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Let y = y(0)y(1)y(2) - - - be an infinite word over a finite alphabet,
and let p,(7) count the number of distinct subwords of y of length
7. In this paper we determine p,(r) when y(¢) = s3(¢) mod k, where
s5(%) denotes the sum of the base-2 digits of <. Our method is based
on determining the redundancy of a certain code for subwords of a
related infinite word.
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1 Introduction.

Let y = y(0)y(1)y(2) - - - be a (finite or infinite) word over an alphabet ¥, and
let w be a finite word. If there exist words v, x such that y = vwz, then we say
w is a subword or factor of y. If |X| is finite, then we define p,(r), the subword
complexity of y, to be the map which counts the number of distinct subwords
of y of length r.

Computing the subword complexity for “naturally-occurring” infinite words
is an interesting and challenging problem that has received much attention in
the past few years; for example, see the recent survey of Allouche [1].

For example, define s2(n) to be the sum of the base-2 digits of n. Then the
infinite word

t = t(0)t(1)t(2)---=01101001 ---,
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where t(¢) = s2(7) mod 2, is the famous Thue-Morse word. In 1989, Brlek [3]
and de Luca & Varricchio [6] independently computed the subword complexity
of t. However, both proofs were rather complicated.

In this paper, we introduce a new technique for computing subword complexity
based on determining the redundancy of a certain encoding for subwords of
a related infinite word. This technique allows us to compute the subword
complexity of the generalized Thue-Morse word ty, defined as follows: for k >
2, and n > 0, set t(n) = s2(n) mod k, and set t; = t4(0)tx(1)t(2) - --. (N.B.
This 1s not the “generalized Morse sequence on k symbols” as introduced
by Martin [7], whose subword complexity was studied by Mouline [9].) Note
that ¢, is an infinite word over the alphabet ¥ = {0,1,...,k — 1}, and the
Thue-Morse word t is just ¢,.

Here is our main theorem:

Theorem 1 Let r be an integer > 0. Then

k, ifr=0;
1) — k2, ifr=1;
P (r+1) = Jeer — 2071, ifr=20+b, wherea>1,0<b< 201,

E(kr —2071 —b), ifr=2"+214b wherea>1,0<b< 2%t

The proof, as we will see, is relatively simple and completely self-contained.
In the special case k = 2, we recover the results of Brlek and de Luca &
Varricchio.

Operations between a word w and an integer in this paper will be done
termwise; thus, for example, w + 1 denotes the word formed by adding 1
to each term in w. Also, by w = # (mod k), we mean w; = #; (mod k) for
0<i<|w| =]zl

Let [w]; denote the value of the string w when interpreted as a number in
base k, and let € denote the empty string. By (n); we will mean the string in
€+ (X — 0)X; that gives the ordinary base-k representation for n > 0, and
by [w]r we mean the value of the string w when interpreted as a number in

base k.

2 Proof of the Main Theorem

First, we consider the subwords of

s = 55(0)s5(1)s5(2)--- = 01121223 -,



an infinite word over IN = {0,1,2,...}. Let

w = 82(¢)s2(¢ + 1) -+ s2(¢ +7 — 1)

be a subword of length r of s. Then

w1 =59(2 4+i)s9(27 i+ 1)---59(2 +i+7—1)

for all sufficiently large 5. Thus we have proved:

Lemma 2 If w is a subword of s, then so is w+ 1. If w is a subword of ty,
then so is (w + 1) mod k.

For an integer n # 0, define v2(n) to be the integer exponent e such that
2¢ || n, i.e., 2¢|n but 2°*[n. Then we have the following

Lemma 3 Forn >0 we have va(n + 1) = sa2(n) — s2(n+ 1) + 1.
PROOF. We can write n as [z01%]y, and n + 1 as [z 107], for some j > 0
and € (0 4+ 1)*. Hence s2(n) —s2(n+1)=j—1=w(n+1)—1. O

Remark 4 This lemma is equivalent to Legendre’s relation va(n!) = n—ss(n);

see [5, p. 10].
Now for n > 1 define

v = v5(1)1(2)wa(3) -+ = 01020103 ---,

and up = v mod k. Thus, for example,

us =01000101---.

Then, by Lemma 3, the subwords of u; of length r are in 1-1 correspondence
with the first differences of the subwords of ¢ of length r + 1. Together with
Lemma 2, this shows:

Lemma 5 For r > 0 we have k - py, () = p, (r + 1).

Thus, to prove Theorem 1, it suffices to determine the subword complexity of
the word uy. We start by defining an encoding for the subwords of v.

Let 7 be a fixed positive integer. We define a function f(n,m) as follows: for
0<n<randm>0,let

f(n,m) = wowy -+ - w,_y,



where w, = m and w, = v2(n’ — n) for n’ # n. For example, for r = 8, we

have f(3,1) = 01010102.

Lemma 6 Any length r subword of v is equal to f(n,m) for some n and m.

PROOF. Let m be the largest term in a nonempty subword w = wow; - - - w,_;
of v. Between any two occurrences of m in v, say (2™ -r) and v5(2™ - (r 4 2))
(where 7 is odd), lies an occurrence of a larger integer, since v5(2™ - (r 4 1)) >
m + 1. Hence m occurs exactly once in w, say m = w,, and w, < m for all

n' % n.

Now suppose w,, is the s’th symbol of v, i.e. w, = v2(s). Then w, = va(s+n'—
n) = i for some i < m. Now 2™ | s, and 2' || s +n' —n, 50 2'|| (s +n' —n) — 5 =
n’ —n. Thus w, = va(n’ — n). Thus we have shown w = f(n,m). O

It follows that the corresponding subword w mod k of uj can be encoded by
the pair (n,m mod k). We next consider what alternative codes w might have,
modulo k.

Lemma 7 Let 0 < n,n’ < r, 0 < m,m' < k, and (n,m) # (n’,m’). Then
f(n,m) = f(n',m') (mod k) iff the following four conditions hold:

(i) d:=|n' —n|=2" for some integer i > 0;
(it) m =m' =i (mod k);
(111) if n <n' thenn—d <0 andn' +d>r;
() ifn <nthenn' —d<0andn+d>r.

PROOF. Let f(n,m) = wow; - --w,_1 and f(n',m’) = zoxy---z,_1. All con-

gruences in the proof are (mod k).
First, suppose the stated conditions hold. Then by condition (2) we have

w,=m=1=rvs(n—n') =wva(n' —n) = zy;

hence w,, = x,,. Similarly, w,, = @,,. To complete the proof of this direction,
it suffices to show that w,» = @, for any n” € {0,1,...,7 — 1} \ {n,n'}. If
not, then without loss of generality, assume that vo(n” —n) = wpn < @y =
vs(n” —n’). Then, as in the proof of Lemma 6, we have w,» = v5((n” —n) —
(n” —n')) = va(n’ —n). But by condition (1), 5 = vy(n’ —n), so d = 2 |n” —n,
and 2d = 20+ | n” —n/. Hence [n” —n| > d and |[n” —n'| > 2d. This contradicts
conditions (3) and (4).



Now we prove the other direction. Let w = f(n,m) and z = f(n',m’), and
suppose w = x. Then if n = n’, we have m = w,, = wy = m/; so m = m/, a
contradiction. Hence n # n'; without loss of generality we may assume n < n’
and set d = n' — n.

We now show d is a power of 2. For assume not; then s»(d) > 2, and we can
write the binary expansion of d as follows: (d)s = 1 10%, where z € (0 4 1)*
and @ > 0. Then d = 2% +y-2°t! where y = [1z], > 1. Now define ¢t = n+2°+1,
Clearly n < t <n'. Then w; = vo(t —n) = a+ 1, while

zp=1y(n —t) = va(n +d —t) = 1n(2" + (y — 1)2°71) = a,

so w; # x;. This contradiction shows d is indeed a power of 2, say d = 2 for
some ¢ > 0. Thus condition (1) is proved.

To prove (2), we observe that m = w,, = z, = va(n — n’) = 4, and similarly
m' = & = wy = va(n' —n) = .

To prove condition (3), first suppose that » — d > 0. Then by definition of
fy Wpeqg = va((n — d) —n) = va(—d) = i, while z,_4 = va((n — d) —n') =
vo(—2d) =i+ 1, 80 Wy—q Z Tp—q.

Condition (4) handles the case n > n’, and follows similarly. This completes
the proof.

We now prove a lemma about subwords of w; having multiple codes.

Lemma 8 FEach subword w of up of length v corresponds to at most two dis-
tinct encodings f(n,m). Ifr = 2°4-b witha > 1 and 0 < b < 2°71, then ezactly
29=1 words have two codes. If r = 2% + 271 L b witha > 1 and 0 < b < 2971,
then exactly 227 + b words have two codes.

PROOF. If the four conditions of Lemma 7 hold for a given n, then an easy
case analysis based on conditions (3) and (4) shows that »n' is unique. Thus
each word w has one or two codes.

By Lemma 7, the number of subwords of uj of length r having two codes 1s
exactly the number of pairs (n,n’) with 0 <n < n’ < r, for which d =n'—n =
2¢ for some i, n —d < 0, and n' +d > r.

When r = 2+ b with a > 1 and 0 < b < 27! there are b such pairs (n,n +2%)
for 0 < n < b, and 2*7' — b pairs (n,n + 2°71) for b < n < 2%, This gives a
total of 297! pairs.



When r =24+ 297! + bwith @ > 1 and 0 < b < 2°71, there are 27! 4 b such
pairs (n,n +2%) for 0 <n <2¢°' 45 O

We have therefore proved the following theorem:

Theorem 9 If r = 2* + b with a > 1 and 0 < b < 2°71, then p, (r) =
kr —2071 Ifr =242 4L bwitha > 1 and 0 < b < 2°71, then p,, (r) =
kr — (2971 4+ b).

Theorem 1 now follows by combining Theorem 9 and Lemma 5. O

3 Concluding Remarks.

It follows from our result that the sequence (py,(7)),>0 is 2-regular in the
sense of Allouche and Shallit [2]. Furthermore, it is easy to see that p;, (v +
1) — pi, (r) < k?, so that the sequence (py (7 + 1) — py, (7))r>0 is 2-automatic
(or 2-recognizable) in the sense of Cobham [4].

For more general results along these lines, see [8].
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