# Subword Complexity of a Generalized Thue-Morse Word 

John Tromp ${ }^{1}$ and Jeffrey Shallit ${ }^{2}$<br>Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada


#### Abstract

Let $y=y(0) y(1) y(2) \cdots$ be an infinite word over a finite alphabet, and let $p_{y}(r)$ count the number of distinct subwords of $y$ of length $r$. In this paper we determine $p_{y}(r)$ when $y(i)=s_{2}(i) \bmod k$, where $s_{2}(i)$ denotes the sum of the base- 2 digits of $i$. Our method is based on determining the redundancy of a certain code for subwords of a related infinite word.


Key words: formal languages; subword complexity; Thue-Morse word

## 1 Introduction.

Let $y=y(0) y(1) y(2) \cdots$ be a (finite or infinite) word over an alphabet $\Sigma$, and let $w$ be a finite word. If there exist words $v, x$ such that $y=v w x$, then we say $w$ is a subword or factor of $y$. If $|\Sigma|$ is finite, then we define $p_{y}(r)$, the subword complexity of $y$, to be the map which counts the number of distinct subwords of $y$ of length $r$.

Computing the subword complexity for "naturally-occurring" infinite words is an interesting and challenging problem that has received much attention in the past few years; for example, see the recent survey of Allouche [1].

For example, define $s_{2}(n)$ to be the sum of the base- 2 digits of $n$. Then the infinite word

$$
\mathbf{t}=t(0) t(1) t(2) \cdots=01101001 \cdots,
$$

[^0]where $t(i)=s_{2}(i) \bmod 2$, is the famous Thue-Morse word. In 1989, Brlek [3] and de Luca \& Varricchio [6] independently computed the subword complexity of $\mathbf{t}$. However, both proofs were rather complicated.

In this paper, we introduce a new technique for computing subword complexity based on determining the redundancy of a certain encoding for subwords of a related infinite word. This technique allows us to compute the subword complexity of the generalized Thue-Morse word $t_{k}$, defined as follows: for $k \geq$ 2 , and $n \geq 0$, set $t_{k}(n)=s_{2}(n) \bmod k$, and set $t_{k}=t_{k}(0) t_{k}(1) t_{k}(2) \cdots$. (N.B. This is not the "generalized Morse sequence on $k$ symbols" as introduced by Martin [7], whose subword complexity was studied by Mouline [9].) Note that $t_{k}$ is an infinite word over the alphabet $\Sigma_{k}=\{0,1, \ldots, k-1\}$, and the Thue-Morse word $\mathbf{t}$ is just $t_{2}$.

Here is our main theorem:
Theorem 1 Let $r$ be an integer $\geq 0$. Then

$$
p_{t_{k}}(r+1)= \begin{cases}k, & \text { if } r=0 ; \\ k^{2}, & \text { if } r=1 ; \\ k\left(k r-2^{a-1}\right), & \text { if } r=2^{a}+b, \text { where } a \geq 1,0 \leq b<2^{a-1} \\ k\left(k r-2^{a-1}-b\right), & \text { if } r=2^{a}+2^{a-1}+b, \text { where } a \geq 1,0 \leq b<2^{a-1} .\end{cases}
$$

The proof, as we will see, is relatively simple and completely self-contained. In the special case $k=2$, we recover the results of Brlek and de Luca \& Varricchio.

Operations between a word $w$ and an integer in this paper will be done termwise; thus, for example, $w+1$ denotes the word formed by adding 1 to each term in $w$. Also, by $w \equiv x(\bmod k)$, we mean $w_{i} \equiv x_{i}(\bmod k)$ for $0 \leq i<|w|=|x|$.

Let $[w]_{k}$ denote the value of the string $w$ when interpreted as a number in base $k$, and let $\epsilon$ denote the empty string. By $(n)_{k}$ we will mean the string in $\epsilon+\left(\Sigma_{k}-0\right) \Sigma_{k}^{*}$ that gives the ordinary base- $k$ representation for $n \geq 0$, and by $[w]_{k}$ we mean the value of the string $w$ when interpreted as a number in base $k$.

## 2 Proof of the Main Theorem

First, we consider the subwords of

$$
\mathbf{s}=s_{2}(0) s_{2}(1) s_{2}(2) \cdots=01121223 \cdots
$$

an infinite word over $\mathbb{I N}=\{0,1,2, \ldots\}$. Let

$$
w=s_{2}(i) s_{2}(i+1) \cdots s_{2}(i+r-1)
$$

be a subword of length $r$ of $s$. Then

$$
w+1=s_{2}\left(2^{j}+i\right) s_{2}\left(2^{j}+i+1\right) \cdots s_{2}\left(2^{j}+i+r-1\right)
$$

for all sufficiently large $j$. Thus we have proved:
Lemma 2 If $w$ is a subword of $\mathbf{s}$, then so is $w+1$. If $w$ is a subword of $t_{k}$, then so is $(w+1) \bmod k$.

For an integer $n \neq 0$, define $\nu_{2}(n)$ to be the integer exponent $e$ such that $2^{e}| | n$, i.e., $2^{e} \mid n$ but $2^{e+1} \mid n$. Then we have the following

Lemma 3 For $n \geq 0$ we have $\nu_{2}(n+1)=s_{2}(n)-s_{2}(n+1)+1$.

PROOF. We can write $n$ as $\left[x 01^{j}\right]_{2}$, and $n+1$ as $\left[x 10^{j}\right]_{2}$, for some $j \geq 0$ and $x \in(0+1)^{*}$. Hence $s_{2}(n)-s_{2}(n+1)=j-1=\nu_{2}(n+1)-1$.

Remark 4 This lemma is equivalent to Legendre's relation $\nu_{2}(n!)=n-s_{2}(n)$; see [5, p. 10].

Now for $n \geq 1$ define

$$
\mathbf{v}=\nu_{2}(1) \nu_{2}(2) \nu_{2}(3) \cdots=01020103 \cdots
$$

and $u_{k}=\mathbf{v} \bmod k$. Thus, for example,

$$
u_{2}=01000101 \cdots .
$$

Then, by Lemma 3, the subwords of $u_{k}$ of length $r$ are in 1-1 correspondence with the first differences of the subwords of $t_{k}$ of length $r+1$. Together with Lemma 2, this shows:

Lemma 5 For $r \geq 0$ we have $k \cdot p_{u_{k}}(r)=p_{t_{k}}(r+1)$.
Thus, to prove Theorem 1, it suffices to determine the subword complexity of the word $u_{k}$. We start by defining an encoding for the subwords of $\mathbf{v}$.

Let $r$ be a fixed positive integer. We define a function $f(n, m)$ as follows: for $0 \leq n<r$ and $m \geq 0$, let

$$
f(n, m)=w_{0} w_{1} \cdots w_{r-1}
$$

where $w_{n}=m$ and $w_{n^{\prime}}=\nu_{2}\left(n^{\prime}-n\right)$ for $n^{\prime} \neq n$. For example, for $r=8$, we have $f(3,1)=01010102$.

Lemma 6 Any length $r$ subword of $\mathbf{v}$ is equal to $f(n, m)$ for some $n$ and $m$.

PROOF. Let $m$ be the largest term in a nonempty subword $w=w_{0} w_{1} \cdots w_{r-1}$ of $\mathbf{v}$. Between any two occurrences of $m$ in $\mathbf{v}$, say $\nu_{2}\left(2^{m} \cdot r\right)$ and $\nu_{2}\left(2^{m} \cdot(r+2)\right)$ (where $r$ is odd), lies an occurrence of a larger integer, since $\nu_{2}\left(2^{m} \cdot(r+1)\right) \geq$ $m+1$. Hence $m$ occurs exactly once in $w$, say $m=w_{n}$, and $w_{n^{\prime}}<m$ for all $n^{\prime} \neq n$.

Now suppose $w_{n}$ is the $s^{\prime}$ th symbol of $\mathbf{v}$, i.e. $w_{n}=\nu_{2}(s)$. Then $w_{n^{\prime}}=\nu_{2}\left(s+n^{\prime}-\right.$ $n)=i$ for some $i<m$. Now $2^{m} \mid s$, and $2^{i} \| s+n^{\prime}-n$, so $2^{i} \|\left(s+n^{\prime}-n\right)-s=$ $n^{\prime}-n$. Thus $w_{n^{\prime}}=\nu_{2}\left(n^{\prime}-n\right)$. Thus we have shown $w=f(n, m)$.

It follows that the corresponding subword $w \bmod k$ of $u_{k}$ can be encoded by the pair ( $n, m \bmod k$ ). We next consider what alternative codes $w$ might have, modulo $k$.

Lemma 7 Let $0 \leq n, n^{\prime}<r, 0 \leq m, m^{\prime}<k$, and $(n, m) \neq\left(n^{\prime}, m^{\prime}\right)$. Then $f(n, m) \equiv f\left(n^{\prime}, m^{\prime}\right)(\bmod k)$ iff the following four conditions hold:
(i) $d:=\left|n^{\prime}-n\right|=2^{i}$ for some integer $i \geq 0$;
(ii) $m \equiv m^{\prime} \equiv i(\bmod k)$;
(iii) if $n<n^{\prime}$ then $n-d<0$ and $n^{\prime}+d \geq r$;
(iv) if $n^{\prime}<n$ then $n^{\prime}-d<0$ and $n+d \geq r$.

PROOF. Let $f(n, m)=w_{0} w_{1} \cdots w_{r-1}$ and $f\left(n^{\prime}, m^{\prime}\right)=x_{0} x_{1} \cdots x_{r-1}$. All congruences in the proof are $(\bmod k)$.

First, suppose the stated conditions hold. Then by condition (2) we have

$$
w_{n}=m \equiv i=\nu_{2}\left(n-n^{\prime}\right)=\nu_{2}\left(n^{\prime}-n\right)=x_{n} ;
$$

hence $w_{n} \equiv x_{n}$. Similarly, $w_{n^{\prime}} \equiv x_{n^{\prime}}$. To complete the proof of this direction, it suffices to show that $w_{n^{\prime \prime}}=x_{n^{\prime \prime}}$ for any $n^{\prime \prime} \in\{0,1, \ldots, r-1\} \backslash\left\{n, n^{\prime}\right\}$. If not, then without loss of generality, assume that $\nu_{2}\left(n^{\prime \prime}-n\right)=w_{n^{\prime \prime}}<x_{n^{\prime \prime}}=$ $\nu_{2}\left(n^{\prime \prime}-n^{\prime}\right)$. Then, as in the proof of Lemma 6, we have $w_{n^{\prime \prime}}=\nu_{2}\left(\left(n^{\prime \prime}-n\right)-\right.$ $\left.\left(n^{\prime \prime}-n^{\prime}\right)\right)=\nu_{2}\left(n^{\prime}-n\right)$. But by condition (1), $i=\nu_{2}\left(n^{\prime}-n\right)$, so $d=2^{i} \mid n^{\prime \prime}-n$, and $2 d=2^{i+1} \mid n^{\prime \prime}-n^{\prime}$. Hence $\left|n^{\prime \prime}-n\right| \geq d$ and $\left|n^{\prime \prime}-n^{\prime}\right| \geq 2 d$. This contradicts conditions (3) and (4).

Now we prove the other direction. Let $w=f(n, m)$ and $x=f\left(n^{\prime}, m^{\prime}\right)$, and suppose $w \equiv x$. Then if $n=n^{\prime}$, we have $m=w_{n} \equiv w_{n^{\prime}}=m^{\prime}$; so $m=m^{\prime}$, a contradiction. Hence $n \neq n^{\prime}$; without loss of generality we may assume $n<n^{\prime}$ and set $d=n^{\prime}-n$.

We now show $d$ is a power of 2 . For assume not; then $s_{2}(d) \geq 2$, and we can write the binary expansion of $d$ as follows: $(d)_{2}=1 x 10^{a}$, where $x \in(0+1)^{*}$ and $a \geq 0$. Then $d=2^{a}+y \cdot 2^{a+1}$, where $y=[1 x]_{2} \geq 1$. Now define $t=n+2^{a+1}$. Clearly $n<t<n^{\prime}$. Then $w_{t}=\nu_{2}(t-n)=a+1$, while

$$
x_{t}=\nu_{2}\left(n^{\prime}-t\right)=\nu_{2}(n+d-t)=\nu_{2}\left(2^{a}+(y-1) 2^{a+1}\right)=a
$$

so $w_{t} \not \equiv x_{t}$. This contradiction shows $d$ is indeed a power of 2 , say $d=2^{i}$ for some $i \geq 0$. Thus condition (1) is proved.

To prove (2), we observe that $m=w_{n} \equiv x_{n}=\nu_{2}\left(n-n^{\prime}\right)=i$, and similarly $m^{\prime}=x_{n^{\prime}} \equiv w_{n^{\prime}}=\nu_{2}\left(n^{\prime}-n\right)=i$.

To prove condition (3), first suppose that $n-d \geq 0$. Then by definition of $f, w_{n-d}=\nu_{2}((n-d)-n)=\nu_{2}(-d)=i$, while $x_{n-d}=\nu_{2}\left((n-d)-n^{\prime}\right)=$ $\nu_{2}(-2 d)=i+1$, so $w_{n-d} \not \equiv x_{n-d}$.

Condition (4) handles the case $n>n^{\prime}$, and follows similarly. This completes the proof.

We now prove a lemma about subwords of $u_{k}$ having multiple codes.
Lemma 8 Each subword $w$ of $u_{k}$ of length $r$ corresponds to at most two distinct encodings $f(n, m)$. If $r=2^{a}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, then exactly $2^{a-1}$ words have two codes. If $r=2^{a}+2^{a-1}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, then exactly $2^{a-1}+b$ words have two codes.

PROOF. If the four conditions of Lemma 7 hold for a given $n$, then an easy case analysis based on conditions (3) and (4) shows that $n^{\prime}$ is unique. Thus each word $w$ has one or two codes.

By Lemma 7, the number of subwords of $u_{k}$ of length $r$ having two codes is exactly the number of pairs ( $n, n^{\prime}$ ) with $0 \leq n<n^{\prime}<r$, for which $d=n^{\prime}-n=$ $2^{i}$ for some $i, n-d<0$, and $n^{\prime}+d \geq r$.

When $r=2^{a}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, there are $b$ such pairs ( $n, n+2^{a}$ ) for $0 \leq n<b$, and $2^{a-1}-b$ pairs ( $n, n+2^{a-1}$ ) for $b \leq n<2^{a-1}$. This gives a total of $2^{a-1}$ pairs.

When $r=2^{a}+2^{a-1}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, there are $2^{a-1}+b$ such pairs $\left(n, n+2^{a}\right)$ for $0 \leq n<2^{a-1}+b$.

We have therefore proved the following theorem:
Theorem 9 If $r=2^{a}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, then $p_{u_{k}}(r)=$ $k r-2^{a-1}$. If $r=2^{a}+2^{a-1}+b$ with $a \geq 1$ and $0 \leq b<2^{a-1}$, then $p_{u_{k}}(r)=$ $k r-\left(2^{a-1}+b\right)$.

Theorem 1 now follows by combining Theorem 9 and Lemma 5.

## 3 Concluding Remarks.

It follows from our result that the sequence $\left(p_{t_{k}}(r)\right)_{r>0}$ is 2-regular in the sense of Allouche and Shallit [2]. Furthermore, it is easy to see that $p_{t_{k}}(r+$ 1) $-p_{t_{k}}(r) \leq k^{2}$, so that the sequence $\left(p_{t_{k}}(r+1)-p_{t_{k}}(r)\right)_{r \geq 0}$ is 2-automatic (or 2-recognizable) in the sense of Cobham [4].

For more general results along these lines, see [8].

## Acknowledgement

We thank Drew Vandeth and the referees for suggesting improvements to this paper.

## References

[1] J.-P. Allouche. Sur la complexité des suites infinies. Bull. Belgian Math. Soc. 1 (1994), 133-143.
[2] J.-P. Allouche and J. O. Shallit. The ring of $k$-regular sequences. Theoret. Comput. Sci. 98 (1992), 163-187.
[3] S. Brlek. Enumeration of factors in the Thue-Morse word. Disc. Appl. Math. 24 (1989), 83-96.
[4] A. Cobham. Uniform tag sequences. Math. Systems Theory 6 (1972), 164-192.
[5] A.-M. Legendre. Théorie des Nombres. Firmin Didot Frères, Paris, 1830.
[6] A. de Luca and S. Varricchio. Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups. Theoret. Comput. Sci. 63 (1989), 333348.
[7] J. C. Martin. Generalized Morse sequences on $n$ symbols. Proc. Amer. Math. Soc. 54 (1976), 379-383.
[8] B. Mossé. Notions de reconnaissabilité pour les substitions et complexité des suites automatiques. Technical Report 93-21, Laboratoire de Mathématiques Discrètes, Université de Marseille, 1993.
[9] J. Mouline. Contribution à l'étude de la complexité des suites substitutives. PhD thesis, Université de Provence, France, 1990.


[^0]:    ${ }^{1}$ Supported in part by an NSERC International Fellowship and ITRC. E-mail: tromp@math.uwaterloo.ca.
    ${ }^{2}$ Supported in part by a grant from NSERC Canada. Please direct all correspondence to this author. E-mail: shallit@graceland.uwaterloo.ca.

