also, he mentions the possibility of putting holes in the gears
(instead of studs) and shining light through onto a screen. When a spot of light
appears on the screen a solution has been detected. (Holes that did not represent
a possible solution, of course, would have to be plugged.) Curiously, however,
Kraitchik never refers to Lawrence’s work in this connection.

In March of 1912, Gérardin [37] refers to machines of Pierre Carissan,
Kraitchik, and himself. Kraitchik’s machine is described in some detail in April
of 1912, but the descriptions of Carissan’s (built by his brother Eugéne-Olivier)
and Gérardin’s machines, given respectively in [16] and [40], are rather vague.
It appears that each of these machines existed only as a prototype and that none
ever produced any important result. Later in 1913-14, E.-O. Carissan built an-
other model of such a mechanism and was so encouraged by its performance that
he decided to have a precision device constructed. Unfortunately, World War I
intervened, and his device was not completed until 1919. This seems to have been
the first automatic sieve mechanism to have ever been successfully constructed.
A full and convincing description of it is given in [16]. It is also mentioned
again by d’Ocagne [135] in his lengthy paper on calculating machines. Indeed
it is rather a telling point that neither Kraitchik’s nor Gérardin's machines are
described by d’Ocagne. .

Carissan’s machine was made up of 14 concentric metallic rings represehting
the exclusion moduli: 19,21, 23, 26,29, 31,34,37,41,43,47,53,55,59. A pinion
gear whose axis was parallel to the plane of the rings drove all of them at the
same rate. Each ring had a number of equidistant studs on the upper side. The
number of such studs was equal to the appropriate exclusion modulus. Those
studs representing a possible solution were covered by a nonconducting cap.
When these passed under a ‘line of investigation’, a circuit would be completed
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when a solution (each stud under the line was capped) appeared and a sound
would be made in a telephonic receiver placed on the ear of the operator, alerting
him to the solution.

While this device was hand-driven, plans were also made to construct a
machine-driven model; however, this seems never to have been done. The hand-

. driven device ran through the numbers at the rate of 35-40 per second. A counter

(up to 1000000) would keep track of how many numbers had been sieved. As an
example, we mention that the machine required only 15 minutes to prove that
M3, is a prime.

Unfortunately, Pierre Carissan died in 1923, and E.-O. Carissan died in 1925,
events that likely contributed greatly to their pioneering sieve not receiving the
attention that it deserved. The machine itself languished in a drawer in the
Observatoire de Floirac (near Bordeaux) for many years. It was inspected there
by the authors several times. Recently, France Silber, a daughter of E.-O. Caris-
san, took possession of the machine, and there is hope that it will soon be
donated to the collection of the Conservatoire National des Arts et Métiers. We
are extremely grateful to Marie-Joséphe Salefran-Carissan and France Silber for
informing us of the sieve’s location.

The next individual to look at the problem of constructing number sieves
was D. H. Lehmer [74]. Lehmer was unaware of the work of the Carissans and
remained so until 1989. In fact in his paper [81, p. 663] on sieves he states the
following:

The literature contains at least two descriptions of such ma-
chines which, though impractical in their design, are theorcti-
cally interesting. As far as the writer knows, the first successful
machine of this type was constructed by him in 1927.

Lehmer was referring to the machines of Lawrence and Kraijtchik here. In
fact it is rather strange that he gives so very little credit to them, especially
since his photoelectric sieve of 1932 represents in many ways the fruition of their
ideas; however, Lehmer had determined that neither of these earlier mechanisms,
as described, would actually work and therefore decided to maintain a discrete
silence concerning them and their creators. His device, described in [79, 81],
would search through numbers at the rate of 5000 per second. In constructing
this remarkable machine, Lehmer pushed contemporary technology about as far
as he could. For a charming description of the function of it we refer the reader
to the paper [96] of Lehmer’s father, D. N. Lehmer.

As it would take considerable space to discuss all of Lehmer’s work on sieves,
we simply provide below a list of all sieves known to the authors at present. All,
but those of Carissan and Gérardin (see [43]) and the last four are Lehmer’s.
For a more detailed account on sieves and their history we refer the reader to
the paper of Stephens and Williams [175] and Patterson [137].
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Sieve Systems

Machine Year Rings Trials/Sec
E. Carissan 1919 14 35-40
Bicycle Chain 1926 19 50
Optical Gears 1932 30 5,000
16 mm Movie Film 1936 18 50
A. Gérardin 1937 ? <10
SWACt 1950°s 7 1,450
IBM 7094t 1960’s 21 or 22 100,000
DLS-127 1966 31 1,000,000
DLS-157 1969(7) 37 1,000,000
ILLIAC IV} 1960’s 64 15,000,000
Shift Register 1975 42 20,000,000
UMSU 1983 32 133,000,000
OASiS 1989 16 variable 215,000,000
Sund /2801 1989 32 2,000,000
SSU 1991 30 200,000,000

1 Denotes software running on & general purpose computer.

It may interest the reader to learn that up to 1970 these sieve methods were
still the fastest techniques known for factoring. In fact the DLS-127 was used to
factor a 33-digit divisor of 2'%6+1 in 2600 hours (see [13, p. 1vi]). In spite of the
successes of these cheap, easy-to-construct, and useful mechanisms, their history
has been characterized by a lack of interest or neglect. Indeed, in speaking about
the sieve problem in his paper [88, p. 456] on the history of the sieve process,
Lehmer stated:

It’s very esoteric, of course, and since I am practically the only

man working in this field you can see how widespread the interest

in it is.
The situation is not much different today, and that is a great pity; there’s a
lot you can do with a sieve. Possibly the current easy availability of off-the-
shelf computer chips and components will cause modern researchers to begin to
investigate the problem of construction and utilization of number sieves. We
certainly hope so. .o

12. Kraitchik and Lehmer

In 1911, only one number from Landry’s original table of factorizations of
2" £1 (n < 64) remained to be factored; this was N = (2! +1)/3. Gérardin
[36] posed the factorization of this number as a contest in May of that year. A
then new contributor to Sphinz-Oedipe, Kraitchik, first suggested the following
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conjecture:
CONJECTURE 12.1. If 2™ — 1 is prime, then (2" + 1)/3 is also prime.

Later [51] he found that there were no factors of N between | VN | = 876706528
and 61003051. Finally, Poulet [146] proved that N could have no prime fac-
tor less than 68200400, and thus N is a prime. Poulet also pointed out that
Kraitchik’s conjecture is false, as it fails for n = 89. Much more recently a
revised form of this conjecture has been suggested by Bateman, Selfridge, and
Wagstaff [6]. Their conjecture reads as follows:

CONJECTURE 12.2. If two of the following statements about an odd positive
integer p are true, then so is the third one:
ep=2+1orp=2%+3.
o M,=2P—1 is a prime.
e (27 +1)/3 is a prime.

This has been verified for all primes p up to 100000. Incidentally, it was in
[6] that the number (22539 + 1)/3, mentioned in §1, was identified as a probable
prime.

This debut of Kraitchik into the factoring business was followed over ten years
later by the publication of several books containing a great deal of information
about number theory in general and factoring in particular. In [53, Chapter 6],
he described in detail how he factored the 19-digit number 26 + 23! + 1. He
used a method which is little more than a minor refinement of the technique
of Pepin and Lawrence, but does not attribute the technique to either of them.
This is peculiar because, as we have already seen, he was aware of Lawrence’s
work, and he must have known about Pepin’s work through a description of it
by Gérardin [35] published in Sphinz-Oedipe. Furthermore, Cole’s paper [19]
had also appeared in French translation in 1910 in Sphinz-Oedipe.

Kraitchik also stated in [53] that he proved that (10*® —1)/9 is a prime, but
this had already been done earlier by Hoppe [48] in 1918. Kraitchik became
quite adept at using a modified version of Lawrence’s technique of moveable
strips in order to effect his factorizations. As a result of this skill, he was able
to factor several large numbers such as: 268 41,25 4227 41,2122 41,277 — 1.

In 1851, Looff [100] published a table of factors of numbers of the form
10™ — 1. These same factorizations for n < 42 and with some addenda were
reported later by Reuschle. There were several holes in Reuschle’s tables, namely
for n = 17,19, 23, 25,27, 29, 31, 33, 34 (because of 17), 35,37, 38, 39, 40, 41, where
the factorizations were incomplete. Le Lasseur (see Lucas {117}, Brocard [14])
factored (1017 — 1)/9 in or before 1879; we have already seen that Lawrence
and Hoppe had found (10*® — 1)/9 to be prime in 1918. This was how matters
stood until 1926 when Lehmer [72] turned his attention to the factorization of
the 15-digit value of N = (10?7 — 1)/(35 - 37 - 757 - 333667). He was able to use
his primality testing ideas to prove N a prime. He did this by first factoring
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N—1=2-5-3%31249 - 52189481 and then showing that 3¥~1 = 1 (mod N)
and ged(3™ -1, N) = 1, where m = (N —1)/52189481. Hence any prime divisor
of N must be of the form 52189481k + 1. Since VN < 20984153, N must be a
prime. He also showed that (10'® + 1)/11 is a prime and computed the value
of 3V=1 for N = (10%° +1)/(10* + 1) and N = (10% — 1}/9. In both cases he
obtained values of 3V~ (mod N) different from 1 and concluded that both of
these numbers must be composite. Later, using his bicycle chain sieve, he [74]
was able to factor (10?0 + 1)/(10% + 1).

Lehmer’s most impressive computation [78], however, was rather modestly an-
nounced in June of 1932. Kraitchik [55, p. 142] stated in 1926 that he had shown
in 1922 (by use of the Lucas-Lehmer test) that the last number in Mersenne’s list,
Mas7, is composite. However, he provided no details of this Herculean labour
except to say that it required the months from August to December of 1922 to
complete the work. Kraitchik’s book appeared after July of 1926; in June of that
same year Lehmer (unaware of Kraitchik’s work) began the task of investigating
the 78-digit Mas7. He made use of a 10-digit calculating machine and his cross
division process [70], a modification of an idea of his father [91, 93], to effect
the computations. He also checked each value of S; by repeating the calculations
modulo 1001. Here we use S; = 4, S; = S% , —2 (mod Mase), for 0 < i < 257.

On March 6, 1927 he found that Syse # 0. Lehmer did not publish this finding,
although he did publish in [71] his discovery that Misg is composite; indeed, he
began his work on Mjs; less than a month after he completed his work on M3
and he used the same techniques. Possibly, he was forestalled by the appearance
of [55] or he was unsure of the accuracy of his calculations. We know nothing
more about this until we read in Kraitchik [56, p. 83] that Lehmer found that
he had made an error in the 47th term (in fact, it was Sys that was wrong)
of his calculations. According to the dates Lehmer provides in his journal, this
meant that all the work from August of 1926 to March of 1927 had been in
vain. Lehmer had also asked Kraitchik for a copy of his computations; however,
Kraitchik said that he had sent them to Gérardin without keeping a copy for
himself. On being requested to return them, Gérardin declared that owing to
the state of his health, he could not at that time recover Kraitchik's calculations
from among the thousands of kilograms of archives in his possession. These
calculations have still not been located to this day. Later, when Lehmer visited
Gérardin, he discovered why a search of Gérardin’s papers might prove hazardous
to anyone’s health. The entire office was full of papers piled up everywhere.and
in no apparent filing system.

Actually, it was Lehmer’s wife Emma who had detected the error in Sis. At
Lehmer’s request she began in 1930, starting at Sy7, to redo the calculations. The
values of S; were now checked modulo 108+1 and modulo 109+1. Unfortunately,
this work in Lehmer’s journal is not dated as frequently as the earlier work; we
only know that Si55 had been computed on September 17, 1930. Both Lehmer

and his wife shared the computational chores until Sas6 was computed. This
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time, as noted later by Robinson [162], the calculation of Syss was correct.
Lehmer was able to announce in June of 1932 that Mjs- is composite. According
to Reid [158] this computational feat required over 700 hours of work, whereas
the determination of the composite character of Mg, also announced in (78},
had required only 70 hours.

Kraitchik and Lehmer went on to improve their techniques and produce other
factorizations. A glance at the tables of factors of 2™ 4+ 1 in Kraitchik [586,
pp. 84-88] {but see Lehmer [84, pp. 29-30}), [58, pp. 12-13; 38-39], [59] and
[85] will give the reader some idea of the strength of both their methods and
their endurance. By using his sieves, Lehmer was able to achieve his factoriza-
tions more rapidly than Kraitchik; for example, see [80], where Lehmer used his
photoelectric sieve to factor 5 difficult numbers, one of 21 digits, in a matter of
a few hours. Naturally, both of these authors made errors in their calculations
from time to time; this is only to be expected, but Kraitchik made a serious
mathematical error which, taken with some simple calculation mistakes, led him
to the belief that certain numbers such as (28 + 1)(2'%0 4+ 1)/((2%4 4+ 1)(2% + 1))
were prime when they are not.

13. Quadratic Residues and a “Fallacious Principle”

In many of his attempts to factor (or primality test) an integer N, Kraitchik
was first very concerned about determining a collection of quadratic residues of
N. His techniques for finding these quadratic residues are fully described in [55,
pp. 123-132 and again in [58, pp. 134-138]:

For a given N find small integers (say primes < 50) rq,79,73,... for which
(&) = 1. Then find values of z such that the difference R = £(z2 — N) is
divisible by r1,72,73, ..., ro, 7%, 73, ..., ... r2r2 r3p2 JTErE, rrdrg,. ...

Also, take for the values of = those that are close in value to v/ N. Thus, we
will know in advance certain factors of R and likely not have much trouble in
putting R in the form ay?, where a is square-free. According to Kraitchik the
factors of R will fall into three categories:

(i) small factors of about the same size as the r;, but which were not in-
cluded among the r;-values;
(ii) factors of value about v/NV;
(iit) large factors.

The factors in the first category can be added to the list of possible r;-values;
those of the second category can be used to search for residues of = such that
+(z? — N) is divisible by the squares of those factors; and those of the third
category can be used for finding values of = such that +(z? — N) is divisible by
these factors, but not their squares.

He provides the following example. Consider N = 535230 4+ 1. One finds
N = 1054929% — 2 - 2909 - 96207; one then finds N = 3276792 + 2 . 2009 - 8960
(Note that 1054924 — 327679 = 2909 - 250.) Since both —2-2909 and 2 - 2909 are
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quadratic residues of N, their product must be, and since this is —58182, we see
that —1 is a quadratic residue of N. One finds further that

N = 718721 + 41 - 353 - 20002,
N 7144852 + 2. 13 - 37 - 353 - 4342,
N 7576712 4+ 13- 37 - 41 - 1402,

I

(Note 718721 — 714485 = 12 - 353, 757671 — 718721 = 41 - 950.) Thus —41 - 353,
—~2-13-37-353, —13- 37 - 41 are each quadratic residues of N. Their product
is —2 times a perfect square; hence —2 (or, in this case, 2) is also a quadratic
residue of V.

Kraitchik became quite skilled at this sort of trial and error process for finding
quadratic residues. On seeing these ideas, one is very much reminded of the work
of Seelhoff [166]. This is not too surprising when it is pointed out that a French
translation of [166] appeared in 1912 in Sphinz-Oedipe.

Notice that, although Kraitchik was completely familiar with Legendre’s idea
of using continued fractions to find quadratic residues (see §8), he did not, in
general, advocate using this method. This is because he could not control the
finding of a second factorization of some Q; having some of the same prime
factors as another @, that he had already factored. Given that a prime p divides
some @5, it seems to be rather difficult to predict another place in the continued
fraction where p divides the corresponding Q;.

Kraitchik seems to have had at least three reasons for wanting to find these
quadratic residues. First, if p is an odd prime such that (N ) 1, then if

(=1)*=D/2p is a quadratic residue of N, he showed in [55, pp. 150~ 153] that
(13.1) a? —b% = N (mod p)

has exactly (p+1)/4 solutions for a modulo p when p = —1 (mod 4), and either
(p —1)/4 or (p + 3)/4 solutions (depending on whether (N ) =1 or —1) when

=1 (mod 4). This is a more precise version of Cole’s observatlon in [19], and,
of course, it is very useful to use such a p as an exclusion modulus when we want
to set up our sieving algorithm for solving a2 — b2 = N, as we have cut in half
the usual number of solutions of (13.1).

Second, Kraitchik [55, pp. 195-208] had developed a methdd of factoring an
integer N which ma.de use of what he called ‘cycles’. Suppose we have -4 set

of congruences a;zZ = b;y? (mod N) (i =1,2,...,k). This is what Kraitchik
called a cycle. If
IT ai=da* ] b:=aB?
1<i<k 1<i<k

IT ==x; IIw=v

1<i<k 1<i<k
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we get (AX)? = (BY)? (mod N) (if ged(d, N) = 1). If AX = £BY (mod N),
the cycle was called primitive; if this were not the case, the cycle was called
derived. Of course, a derived cycle leads to a factorization of N, since N >
ged(AX — BY, N) > 1. Kraitchik used this idea, in connection with his means
of finding quadratic residues, to factor several values of N. For example, let
N = 409-2%0 + 1. Kraitchik always kept his examples to less than 15 digits; that
way, he could use D. N. Lehmer’s [92] factor tables up to 107 in order to factor
his values of +:(z? — N). By using his technique to find values of z,y, a such that
N = 22 £ ay?, he found

9761692 = 31%2.232.7%2.2%.1289,
47%.11%2.23.7.1289 = —6479712,

6617612 = —292.2%.7.-409,

7008232 = 47%.7%.27.7.23.29,
41%2.7%.27.7.23.29 = —624447%

409.2%° = 1.

Taking the products of both sides and deleting common factors, we get
(21°-11-41.976169-661761-709823)% = (7.23-29-31-647971-624447)% (mod N)

or
505112141932 = 1324697852912 (mod N),

from which we get
N = 14621 - 30036277.

This technique is little more than a slight variation of that of Seelhoff [166], and,
as mentioned earlier, can be regarded as an early ancestor of modern methods
like the Quadratic Sieve Algorithm and CFRAC.

In [90] Lehmer and Powers described a method of factorization which utilizes
continued fractions to obtain cycles. From (8.3) we note that if we put QF =
(=1)"Qn, we get

A2_ =@, (mod N).

Thus, if we find a set {Q}, ,Q5,,..., Q% } of some of these Q};-values such that
II @ =B (Bem),
1<i<k

then putting a; = 1, z; = Aqn,—1, by = @}, % = 1, we would get a cycle, and
this might lead to a factorization of N. When this idea was published in 1931, it
was not considered by Lehmer to be practical; indeed, his own experience with
it had been most frustrating. It was not until 1970, that a practical version of
this idea, developed by Morrison and Brillhart [133], succeeded in factoring Fr.
Their method, now commonly referred to as CFRAC (Continued Fraction), is
discussed at length in [134], and the central idea in it is at the heart of most
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modern general-purpose factoring techniques. This is the technique that ended
the dominance of the number sieve in factorization.

Kraitchik’s third use for quadratic residues was, unfortunately, not as scientific
as the first two. He may have developed this idea from a fallacious principle of
Seelhoff [169], which seems to have been accepted by Cole [19]. In Seelhoff’s
form, the principle seems to assert that if at least 7 primes such that 27 > (v N)
can be found, which when taken with the proper sign (see discussion below) are
quadratic residues of NV, then N is a prime. Now as Lehmer {77] rightly asserts,
this principle allows us to get rid of the hardest part of attempting to construct
a primality test, namely the problem of combining all the acceptable residues
or sieving. No proof of this principle is offered by Seelhoff, and his example is
wrong. He considers the factor N = 204084568497 of 243 — 1. and shows that
—-1,2,7,11,17,19,23, 31,43, 53,61,67,83,97,113,131 are all quadratic residues
of N. Since 2'® > #(v/N), N must be a prime. However, Landry had found 17
years earlier that N = 9719 -2099863. Clearly, —1 is not a quadratic residue of
N; Seelhoff must have made an arithmetic error. (-1 is not a prime, but the
knowledge that ~1 is a quadratic residue is used in determining other quadratic
residues.)

This principle occurs again in a somewhat different guise in Kraitchik’s [56],
an entire book practically devoted to it. He bases his idea on the following
(unproved) theorem: If every prime p such that (%) = 1 is such that p, taken
with the proper sign, is a quadratic residue of N, then N is a prime. Although
he does not say this explicitly, the proper sign is (—-1)(‘"1)/ ? when p is odd, —1
when p =2 and N = 3,5 (mod 8), +1 when p =2 and N = 1,7 (mod 8) (see
§14.) In fact, Hall [44] showed later that this theorem is true when we replace
the conclusion with the words: then N is a prime or a prime power. Of course,
this is not a useful primality test, so Kraitchik simply asserts that N is a prime
if a sufficient number of such p can be found. This number is not defined, but
seems, rather, to be up to the discretion of the user as long as it is large enough.
This is hardly scientific, and it was vigorously criticized by Lehmer [77] and
Beeger [7]. Kraitchik’s unsatisfactory response in [57] did not really address the
theoretic aspects of his principle but instead concentrated, and this only briefly,
on what he claimed was the question of practicality.

He used his principle in [56] to ‘prove’ that

2% +1)/(2% +1), (2% - 1)/(17(2** - 1)) ~
are primes (they are) and that o
(2" 4+ 1)(28 + 1) /(2% + 1) (2 + 1)), N= 4(3%° + 1)/((3'1 +1)(3° + 1))

are primes (they aren’t). Indeed he devotes twenty pages of [56] to showing that
this latter number is a prime. He finds after much labour that

—1,2,3,5,7,11,13,17,19, 37, 41,47, 53,59, 67, 71, 73, 79, 89, 101, 103, 127, 137,
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139,193, 337,419, 421, 487, 547, 643,677, 761,1279, 1877, 5711

are all quadratic residues of N and concludes that N must be prime (with “moral
certainty”). In fact, according to Brillhart [12], Riesel found that N is divisible
by 65967. Kraitchik, as in the case of the factor of 2'° + 1 (see Lehmer [83}),
must have made one or more simple arithmetic errors. For example, we see that
—1 cannot be a quadratic residue of N.

Kraitchik was more successful when he used his criterion to provide evidence
that N is not a prime. He does this several times in [56], and when he becomes
sure that the number he is testing is not a prime, he then attempts to factor it.
In one interesting instance of identifying an integer to be prime, Kraitchik did
turn out to be correct.

Recall that Lehmer had determined that 3V~ (mod N) for N = (102 —1)/9
was not 1. According to [56, p. 39], he asked Kraitchik to factor N. Kraitchik
found some quadratic residues of N and then used them to find the forms of
the divisors < 108 that would divide N. He found no factor; he then used his
sieving process and still found no factor. As he points out in [56, pp. 47-48],
this would constitute a proof of the primality of N except that the large number
(4367532788) of possible values for a in (13.1) rendered this proof very indirect.
He then obtained more quadratic residues of N and this convinced him that N
must be a prime.

He communicated his conviction to Lehmer on September 23, 1928. Lehmer
then re-evaluated 3V ! (mod N) and again did not get 1, but he also didn’t get
the answer he got before. Kraitchik then attempted to evaluate 3V~ (mod N)
and also made an error. Finally, in a letter of December 25, 1928 Lehmer could
assert that N is a prime. The proof given in [75] is very simple and is a beautiful
representative of Lehmer’s methods.

Lehmer evaluated 3¥~* (mod N) and finally got 1; he then computed r; =
3N-D/11 (mod N) and rp = 3V-1/40% (mod N). Since ged(r; — 1,N) =
ged(rg — 1, N) = 1, any prime factor of N must have the form 11 - 23 - 4093n +
1 = 113908197 + 1. Thus, the smallest possible prime factor of N must exceed
2-11390819 = 22781638.

If we try to express N = a2 - b%, then a = 11390819?n + 115222895547343. If
we restrict a modulo 12 and 25, the least possible value for a is 5435003952668544.
But a < 1(m + N/m) when m > 22781638; hence, a < 243861122499491 <
5435003952668544 and N must be a prime.

14. A modern version of Kraitchik’s principle

A few years after the appearance of [56], Hall [44] attempted to put Kraitchik’s
principle on a more solid mathematical footing. He first defined what he called
apparent residues and nonresidues of an integer N. If p is an odd prime and
p' = (=1)®~D/2p then p is an apparent residue or nonresidue of N according
as the value of the Legendre symbol (%) = 41 or ~1, respectively. Also, —1 is
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an apparent residue or nonresidue of N when the Jacobi symbol (‘Wl) =1lor—1,
and the apparent residue or nonresidue character of 2 is defined similarly.

He then went on to consider integers L, which he defined as the least non-
square positive integer congruent to 1 modulo 8, such that (%) =1 for all odd
primes g < p. Curiously, Kraitchik had considered these numbers previously
in [54, pp. 41-46], where he tabulated them up to Ly7 by making use of his
moveable paper strips method of sieving. This table was later extended by
Lehmer in (74, 86); also, in [86] Lehmer introduced the term pseudosquare for

any such Ly. In Table 1 below we give all the pseudosquares that are currently
known.

The main theorem of [44] is the following:

THEOREM 14.1. If all the factors of N are less than Ly and if -1,2,...,
(=1)P=1/2p can be divided into two classes, A = {ay1,az,...,a,} (the apparent
residues of N), and B = {by,by,... 1bs} (the apparent nonresidues of N) such
that every member of A is a true quadratic residue of N and the product of every
pair of elements from B is also a true quadratic residue of N, then N is either
a prime or a prime power.

This test was actually used by Beeger [8] to show that the large factor N =
9298142299081 of 12%5 + 1 is a prime. He noted that it had previously been
shown that any prime divisor of N must exceed 10%; hence, any prime divisor of
N must be less than N/10% < Lg;. Further,

~1,2,-3,5,~11,13,17, -23,29, —31, —43, —47, 53, —59, 61

are all apparent residues of N and —7, —19, 37,41, —67 are apparent nonresidues
of N. By using Kraitchik’s method to find quadratic residues of N, he was able
toshow that —1,2,3,5,11,13,17,23,29, 31, 43,47, 53,59, 61,719, 7-37, 7-41, 7-67
are all quadratic residues of N; hence, N must be a prime or prime power. Since
N < 10%, and N is not a perfect square, N is a prime.

The main difficulty with this technique is that determining the quadratic
residues of N is a rather slow, trial and error process. This problem can be
solved by making use of an idea of Selfridge and Weinberger mentioned in [186]
When this is done, we get the following theorem:

THEOREM 14.2. If
(1) No prime factor of an odd N is < B;
(i) N/B < Ly; '
(iii) pl(N_l)ﬂ = +1 (mod N) for all primes p; < p;
(iv) pg-N"l)/? = —1 (mod N) for some odd p; < p if N = 1 (mod 8); or
20N=1/2 = —1 (mod N) if N =5 (mod 8),
then N is a prime or prime power.

D L, Comments

3 73 Kraitchik

5 241 (1924) [54]

7 1009 Moveable Strips
11 2641

13 8089

17 18001

19 53881

23 87481

29 117049

31 515761

37 1083289

41 3206641

43 3818929

47 9257329

53 22000801 Lehmer (1928) [74]
59 48473881 Bicycle chains
61 48473881

67 175244281 Lehmer (1954) [86]
71 427733329 SWAC

73 427733329

79 898716289

83 2805544681 Lehmer, Lehmer,
89 2805544681 Shanks (1970) [87]
97 2805544681 DLS-127

101 10310263441

103 23616331489

107 85157610409

109 85157610409

113 196265095009

127 196265095009

131 2871842842801 Lehmer

137 2871842842801 (Unpublished)
139 2871842842801 DLS-57

149 26250887023729

151 26250887023729

157 112434732901969 Williams (1988)
163 112434732901969 (Unpublished)
167 112434732901969 UMSU

173 178936222537081

179 178936222537081

181 696161110209049

191 696161110209049

193 2854909648103881 Stephens and Williams [175]
197  6450045516630769 OASIS (1989)
199  6450045516630769

211 11641399247947921

223 11641399247947921

TaBLE 1. Table of Pseudosquares
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Notice that if B=1and N is a prime, there must exist some odd ¢ < p such
that (%) =—~1when N =1 (mod 8). If N =5 (mod 8), then #) = Y Thus
both conditions (iii) and (iv) must hold when N is a prime and% =1 ,

The next problem we encounter on using this test is the growth rate of L.
Cl.early, if we could show that Ly, grows rapidly, we would have an eﬁicierzl)t
primality test. In fact, Bach [5] has shown that if G is a nontrivial subgroup of
R, the group of reduced residues modulo m,suchthat n€ Gforall0 < n < z
then z < 2(logm)2. (The value 2 can be replaced by a somewhat smaller constant;
for sufficiently large values of m.) If we put m = 1 (mod 8) and define () to
be the Jacobi symbol, then if G is the group of reduced residues of a mod:io m
where (ﬁ) =1, G is a subgroup of R. Also, if m is not a perfect square, then
p®*|l'm with a odd for some odd prime p. If we let t be some integer suc}; that

(f’) = —1, and put

b = ¢ (modp?),
b 1 (mod m/p®),

I

by — (b)Y _
then (£) = (5;) = (%) = (z—t,) =—1, ged(b,m) =1 and 1 < b < m. Hence, bis a
redl;ced residue which is not in G, and therefore G is a proper subgroup of R
If we put m = L, then(l)zlforalll<n< :
) <n < pand we get p < 2(l 2,
It follows that " s (o Ls)

(14.1) L,> eVP/2,

Unfortunately, Bach’s result is conditional on the truth of the Extended Rie-
mann Hypothesis (ERH), a hypothesis which has not yet been proved; indeed
there are some who believe that it is false. Certainly, the values of L computed’
so far satisfy (14.1). If the ERH is ever proved, or the restriction gf the ERH
could be removed from Bach’s theorem, we would have a primality test which
satisfies all the desiderata of §2.

15. Conclusion

- We have concluded this paper in much the same way as we began it, by
discussing primality tests. We should in this connection mention that jus,t at
the beginning of the development of computers, the prime character of all the
Mersenne numbers M, for p < 257 had been determined without the use of
a computer. This achievement was due greatly to the immensée efforts of H.S.
Uhler {180, 181, 182, 183, 184], who (correctly) showed that Misy, Mgy
Mg, Msa7 and Migs are all composite by using the Lucas-Lehmer test. Brieﬂ};
put, Uhbler’s {179, 180] modification to the test technique of Lehmer consisted of
replacing the division by M, by the less time-consuming process of multiplication
by an approximation to 1/M,.

The largest integer ever proved prime without the use of a computer is the
44-digit (2'48 +1)/17. This was done by Ferrier [29] in 1952 by using essentially
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the same technique that Lehmer used to prove (1023 — 1)/9 a prime.

We realize that there are many whose names we have not mentioned in this
history and many other developments that we have left undescribed. In spite
of the length of the paper, we have not made any attempt at completeness —
that would require a book. Rather, we have attempted only to outline the main
developments of our subject. It is our hope that the reader has gained some
appreciation for all the work that was done before computers appeared on the
scene and now understands why the introduction of these machines caused such
a sudden acceleration in the further development of Computational Number
Theory. Indeed, this is one of the few papers on the subject that will not soon
be out of date.

One problem that is of great importance to us is the determination of the
growth rate of L. This, naturally, can be approached in several directions. One
of us (HCW) is pursuing this through further computation of the L,-values.
This will require the construction of another sieve device which has recently
been described by Patterson [136, 137]. This machine is planned to be able to
sieve through the integers in order to find special numbers like pseudosquares at
the rate of 5.38 x 10*! per second. We recognize on saying this that one of us
(at least) is promising to build a new machine. Perhaps, in view of several of
our themes in this paper, it is fitting to close with the French proverb: Plus ¢a
change, plus c’est la méme chose.
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