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Let y = y(0)y(1)y(2) � � � be an in�nite word over a �nite alphabet,

and let p

y

(r) count the number of distinct subwords of y of length

r. In this paper we determine p

y

(r) when y(i) = s

2

(i) mod k, where

s

2

(i) denotes the sum of the base-2 digits of i. Our method is based

on determining the redundancy of a certain code for subwords of a

related in�nite word.
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1 Introduction.

Let y = y(0)y(1)y(2) � � � be a (�nite or in�nite) word over an alphabet �, and

let w be a �nite word. If there exist words v; x such that y = vwx, then we say

w is a subword or factor of y. If j�j is �nite, then we de�ne p

y

(r), the subword

complexity of y, to be the map which counts the number of distinct subwords

of y of length r.

Computing the subword complexity for \naturally-occurring" in�nite words

is an interesting and challenging problem that has received much attention in

the past few years; for example, see the recent survey of Allouche [1].

For example, de�ne s

2

(n) to be the sum of the base-2 digits of n. Then the

in�nite word

t = t(0)t(1)t(2) � � � = 01 1 0 1 0 0 1 � � � ;
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where t(i) = s

2

(i) mod 2, is the famous Thue-Morse word. In 1989, Brlek [3]

and de Luca & Varricchio [6] independently computed the subword complexity

of t. However, both proofs were rather complicated.

In this paper, we introduce a new technique for computing subword complexity

based on determining the redundancy of a certain encoding for subwords of

a related in�nite word. This technique allows us to compute the subword

complexity of the generalized Thue-Morse word t

k

, de�ned as follows: for k �

2, and n � 0, set t

k

(n) = s

2

(n) mod k, and set t

k

= t

k

(0)t

k

(1)t

k

(2) � � �. (N.B.

This is not the \generalized Morse sequence on k symbols" as introduced

by Martin [7], whose subword complexity was studied by Mouline [9].) Note

that t

k

is an in�nite word over the alphabet �

k

= f0; 1; : : : ; k � 1g, and the

Thue-Morse word t is just t

2

.

Here is our main theorem:

Theorem 1 Let r be an integer � 0. Then

p

t

k

(r + 1) =

8

>

>

>

<

>

>

>

:

k; if r = 0;

k

2

; if r = 1;

k(kr � 2

a�1

); if r = 2

a

+ b, where a � 1, 0 � b < 2

a�1

;

k(kr � 2

a�1

� b); if r = 2

a

+ 2

a�1

+ b, where a � 1, 0 � b < 2

a�1

.

The proof, as we will see, is relatively simple and completely self-contained.

In the special case k = 2, we recover the results of Brlek and de Luca &

Varricchio.

Operations between a word w and an integer in this paper will be done

termwise; thus, for example, w + 1 denotes the word formed by adding 1

to each term in w. Also, by w � x (mod k), we mean w

i

� x

i

(mod k) for

0 � i < jwj = jxj.

Let [w]

k

denote the value of the string w when interpreted as a number in

base k, and let � denote the empty string. By (n)

k

we will mean the string in

� + (�

k

� 0)�

�

k

that gives the ordinary base-k representation for n � 0, and

by [w]

k

we mean the value of the string w when interpreted as a number in

base k.

2 Proof of the Main Theorem

First, we consider the subwords of

s = s

2

(0)s

2

(1)s

2

(2) � � � = 01 1 2 1 2 2 3 � � � ;
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an in�nite word over IN = f0; 1; 2; : : :g. Let

w = s

2

(i)s

2

(i+ 1) � � � s

2

(i+ r � 1)

be a subword of length r of s. Then

w + 1 = s

2

(2

j

+ i)s

2

(2

j

+ i+ 1) � � � s

2

(2

j

+ i+ r � 1)

for all su�ciently large j. Thus we have proved:

Lemma 2 If w is a subword of s, then so is w + 1. If w is a subword of t

k

,

then so is (w + 1) mod k.

For an integer n 6= 0, de�ne �

2

(n) to be the integer exponent e such that

2

e

jjn, i.e., 2

e

jn but 2

e+1

j=n. Then we have the following

Lemma 3 For n � 0 we have �

2

(n + 1) = s

2

(n)� s

2

(n+ 1) + 1.

PROOF. We can write n as [x 0 1

j

]

2

, and n + 1 as [x 1 0

j

]

2

, for some j � 0

and x 2 (0 + 1)

�

. Hence s

2

(n) � s

2

(n+ 1) = j � 1 = �

2

(n+ 1)� 1. 2

Remark 4 This lemma is equivalent to Legendre's relation �

2

(n!) = n�s

2

(n);

see [5, p. 10].

Now for n � 1 de�ne

v = �

2

(1)�

2

(2)�

2

(3) � � � = 01 0 2 0 1 0 3 � � � ;

and u

k

= v mod k. Thus, for example,

u

2

= 01 0 0 0 1 0 1 � � � :

Then, by Lemma 3, the subwords of u

k

of length r are in 1{1 correspondence

with the �rst di�erences of the subwords of t

k

of length r + 1. Together with

Lemma 2, this shows:

Lemma 5 For r � 0 we have k � p

u

k

(r) = p

t

k

(r + 1).

Thus, to prove Theorem 1, it su�ces to determine the subword complexity of

the word u

k

. We start by de�ning an encoding for the subwords of v.

Let r be a �xed positive integer. We de�ne a function f(n;m) as follows: for

0 � n < r and m � 0, let

f(n;m) = w

0

w

1

� � �w

r�1

;
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where w

n

= m and w

n

0

= �

2

(n

0

� n) for n

0

6= n. For example, for r = 8, we

have f(3; 1) = 01010102.

Lemma 6 Any length r subword of v is equal to f(n;m) for some n and m.

PROOF. Letm be the largest term in a nonempty subword w = w

0

w

1

� � �w

r�1

of v. Between any two occurrences of m in v, say �

2

(2

m

�r) and �

2

(2

m

� (r+2))

(where r is odd), lies an occurrence of a larger integer, since �

2

(2

m

� (r+1)) �

m + 1. Hence m occurs exactly once in w, say m = w

n

, and w

n

0

< m for all

n

0

6= n.

Now suppose w

n

is the s'th symbol of v, i.e. w

n

= �

2

(s). Then w

n

0

= �

2

(s+n

0

�

n) = i for some i < m. Now 2

m

j s, and 2

i

jj s+n

0

�n, so 2

i

jj (s+n

0

�n)� s =

n

0

� n. Thus w

n

0

= �

2

(n

0

� n). Thus we have shown w = f(n;m). 2

It follows that the corresponding subword w mod k of u

k

can be encoded by

the pair (n;m mod k). We next consider what alternative codes w might have,

modulo k.

Lemma 7 Let 0 � n; n

0

< r, 0 � m;m

0

< k, and (n;m) 6= (n

0

;m

0

). Then

f(n;m) � f(n

0

;m

0

) (mod k) i� the following four conditions hold:

(i) d := jn

0

� nj = 2

i

for some integer i � 0;

(ii) m � m

0

� i (mod k);

(iii) if n < n

0

then n� d < 0 and n

0

+ d � r;

(iv) if n

0

< n then n

0

� d < 0 and n+ d � r.

PROOF. Let f(n;m) = w

0

w

1

� � �w

r�1

and f(n

0

;m

0

) = x

0

x

1

� � � x

r�1

. All con-

gruences in the proof are (mod k).

First, suppose the stated conditions hold. Then by condition (2) we have

w

n

= m � i = �

2

(n� n

0

) = �

2

(n

0

� n) = x

n

;

hence w

n

� x

n

. Similarly, w

n

0

� x

n

0

. To complete the proof of this direction,

it su�ces to show that w

n

00

= x

n

00

for any n

00

2 f0; 1; : : : ; r � 1g n fn; n

0

g. If

not, then without loss of generality, assume that �

2

(n

00

� n) = w

n

00

< x

n

00

=

�

2

(n

00

� n

0

). Then, as in the proof of Lemma 6, we have w

n

00

= �

2

((n

00

� n)�

(n

00

�n

0

)) = �

2

(n

0

�n). But by condition (1), i = �

2

(n

0

�n), so d = 2

i

jn

00

�n,

and 2d = 2

i+1

j n

00

�n

0

. Hence jn

00

�nj � d and jn

00

�n

0

j � 2d. This contradicts

conditions (3) and (4).
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Now we prove the other direction. Let w = f(n;m) and x = f(n

0

;m

0

), and

suppose w � x. Then if n = n

0

, we have m = w

n

� w

n

0

= m

0

; so m = m

0

, a

contradiction. Hence n 6= n

0

; without loss of generality we may assume n < n

0

and set d = n

0

� n.

We now show d is a power of 2. For assume not; then s

2

(d) � 2, and we can

write the binary expansion of d as follows: (d)

2

= 1x 1 0

a

, where x 2 (0 + 1)

�

and a � 0. Then d = 2

a

+y �2

a+1

, where y = [1x]

2

� 1. Now de�ne t = n+2

a+1

.

Clearly n < t < n

0

. Then w

t

= �

2

(t� n) = a+ 1, while

x

t

= �

2

(n

0

� t) = �

2

(n+ d � t) = �

2

(2

a

+ (y � 1)2

a+1

) = a;

so w

t

6� x

t

. This contradiction shows d is indeed a power of 2, say d = 2

i

for

some i � 0. Thus condition (1) is proved.

To prove (2), we observe that m = w

n

� x

n

= �

2

(n � n

0

) = i, and similarly

m

0

= x

n

0

� w

n

0

= �

2

(n

0

� n) = i.

To prove condition (3), �rst suppose that n � d � 0. Then by de�nition of

f , w

n�d

= �

2

((n � d) � n) = �

2

(�d) = i, while x

n�d

= �

2

((n � d) � n

0

) =

�

2

(�2d) = i+ 1, so w

n�d

6� x

n�d

.

Condition (4) handles the case n > n

0

, and follows similarly. This completes

the proof.

We now prove a lemma about subwords of u

k

having multiple codes.

Lemma 8 Each subword w of u

k

of length r corresponds to at most two dis-

tinct encodings f(n;m). If r = 2

a

+b with a � 1 and 0 � b < 2

a�1

, then exactly

2

a�1

words have two codes. If r = 2

a

+ 2

a�1

+ b with a � 1 and 0 � b < 2

a�1

,

then exactly 2

a�1

+ b words have two codes.

PROOF. If the four conditions of Lemma 7 hold for a given n, then an easy

case analysis based on conditions (3) and (4) shows that n

0

is unique. Thus

each word w has one or two codes.

By Lemma 7, the number of subwords of u

k

of length r having two codes is

exactly the number of pairs (n; n

0

) with 0 � n < n

0

< r, for which d = n

0

�n =

2

i

for some i, n� d < 0, and n

0

+ d � r.

When r = 2

a

+b with a � 1 and 0 � b < 2

a�1

, there are b such pairs (n; n+2

a

)

for 0 � n < b, and 2

a�1

� b pairs (n; n + 2

a�1

) for b � n < 2

a�1

. This gives a

total of 2

a�1

pairs.

5



When r = 2

a

+ 2

a�1

+ b with a � 1 and 0 � b < 2

a�1

, there are 2

a�1

+ b such

pairs (n; n+ 2

a

) for 0 � n < 2

a�1

+ b. 2

We have therefore proved the following theorem:

Theorem 9 If r = 2

a

+ b with a � 1 and 0 � b < 2

a�1

, then p

u

k

(r) =

kr � 2

a�1

. If r = 2

a

+ 2

a�1

+ b with a � 1 and 0 � b < 2

a�1

, then p

u

k

(r) =

kr � (2

a�1

+ b).

Theorem 1 now follows by combining Theorem 9 and Lemma 5. 2

3 Concluding Remarks.

It follows from our result that the sequence (p

t

k

(r))

r�0

is 2-regular in the

sense of Allouche and Shallit [2]. Furthermore, it is easy to see that p

t

k

(r +

1) � p

t

k

(r) � k

2

, so that the sequence (p

t

k

(r + 1) � p

t

k

(r))

r�0

is 2-automatic

(or 2-recognizable) in the sense of Cobham [4].

For more general results along these lines, see [8].
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