Chapter II: Continued Fractions
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1. The Real Continued Fraction Algorithm.

Definition IT.1.1.

A real (simple) continued fraction (CF) 1is an expression

: of the form

ag + l/(a1 + 1/(a2 + cea ))

which mey or may not terminate.

CF's are the subject of a vast literature because they
have many interesting and useful properties. The traditional
development of CF's is given, for example, in Hardy and Wright
[8]. We will use some non-standard notation in our development
to make our meaning more precise. The distinctions we will

make below will be especially useful in section II.3.

Definition II.1.2.

val(ao, Ayr +ev s @ )

n a, + l/(al + ... l/an)

- I
val(ao, ays .o ) = n::a, val(ao, cee 4 an)

if the limit exists.

Thus val can be considered to -be the "value" of the
continued fraction, and is a function which maps (finite or

.infinite) sequences to real numbers.

Definition II.1.3. (CF algorithm)
cf(x) = (ao, al, .o an, ced)

where the a's are defined as follows:
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X = X

i}
]

fl(xn), X = 1/(xn - an) (n>0)

n+1l

This expansion terminates with a if and only if there

‘exists some N such that a,. = X, . Otherwise, the result is an

N N
infinite sequence.

Thus cf is a function which maps real numbers to (finite

or infinite) sequences.

Note: cf may be thought of as a "computer program" which
takes a real number as input and outputs a seguence of

integers, which may or may not terminate.

Traditionally, statements of theorems on continued
fractions have not distinguished between the roles of c¢f and
val. In & statement like

e=1[2,1, 2,1, 1, 4,1, 1, 6, 1, 1, 8, ...]
(traditional notation), it is not <clear whether the statement
is that the evaluation of the right side equals the left side,
or whether the continued fraction algorithm applied to the left
side produces the right side. The distinction between cf and

val we have made clarifies this.

Theorem II.1.1,.

val(ao, al, N Y an + 1/x) = val(ao, al, .o an, X)
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This is just the definition of val.

Another easily verified consequence of the definition is

the following

Theorem I1.1.2.

0
n' [ 4

val(ao, al, ce. a cen)

an+1’

= val(ao, al, ey an + an+l' cne)

We will write |cf(x)| = N if, as in Definition II.1.3, the
algorithm ' terminates with ay- If the algorithm does not
terminate, we write |cf(x)]| = ,

Theorem II.1.3.

If x is rational, then |cf(x)] < 0.

Proof.
Suppose x is rational. Then x = r/s, where r,s€}, s>l.
Then application of the cf algorithm gives

X, = r/s, a, = fl(xn), b4

0 = 1/(xn - an).

n+1l

Now define

g = I; sO = g; bn = fl(rn/sn)
r

r
n+1 n

- b s = res(s , r ).
n-n n

n+1 n

where by res we mean the residue function with respect to
floor.

Then I claim
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a =b and x =r /s .
n n n n/ n

Use induction. We find
Xq = ro/s0 = r/s = X.
b0 0) = ao.

Now assume true for n. We find

]

fl(ro/so) = fl(x

xn+1 - l/(xn - an)

1/(rn/srl - fl(rn/sn))

sn/(rn - snfl(rn/sn))

rn+l/sn+l'

Also
an+l = fl(Xn+1) = fl(rn+l/sn+l)'
Now cf terminates iff x._. = a "for some N. Since the two

N N

methods of expansion above are the same, this condition is bN =

rN/sN, 1. €.y Sgup = 0. From Theorem I.2.12 we see

0 < sn+1 = res(sn, rn) < Sn'
Assume S is never 0, Then Spr  Syr Sor s is an infinite
strictly decreasing sequence of positive integers, which is
clearly impossible. Hence cf terminates at some s = 0.

N+1

Theorem II.1.4.

Suppose |cf(x)| <o© . Then val(cf(x)) = Xx.

Proof.
Since |cf(x)| <oo, Jcf(x)! = N. Write
cf(x) = (aO, 817 ceny aN).

From Definition II.1.3, x_ = a_ + 1/x for n < N.
n n  "n+1
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Also, Xy T ay-

Hence we find

X=X0

ag + l/Xl

= a, + l/(al + l/xz)

= 2, + l/(al + ... 1/(aN_1 + 1/xN)

= ag + 1/(al + ... l/(aN_1 + 1/aN)

= val(ao, al, a2, e aN).
Theorem II.1.5.
If x is irrational, then |cf(x)] =oco.
Proof.
Asssume that |cf(x)]| = N <oo . Then val(cf(x)) = x by the

previous theorem. .But val(ao, ayr - an) is clearly rational
since we are doing a finite number of field operations on Q.
Hence x is rational, contrary to assumption. Thus we have a

contradiction and |cf(x)]| =oco .
Theorem II.1l.6.

lcf(x)]| < oo iff x is rational.

lcf (x) ] = oo iff x is irrational.
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Proof.

This is just a combination of Theorems II.1.3 and II.1.5.

Now we will derive some of the traditional results on real

continued fractions. For example, see Hardy and Wright [8].

Theorem II.1.7.

Let pn/qn = val(ao, ays ... a ).
Then if
P, =0; p_; =1
9., =1 g ,=0 .
we have
Pp = anpn—l * pn—2
9 = anqn—l * 9h-2
for n>0.
Proof. (Induction)
The above formulas are easily checked for n = 0. Assume
true for n. Then we find
val(ao, S RAREE a s an+l) = val(ao, a, «.. a +vl/an+1)

((an * 1/an+1)pn—1 + pn—2)/((an + l/an+1)qn—l + qn—2)
(@nepfapPpq + Py y) + Ppo1)/ (a1 (0900 y + 95) + g )

(an+1pn + pn—l)/(an+lqn + qn—l)'

Theorem II.1.8.

Ph9-1 ~ Pho19, =
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Proof.
PnOn-1 7 Ppo19y = 8Py * Pp9)9ny T Ppog(@pgn gt 9 y)
B —(pn—lqn—Z - pn—an-l)
Repeating this argument gives

- = (-1)" 1 - )
Pr9h-1 = Pp-19, P19y = Pp9;

(_1)n—1.

Theorem II.1.9.

9cd(pn, qn) = 1.

By gcd we mean the greatest positive common divisor.

Proof,

For by Theorem I1I.1.8, if x!pn and xlqn, then xlpnq and

n-1
n-1

lq = (-1) . Since x is

xlpn_lqn. Hence lenqn—l - p n

n_
positive, x = 1.
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2. The Real GCD Algorithm.

The sequences in the proof of Theorem 1II.1.3. can be

rewritten

‘rO = aos0 + Sl’ Sl = res(so, rO)
s0 = rl = als1 + 52' 82 = res(sl, rl)
Sn-2 T Tn-1 T ¥n-15n-1 T Spr Sy T resispgs Tng)
*n-1 = 'n T 2%n®n + Sn+1’  Sn+1 T 0. )
Then we have the following
Theorem IT.2.1.
s_ = gcd(r,s)
Proof.
snlrn since In = ansn. But Sn—l = rn; hence snlsn_l. But
then snlrn_1 since ro-1 = @,-154-1 * Sp° Continuing in this
fashion, snlrn_z, cen snlr1 = 85 = S, and snlr0 =r, Hence S
is a divisor of r and s. It remains'to show it is a greatest
divisor.

Suppose tlr and tls. Then tlro, tls0 ==> tIsl ==> tls2

==> ... ==> t|s ==> t|s ==> t|s_. Hence s is indeed
n n-1 n n

-2

the greatest common divisor.

.Thus we see that the gcd and cf algorithms are essentially
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the same--just the focus 1is different. In one,

interested in remainders; in the other, the guotients.

we

are



3. The Complex Continued Fraction Algorithm.

At this point, we would 1like to generalize the continued

fraction algorithm of section II.1 to the complex plane.

We do this by modifying Definition IT.1.3 to wuse the cfl
(complex floor) function in place of f1. Since cfl(x) = £1(x)
if x is real, this change does not alter the results we have

obtained for real CF's.

The proof of Theorem II.1.3 remains essentially. unchanged,
with one small modification. From Theorem I.1.5 we see that
lres(w,z)| < |w]
12 sy «..} is an infinite sequence of strictly

so {|s ’ |'s

0
decreasing positive integers, which leads to the desired

contradiction.

Similarly, the proofs of Theorems 1II.1.4 - IT1.1.9 -go

through without change. Thus we have

Theorem II.3.1
(a) z is a ratidnal complex number iff |cf(z) <.
(b) z is an irrational complex number iff |cf(z)|=o00.
"(¢) z rational ==> val (cf(z)) = z.
(dy If pn/qn = val(ao, ayr ... a ) » and we put
Pp=0;p_y=1; 9.5 = 1i g_; = 0, then
p

for n>o0,



9, = anqn—l + qn—2'
— _1,D-1
(e) ann_l - Pn_lqn = (-1) .

(£) gcd(p, /s g, = 1.

We would like to obtain a complete description of complex
continued fractions; that is, we wouid like to be able to

describe the outputs of the cf algorithm.

Our first step in this direction is the following

Theorem II.3

2. :
Let cf(x) = (ao, ayr we- ). Then Re(aj) > Im(aj) for j>1.

Also, aj # 0 for j > 1.

Proof.

First we need the following two lemmas.

Lemma II.3.1.

cfl(z~cfl(z)) = 0;

Proof.
Let n = cfl(z). Then we find

cfl(z-n) = cfl(z) - n = cfl(z) - cfl(z) = 0.

Lemma IT.3.2.

If cfl(z) = 0, then Re(1l/z) > Im(l/z).
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Proof.

By examining Figure 5, we see that if cfl(z) = 0, then

Re(z) + Im(z) > 0, i.e. Re(z) 2> -Im(z). Now if z atbi, then

1/z = (a—bi)/(a2+b2) = c¢+di, where c a/(a2+b2),

d = —b/(a2+b2). But a > -b, so c > d. Hence

Re(l/z) > Im(1l/z).

Now to return to the proof of Theorem 1II.3.2. By Lemma
I1.3.1, we see that fl(xj -~ cfl(xj)) = Q, Hence if
z' = xj - cfl(xj), then Re(1l/z') > Im(1l/z'). By Theorem I1.5.8,
Re(cfl(1l/2z')) > Im(cfl(1l/z')), i. e., Re(aj) > Im(aj}.

To show a # 0, we have !xj_1 - cfl(xj_l)! < 1; hence we

have 1/(x. - cfl(x. < 1. . Thus x.| > 1. But
11/(x5_, (x5_1)) 1 EN

aj = cfl(xj). Assume aj = 0. Then Ixj f ajl > 1. But in fact

we have Ixj - cfl(xj)l < 1. Hence we have a contradiction and

. 0.
aJ #

Theorem II.3.2 1is useful because it immediately 1lets us

say, for example, that
(i, 2i, 3i, 4i, .... )

can never be generated by the cf algorithm.

'However, it does not go far enough. For example, I claim
that the c¢f algorithm will never generate an expansion that
begins

(1, 2+2i, =31, .... ).
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For assume such an expansion is possible. Then a, = 1,

0
a; = 2+2i, and a, = -3i. Then since ag = cfl(xo), ‘x0 lies in
-g+2l ~1+2] 2l 1+21] g+2l J+2{
-2+] -1+I I Al+] 2+ 3+]
: N
>
\
-2 -1 a /)\ﬁg 3
Pl
-2-1 -{-I -1 1-1 2-1 3-1
Fi gure 7

the shaded region sketched in Figure 7. Hence x, - a, lies in

0 0
the shaded region of Figure 8. Hence Xy = 1/(x0 - ao) must lie
-in the region formed by taking the reciprocal of each element

in the shaded region of Figure 8. Thus Xq lies in the shaded

area of Figure 9.

Now if a; = fl(xl) = 242i, then Xy must lie in the shaded

area of Figure 10. Hence X; - lies in the shaded area of

Figure 11. Hence X, =’l/(xl - ay) lies in the shaded area of
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Figure 12. But now we see that -3i cannot equal fl(xz) for any
x2!

If we do this type of analysis in a very detailedbfashion,
we can éventually describe the possible results of the «cf

algorithm in a precise manner. Our goal is to develop a set of

"rules" that allow us to say -precisely when a given expansion
can be generated by the c¢f algorithm. These "rules" should
also allow us to construct expansions that are "legal", i. e.,

are generated by the algorithm.

To formalize this concept of "rules", we introduce the

idea of context~-free grammars.



-~

A string is a sequence of primitive symbols chosen from some
set called an alphabet. For example, we can consider words in
the English language to be strings over the alphabet {a, b, c,

.+« Z}. One useful function on strings is concatenation. The

concatenation of two strings is a new string formed by the

juxtaposition of the two strings.

For example, if Xx = 'the ' and y = 'dog', then
Xy = 'the dog'. Note that concatenation is written 1like
multiplication. This leads to the notation a" to represent the
concatenation of a with itself n times. Thus
x3 = 'the the the '. We define a0 = @, where @ is a symbol
denoting the "empty string" satisfying

wl = gw = w

for all strings w. -

A language is a finite or infinite set of strings. For
example,

k

L = {1702 :n,k>0} = {0, 10, 02, 102, 110, 022, 1102, ...}

is an infinite language.

If A and B are two languages, then by AB we understand the

set {xy:x€e A, ye€ B}.

*
The Kleene closure, A , of a language A is the set

U =k

K2o
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A context-free grammar (CFG) is a set G = (VN, VT' P, 8S)

where Vi is a set of symbols called variables, Vo is a set of

symbols called terminals, S€'.VN is a distinguished symbol

called the start symbol, and P is a set ofAexpressions of the

. form a-->b, called productions.

If a-->b is a production in P and c and 4 are any strings,
then the production a-->b is applied to the string cad to
obtain the string cbd. This is written

cab ===> cbd

and we say cad is derived from cbd.

If a; ===> a, ===> ,,, ===> a3 , i. e., a_ is derived from
1 2 m m
ay after a finite number of productions, we write
*
al ===> am.

We define L(G), the language generated by the CFG G to be

the set
' ) * b 3
L(G) = {wIwGVT ;, S ===> w}.
Example.
If G = ({s,A,B}, ({0,1,2}, P, S) where P is the set of

productions {S-->A0B, A-->@]| 1A, B-->@[2B}, then L(G) =
{On12k:n,k30}. Note: we use the symbol | to simplify our
writing of productions, as above. For example, A-->@|1A is

shorthand for the two separate productions A-->@, A-->1A.
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For more information on languages and grammars, see

Hopcroft and Ullman [9].

Now we'll return to our description of complex continued
fractions. We can think of any complex CF as a finite string
where the symbols are chosen from the alphabet %#[i]. With this

sort of correspondence, we have

Theorem II.3.3.
Let cf(z) = (ao, al, R an). Let CFE be the set of all
strings corresponding to CF expansions genefated. by the «c¢f
algorithm on rational complex numbers; that is,
CFE = {aoalaz...anlcf(z) = (ao, CRRARRE an), z€ QP[i]}.
Then L(G) = CFE where G is the context-free grammar
G = ({Dol Dlr .. D24}I Z[l]l p, DO)
and P is the set of productions below.
D, —=> Xll
D,y -—> ¢!(l)D2|(1—1)D2|(—1)D3I(-—1—1)D4|(l+1)D5|xlD6|x2D1

xlD1 (xle EO)

(xle_E4, x2€.El—({l,l—i,—l—i,—i,1+i} U E4))

2

(xle E4, x2€ ES’

--> (l)D9|(l+i)D5|x

D, —=> (l)D2|(1—1)D2|(l+1)D5!(—1)D7lxlD6|x2D8|x3Dl
X4 e(El(\Elz)—({l,l—1,1+1,—1} 8§ E4 U’ES))

D Dglx,Dp4

(xle.E

1
4r X9 € Eg)

D, —=> #ID;¢

D5 -—> (1+1)D5|x1D6I(1)D2|(l—1)D21.x2Dl
(xlE.E4, x2€ (El(\EB)—({l+i,l,l—i} U E4)
D6 - §5|D5
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D7 ==> (1)Dglx Dy, Ix,D;¢
(xleE4 U {1+i}, x2€E6)

D8 -—> (1)D2|(1—i)D21(—i)D3I(—1—i)D161

(xlé E4 ) E8 U {1+i}, x2€E U E

6 9’

X3€. El—({l,l—i,-—i,-—l-i,l-!-i} UE, UE, UE

4 8 6

D9 -—> (—1)D_/.Ix1D8 (xlé E5)
D10 -—> (—1—i)D4l (—1)D3lxlD61x2D1
(xle E8’ x2€ (El()Ez)—(E8 U {-1-i,-1i}))

gl%¥5Dq g

D11 -—> (—i)D7l(—1—i)D18lxlD
(x; € Eg, X, €Epq)

Dy, ==> ¢|(—l-i)D4l(—i)D3|(l—i)D18|x1D191x2D6|x§Dl
(le_Elo, x2€E8, x3€(ElﬂEll)-—({—l—i,—i,l—i} U E
Dy3 ==> (-1-i)D,,

D14 -=> (l+1)D5lxlD6 | (1)D2I (1—1)D21 lx2D8|x3Dl

(xl€.E4, X, € Elo, x3€:(Elr\E3)—({1+i,1,1—i} UE, UE

4

D15 -—> (—l—i)DBI(-—i)D3lxlD6lx2Dl

(xle E8' X, € (Elf’\ E2)—({—l—i,-i} U E8))

Dig —=> (l)Dlll (1+1)D5!xlD6Ix2D12lx3D13

(xleE4, x2€ E6’ x3eE7)

Dl7 -=> gl (—l—i)D3l (—i)D3l (l-i)D2I (l)D2I (l+i)DSIXlD

UE9

10

X1Dy41%,Dy51x5D;

))

U E

10))

(xle E8 U E4, xzc,El—(E8 U E4 U {-1-i,-1i,1-i,1,1+i}))

D18 -—=> (1+1)D22Ix1D23lx2D13 ‘

(xl€ E4, x2€E6)
Dyg —=> ¢l(l+i)D22l(—1—1)D24|x1Dl3lx2D23
(X1€E6 U E9, x2€E4 U E8)

D20 -=> @] (l)D22|x1D13Ix2D

23
(Xl€_ E7, x2€ E6)
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Dy; —=> (l)Dzl(1—1)D2|(—i)D7lxlD14lx2Dl7|x3D8Ix4Dl

(X1€E4 U {1+i}, x2€E6, x3€E5,

X, € (E{NE;,)=(E, U E; U E

Dy, ==> (1-i)D 4lx,D (x, € E )
Dy3 =7> BIDy,

Dy, —=> @

The sets E,
are described below:
Ey = 1[i]
El = {z:Re(z)>Im(z), z#0}
E, = {z:Re(z)<~-(1+Im(z)) ,2z#0}
E3 = {z:Re(z)>-Im(z),z#0}
B, = {z:z=k(1+i) ,k>2}

E5 = {z:z=k-(k+1)i,k>1}

Eg = {z:z=k+1+ki, k>1)}
E, = {z:z=k+2+ki, k>0}
E8 = {z:z=k (1+1i) ,k<-2}
E9 = {z:z=k+1+ki, k<-2}
E10 = {z:z=k(1-1) ,k>2}
Ell = {z:Re(z)<~-Im(z),z#0}

E,, = {z:Re(z)>-(1+Im(z)),z70}

through B consist of Gaussian

¢ U {1,1-1,-1,1+i}))

integers and

This theorem is difficult to state (to say the least) and

certainly seems far from intuitive. However, it follows quite

naturally from considerations similar

Theorem I1I1.3.2.
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We define a sequence of regions similar to that in Figures
7-12, as follows:

By = ¢

’Ck = {z:z=cfl(w), we:Bk} |

The set Ck is partitioned into disjoint subsets ck(nj)
such that

cfl—l(a)ﬂ B, = A for each a(—.‘ck(nj).

B, = {l/z:zéAk-{%}}

What is surprising is that there are only a finite number
of distinct regions Ay and Bk' We do not list the partitions
of the Ck explicitly, as they can be inferred £from Figures
13-60. We state that the context-free grammar G of the theorem
contains a production of the form Dk -=> aan iff aj€ ck(n).
Also, productions of the form Dk -=> @ appear in G iff.OG Ak'
This can be verified (in a very tedious fashion) by examining

Figures 13-60.

- 61 -



-1+1 1 1+1
=1 NS I
” . _
7
-1-1 -1 1-1

Figure 13: Reglon A,

‘ \ \ \ N N \ N N N
~Ue3 N -3¢8R] -2+3K| ~1+3RK] 31! 1+31] 2*31& +3 @
OO RRRYZz-=
—ge2N -3+2% —2+28] —1+21 21 1e2 N\ €72 + Y21
CISSIN e
:><<i'1 =3+ I\ =2+I\| -t+IN\ I ‘F(L' (d + gt
NERNEFRNERANE 0 %X/
7NN ‘ 5z
=N =3\ -2-DNa-1 -1 <1 - 3 g
/ <
-y-2N -3-2 = = 2= L
/ 5;,
-y-3 3= - =3 1 - 2 IJ((L
7 << A <

Figure 1U: Reglon B,

- 62 -




-1+1

LD

1+

1

1
ke
(SN
[

-1

e

L |
. 4
- l y
%
7
7

| il R

-1-1

Figure 15: Reglon A,

Filgure 16:

L NZ LSz S N AN N ~ ~ L~

—yeaN| -3+9%] —2+3%| ~1+31 31 1+3N\lgea\ g+ 3DdTesr
/ < '
N\ -ueoN =320 2420 -1+20] 21 12 N\L&2 DT> 1f:”
NI _ s
>-\tm -\ad “2+IN\ -1+ I ¥] - }b{(/
\ ~ -
> -y <ii -2 -1 a 3

\ .
- - B B 4 /
> “4-IN -3\ -2- N -1 N~ <] D7- fﬁ?g;
>

~4-2N -3-21 -2-28 —1-2¥%! -21 <3 D3- 1
/

—y-3N -3-3Y -2-34 -1-3%] -31 \| 1-31X[2- <19
I\ /1IN /IN /IN /1IN /1IN /S <

Regtion B,

- 63 -




-1+1] 1 1+1
"'l I 0 Fanl 1

7
-1-1 -1 {-1

Flgqre.17: Reglon A,

N A AN

. N \ \ N N N \ L,
-u&\ -3+3%] -2¢31 -1+3%] 31 1+31 a+:& AR e3]
N SN
{it¢a -3+2N -2+2W -1+2Y 21 1.2\ #32 jfizr V&:?x
B < < 7’

-\urr \—\3*1 -\a+x —1e0N\ I 1 <r {1

<<

<i <i -2 -1 a \f 2 {‘4{

—y-IN -3-IN] ~2-N\J -1~-1\J -1 1-1 \J2-1 \|3-1 :t:x

—y-2n 321 —2-24] —1-20 —2r \1-2n\[2-2a | 3-2N\u-21

-y-3 -a-3< ~2-3%) =1-3%] ~31 \J 1-31 e-g 3-:-§ §-31
ZIN /IN ZIN ZIN N ZIN AN /1IN

Figure 18: Reglon B,

- 64 -




-1+] 1 1+1
"l 0 Ve l
s
-1-] -1 1-1
Figure 19: Reglon R,

) 4 N\ N \ Y AN A Y ~ N /\
> -4+3N -3+9%! -2+3K} ~1+3 K| 31 1+3IN\|2+31 +3 +31
\ -‘lg ~-3¢2N -2+2N ~{+2N 2l 1+21< +2 +2IN§+21
/ <\ AZAN

~4+IN ~-3+] ~2+1 =-1+1 1 +1 3+1 y+1
/TN 1IN <\<\
> g N-3 \{-2 Nl-1 & 2 51\. :t\
/ “U-IN] -3-I\} -2-IN\I ~-1-1 -1 1-1 2~1 3-] y-1I
/ ~Y-2N -3-2h -2-2N ~1-2 -21 1-2IN\l2~-2] <2! §-21

-4-3N ~-3-3p -2-3 -1-3N -31 1-31 2-3I< 3-3IN 4-31I
7/ / / 7N\ /7 / /7 1IN 7

Figure 20: Heglbn B,

- 65




1+1

1-1

-1+1

-1-1

Reglon ﬂsh

Figure 21:

0\ \
N A S
594D NS
N TN
YRV VR VAV
VENANA INA N
P Ve ik Vil Vi
A% NN
U AR VA V. VA A
A NANA SN
AR VA VA Yl VA VA
NNV INANANA
AR A VA i YAl VA A
7NN NN

N /N/NIN/NAN 7

Region By

Filgure 22:

- 66 -



~-1+7 1 1+]
-1
-1-1 -1 {1

Figure 23: Hegldn A,

‘ \ S \ N \ \ N ~ PN
-y+3N ~3+¢31%} —2+3%] ~1+3%} 31 1+31 a+§}\ ~3 4{;;;
-qg\ —3+¢2N] ~2+21] —1+21] 21 1+21 2 %@

0 RO
~geIN —3eIN =2+ 1N -1+I\] I ¥1 + Lt

< B2

/
>~u <i -2 -1 0 3 y
\

v -1\ -3-N\-2-N\|-1-1\| -1 <7 Z - %
—y-2X -3-21 ] —2-2%] ~1-2%] -21 \[1-2¢2- 1

/

N -4-3N -2-3%] -2-30) ~1-3x) -31 \J1-3"\J2-3T 3T

/ / / / / JIN I\ S 7P

Filgure 24: Reglon Bj

- 67 -




Figure 26: Reglon B,

-1+7 ] 1+1
&
-1 {tﬁ I\l
- 'J
==
-1-] - 1-1
Frgure 25: Regilon A,
4 N\ hY A Y A Y AN N AN N /\,
/ -
-4 +3N -3+3%| -2+3%] ~1+3%} 31 1e3al\J2+3N\| £53 DI %31
RPN P
—ieaN o302 N —2e2N -1+2N 21 N 12T\ e¥3 Digr2 N\ ural
7\ NN
N e\ —ae N 2o\ =11\ 1 5 NANFANY,
AN <i\\
7/
> -1 \:i -2 -1 g \f 2 3 :i\
~4-N-3-N-2-Nl -1-1\l -1 -1 \lz2-1 \{3-1 \Ju-71
=4-2N -3-2%) -2-2 ~1-2) 21 \J1-2N\J2-2 "\ 3-2\] u-23
~4-3N -3-3W ~2-3W ~1-30 -31 \J1-3\l2-3N]3-3\J y-31
ZINZINZIN ZINZIN N N TN S

- 68 -




1+1

1-1

Va

=1+1]

~1-1

Flgure 27: Regilon Ay

e

A<§f
/

AR

=

2

(2] m
Sy
™ N -

7/ + > & 1 J L
[4V] gV (41}
o ()

m o by

/’ + + 1 ' 1

~ vt ol -
. \
L]
/7 - - —
m N — © 1
[y ol | (oul f 3///
+ + + ] \
' -t vl -t = =t}
1 ! i 1 | t
(1Y U | —

h + ) + + ]

i N 4V N o\ [y*

] 1 t 1 1 4 f
() [V ] o [y\*
+ + + 1 1 ]

7 o ™ m o) ™ o) S
1 1 1 1 S | 4
3g<x< = o [
+ + L4 ] ] 1

ki T
! ]

/
N -y

’

ZS
Ny

ZON
N -y
ZIN

4

Flgure 28: Reglon B,

- 69 -



-1+] ll 14-]

-1-1 oS ST 1-1

Filgure 29: Reglon Hsh

~Y+3N -3+3N -2+3 N -1 +3 N 31 1+31N 2+3IN 3+3TN\ Y+31

—‘l*g ~3+aN -2+2N-1+2N 2] 1+l 2"2!< 3*< y+31

—u§-3*l =2+IN-1*INT 1+] arl 3*I<‘I*I

=4-3N -3-3N -2-3N -1-3 N -31 1-3I1XI2- 3-3I1N }4-31

N\ \/>/\ N

A
N /]
’d

AN
4
AN
JE

ZIN ZIN ZIN /IN 1IN 7 7

Figure 30: Reglon Bg

- 70 -~




-1+1 l] 1+1
-1 VU i
-1-1 -1 {1

Figure 31:

Reglon Hlt;

AVAVAVATA N2

N/ ~
2+31 3+:&

Figure 32: Reglon B,

~§+3N -3+31) -2+3R]-1+3 31 131 ye«31
-ug\-\3+2 ~2+2N -1+2N 21 1421 2*21<<21<<2!
-‘I*I<-\3*1 ~2+IN ~1+IN1 1+] ‘ <I< 3+] {I
-4 <ii -2 \{-1 \®g 1 2 51\<:;:i\
—:ll—l.i ~3-IN\J —2-INA-1-INN-1 -1 2-1 3-1 y-1
-y-2N -3-2 ~2pt=21] 1- 2-21 <ZI y-21
-4-3 =3 - -3 1= 3-3INJ4-31
< A Z NN

- 71 -




-1+] éﬂl 1+1
'(?}\Q
1
-1 Pa G 1
9
-1-1 -1 1-1

Figure 33: Reglon H“"

N AV AVYAV AV AYYS

A A Y A .\ N N ) N A
—lh%\ -3+3] -2+3 -1 +3N 3! 1*3& 2*3&{3&{3!
—!l02< -3g -2+2 <‘§\ 2!< 1'2!<<§ <21 {2!
-Vﬂg -3+1 -2'< -1+1 I < 1*I<<I ‘tl !l\*l
RORORRORIRN
~4-IN ~3-IN} -2~IN\ -1-1 \-l;— hi-T 2-1 <I y-1
~4-2N -3-2 -é-a ~1-2N -21 - 2-2<<21 y-21
-4-3 -3-§ -2-3N -1-3H -31 1-3I1] 2= 3-3I1'\Ju4-31

/N IN ZIN AN 1IN S BN

Figure 3U: Reglon B,

- 72 -




~1+] 1+1
-1 i
-1-1 o | -1

Figure 35: Reglon A,

4 _\ ) A Y ‘\ Y Y N
> -y+3N -3+3%) -2+3| -1¢3}%] 31 1+87 'a+a& 3+3N\J4+31
—yeN -3+2N ~2+2N —1+20 21 1+a§ 2+z< a+zx< ye21
/ <<:\\\ <:: <::\\\ AN
ANERNEFRNER AN 1e1 Nl2e1 N\l 3+1 \Jye1
7/ < <\ ™
> -4 -3 -2 -1 o] 1 2 3\ \ﬂ\
EERNERNERNER NS 1-1 \J2-1 \I3-1 \Ju-1I
~y-2N -3-2 3T O iz 2-2 N\ 3-2\ u-21
-y-3 RT3 1= 1 3-:§ y-31
/ < A DN 1IN
Figure 36: Reglon B,




-1+1] Al 1+1

-1-1 -1 1-1

Figure 37: Regton A,

\ Y AY N A S N N N\ A Y .
-\u«%\ -3+3%] -2+3%) —1e30 81 N\ 1e3T7 a*:&<:& ye3l
-\uva —\ag -2+2N -1+2N 21 1vz< 2+:§<zx {21
~ye] <«1A —aox< -1ox< 1 < 1~<<x<<r {r
‘<<;< ‘i 4. 8 1 2 {f:u
IRNERN R NERNE 1-1NJ2-r \ls=r \Jy-1_
—4-2N -3-2] -2-2% -1-2%) 21 \| 1-27 2-a< 3-2< y-21

~4-3IN=~3-3N -g~3N ~-1-3N -31 1-3IN2-3 3-3I1NU-31

NN ANZNZNZNZN

I
/7N /N IN AN AN N AN 7

Figure 38: Reglon B4

- 74 -




~1+] I 1+1
"‘1 Pa
-1-1 -1 1 1-1

Flgure 39: Reglon A

NN NZNZNZNZN

’ A S Y ) AY N\ A Y Y N ~ V\
~Y+3N -3+3%] -2+3%]| -1+3] 31 1+31\|2+31\| &+3 1f€%g
-ug =3+2N -2+2N -1+2N 21 N\l 1+2N\#A3 Do~ @
-’qo< -3eN -2e N -1+ N1 <1 %W
-'l< -3 -2 -1 g 3 y/

' \ p /
4=\ -3-N\f-2-NJ -1-N\| -1 <7 ey 1"
=4-2N -3-2% -2-2%) -1 -2K] ~21 \J 1-2\IB-2P] 3. 1
—4-3N -3-3%] -2-3%) -1-3%) -31 \J1-3"\[2-3] 1

/ININ ZIN ZIN N N NP

Figure U0: Reglon B,y

- 75 -




. —-1+1 1+1
-1 a |
\
-{-1 -1 -1
Figure 41: Reglon A
’ N N \ N AN N ~ N N
—y+2N ~3+¢3%] ~2¢3 -1¢3%} 31 1e3nN\l2+8N\]3+31\[y+31
N -ug -3+ -2+2 -1e2N 21 1+21 aofg 3*2§ ye21
ZIN T\, ' <i <: N
g N -3¢ N —2e\| -1+1\| I 1+1 N2l \{3+1 \|y4e1]
/I\ <\ AN
N -y -3 -2 -1 0 1 2 3 4
TRIN "V
‘ e N —3- AN 2= DN 1= N Nhi-1 \2-1 N 3-1 \Ju-1
~y-2R -3-2 “N4e3T > iatnN 2-2 N s-21\]4-21
-y-3 <3 a3 1 3-:§ y-3I
/N < A 7B /1IN

Filgure U2: Reglon B,

- 76 -




-1+] 1 1+1
"1 £ U Pon¥ 1

N 4
-1-1 | 1-1

NN N NN/ NN/

S N \ S AN S Ny AN A
—ye3N -3+3%) -2+3% —1+3% 31 1431 a+§%\ +3 +31
-\u+z<-\a+z -2+2 -xg 21< “g #3 ‘\+zx {a‘r
<§fr ~aefN| —2e N\ -1+1\| 1 1 ‘i:k,.‘ilt
~4 -\3< -2 -1 0 2 <3\ ll\
LI\ -3-IN\| -2-I\ ~1-I1\] -1 1-1 a-f:: 3-1 \Ju-1
-4-2N ~3-2K) ~2-2%] -1-2R} -21 \| 1-21 a-:;: 3-21N 4-21
-4-3N -3-3% -2-3Y ~1-3K =31 \|1-31\]2-31I 3-:;: y-31

/IN ZIN ZIN ZIN ZIN ZIN ZIN 71N

Figure UlU: Reglon B,

- 77 -




1-1

-1+1

Heag lon 917

-1-1

Filgure U5:

N

N

o
7 \\+ + )
o) ™
oy
m) o -
A + I ' |
0
] oy
m o) )
P + t 1 1
-y it —
I;
7 - o
L™ o . o © St
[0} [LU — ey /
+ + + ' |
/ - = - - - .
) [ ' ! 1 1
/' o ,
+ + ) ,..ﬂ !
7 o e o o Rt
|/ ) ' 1 ' '
L/ o e (= (Y
L L 3 L d 1 1 ]
7 m o m o ™ ™ )
! [ t 1 t '
Ll
3/\;/\.1/\ - o o
Y + T s ' 1 1
7 = = - = e s =
1 1 " 1 R 1 1
ZIN I\ I\ I\ /1IN N

Filgure uU6:

Hegton_Bﬁ'

- 78 -



Figure 47;:

—1+] 1 1+]
-1 A0 1
-1-1 -1 1-1

Region Flla

Figure U8

A}

Regilon B,

: \ N N N N N/ N N
> eI -3eW) -2+3%) -1+ 37 \[1eaN\|2eaN L3N year

. //'-u0a -3+2N -2+2N -1e20 21 \J1eaN\llo7 5i::;::t:zx
/;‘ii*l IRNERNERNY <<; A gvf;: a+f<:.uor
/-\u -3 =2 -1 ) 1 2<3'<u

; /2 FRNEENFRNERNEAN NN
> -y-2N -3-2%] -2-2%} -1 -21 \N1-2N\2-a N\l 3-2 N\ y-21

~y-3N -3-3% -2-3%] -1-3W 31 \| 1-3N\[2-a N 33| y-a71

I\ / 7IN ZIN ZIN ZIN ZIN /I 7

- 79 -




~1+] 1 1+1
-1 Q i
-1-1 -1 1-1

Figure U9: Region A,

NN N NZNZNAN

‘\ N . AN N A Y ~ N | N\ ,\
R ERNERENERN AT z+:&\¢31 tha_x
-\uoz<<’a -2e2 -1+2 zx<<zx \oar <er {ax
-\qu -3e] -z¢x<-\1¢x 1 «1 \|2+1 <1 {:
‘-g —\3 -2 \|-1 u<1<2\<g\<u\
—y-N —3-NN\] -2-Na-1-N\| -1 1-1 \{2-1 <x u-1
—y-2N -3-21 L2221 -1-2% -21 \]1-2F a-2< 3-2N\Ju-21
-y-aN3-31) -2-31 -1-3%) -31 \] 1-31 a—3< 3-:-§ u-31

Z7IN ZIN ZIN ZIN ZIN 1N 71N

Figure 50: Regton B,

- 80 -




-1+1 1 1+1

~

-1-1 -1 1-1

Figure S1: Reglon H“-

~
7/
Ud
4
Id
ld
I'd

N\ =N

4

~4+3IN -3+38| -2+3K] ~1+3}} 31 1+3IN\]2+31\]3+31! +31

‘qui--3+2 -2+*2N-1+2N 2] 1+21 2*:;: +2INu+21

AUZ N , N

“YeIN=3+IN ~2+IN\I-1+¢I\]? 1+] ht | ar+1

D
| =3 -2 =1 ] 2 3

A

~4-2N-~-3-2N -2-2Rl -1-2K| -2] 1

2iNl2-2INI3-2I\ju-21

=4-3N-3-3N-2-3K -1-3K -31I 1i-3IN\Je-31 3—:;: 4-31

NN ZIN N ZIN ZIN AN S

BNVAN AV ANANVANZAN
/|
/|

Figure 52: Reglon B,

- 81 -




=1+1

1+]

-1-1

NANVANV SN AN AN AYYS

\ \ \ \ AN N \ N/ oA
~4Y+3N ~-3+3N] -2+3 -1+3K]3! 1+3I1\[2+3] ':3 @
-\ug-\a*a R TN N Y o i{/r
-\'u; -3+1 -.an -1eN\1 . T é
-\u -\3 -2 \J-1 \/g 3 g
/N > :
=y=IN =31\ -2- N - 1= N1 \=T Dgm77 >3 -
-4-2N -3-2%] -2-2n/-1-2%] 21 NIt — /L
-q-3<-3-3 —2-3%)-1-3%-31 \|1-3"3- =
ZIN ZIN ZIN I\ I\ /7 [ PP

Figure S5U: Reglon B,

- 82 -




-1+1 1 1%+1
—1 Vs 0 1

\
-1-1 -I 1-1

Figure 55: Reglon h&'

~

N

_IIQ

3

~3+3HN ~2+3

N N

~1+3N 31

1+31

AY

3+31

-qu; =3+2N —2¢2

Sl

121

3*:;:

\.

=3+IN -2+1

1S

A

Filgure 56: Reglon B.,

7
AN
/ N
AN Le] 3+1 Nlu+g
NI\ N <\<\
\\.-q -3 -2 | g 1 2 3 4
IRTN NN

4=\ =3-N —2-N 1= -1 Noa-1 N\ 2-1 N\ s-1 N\ y-1
/

-4-2N -3-2% ~2-24) -1-20 ~21 \J1-20\J2-2Nl3-2\| 4-21
4 N

-4-3N -3-3W —2-3%] 1= -a1 N 1-30\J2-31™\{3-aN] y-31
/ /7 yd / v / I\ 7 /7

- 83 -




W

-1+] I 1+1
-1 {
-1~1 -I 1-1

Figure 57: Reglon H#

Flgure 58:'Beglon B,

4 N N N\ N N N N/ 1N hY
N\ -4+3N] -3+3}] -2+3%) -1+3¥1] 31 1+37] 2+:}\ 3*§%\ y+31
/ <:_<: AN

“yezN -3+2N -2+ -1+2N 21 1+21N2+21N\ 3+21\| y+21
ZAN : <\ N\
AN “gerN —ze N e N -1\ 1 1+ Nl2er N 3+1 \ueg
2N AN N\ \\\<::\\\
\ -y -3 =2 -1 0 1 2 3 y
INCTN <\ AN

=4-IN =3-N\l -2-Nl -1-\| -1 1-1 \J2-1 \J3-1 \Ju-1
/ <:

—4-2N -3-2§] -2-2% -1-2W ~21 \J1-2N\ -2\l 3-21\ 4-21
/ AN

~4-3N -3-3% -2-3WN ~1-3%} -31 \J1-an\J2-31\{3-3\] 4-31
7/ / /7 I\ 7 N S AN

84 -




-1+1 1 I1+]
-1-1 -1 {=1
‘Figure 59: Regilon A,

Flgﬁre.BO: Regtlton B,,

\ -H& -3+3K -2+3 K -1+3K] 31 1+3] 2*3& 3*3& 31
N4 Laflaslagl
N e -3e2n] =202 1020 21 1+21N\J2+2IN 3+21\J U 21
7IN\/I\ NININTN
ANERNERNERNERN 1+1 N2+I N3+1 \ue]
/\<\ <\< < <\<\“
N\ -y -3 -2 -1_\|o 1 2 3 [
NN N N N TN TS

—y-IN -3-N-z2-IN\l-1-N\/| -1 1-1 \J2-1 \la-1 \Ju-1
/ AN AN

-4-2N -3-21 ~2-2%| -1-21) =21 \J1-2\J2-21\{3-21\Ju-21
/ <\ AN

-§~3N ~-3~-3N -2-3 —l;3 =31 NJ1-31N2-31 3-31. 4-31
7 / Z7IN ZIN.ZIN ZIN ZIN TN 71N

- 85 -




We will now prove first that CFECL(G), i.e., if (aO, ajs
- an) = cf(z) for some z€ ¢, then the string agay...a, is in
L(G).
The proof is by induction. We assert the existence of
the productions
D0 -——> aODiO
D. -—-> a.,D.
4 10 1 i
Di - a2Di
1 2
Dl -—> a.'__'lDi i
j-2 S T
and also that x. € B, .
3 i,
3-1
For we find X, € B, ' and
aOG.C0 ==> aOECO(l) ==> Xg aioeAl “ and we | have the
7 cprrespondlng production D0 -=> Dl' Since Xg ~ aOG‘Al,
X, = 1/(xO - ao)e Bl.
Now assume true for j. We find
X. € B. ==> a. = cfl(x.) €C. . Since the set C. is
| J J ty-1 - ty-1
partitioned into the c (k), there exists some ij such that
j-1 _
a.€ C. (i.). Then x. - a. = x, - cfl(x.,)€ A, . Hence
i3 j Jj i j i
xj+l = l/(xj - aj)EZBijt But since ajG cij_l(ij), there exists
a production D. --> a.D, . ‘
i. i
j-1 J
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By induction, we have the productions

D, --> a_.D.
0 0 i,
D. --> a.,Dh,
1 1 1,
D. -=> a_D.
i n i
n-1 n
and xne Bi .
n-1
Now xns Bi ==> g = cfl(xn)eci . Since the set
n-1 n n-1 .
Ci is partitioned into the cy (k), there exists in-such
n-1 n-1
that a € cin—l(ln). Then X - a€ Ain. But x - = a by the
definition of the «c¢f algorithm. Hence OE;'Ai . - Hence there
n
exists a production D, -=> g.
n

Thus we have demonstrated the existence of the
productions

D0 -—> aODiO

D. --> a D.
i n i
n-1 n

Di --> @.

n

Hence _. we find - D,==3>a

==>a0alaz...an.

Now we prove L(G)C CFE.

Le? éoal...an be a string in L(G). Then there exists a
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C

oroduction D, --> @.  Hence 0 €A, . If we put x = an,’then

n n
X, —a, = OEZAi . Now there exists a production
n
D. --> a.D. ; hence there exists c. (i) for which
i n i i n
n-1 n n-1
anc,ci (1n). Then ane Ci . Also, xn = ane'Bi - 1f we
n-1 n-1 n-1
put X_1 T 3h.1 + 1/xn, then clearly X1 ~ an_ls'Ain_l.

Proceeding in this menner, we define X107 Xp=3r voo X1
X inductively. At each step we have
X. - a., €A,
J J lj
and there exists a production D, -—> aij. Hence there
j-1
exists c, (i.) for which a. € c. (i.). Then a.€C, . If
i. i. i,
11 J-1 j-1
X. = a. + 1/x. then x. €B,; . Putting x. = a. - 1/x.
T A S s Rt SO 9 ¥jo1 T 251 T /%y
results in X5.1 aj¥l€ A, .
j—-1
Hence we have produced exactly the Xgr Xqr o eee X and agr

ayr  ee.@g which would have been produced by the cf algorithm

and hence L(G)C CFE. We therefore have cf(xo) = (ao, a

l, e e 0
an). Incidentally, this shows that 1if agr ayr .- a,
corresponds to a string in L(G), then cf(val(ao, 8yr e
an)) = (aol al' e & o an)o

From this point on, we will <call a sequence of complex

numbers (aO, ayr e an) legal if the string a

Oal...ané'L(G).

Thus, we have also proven the following

Theorem II.3.4.

(ao, al,...an) = cf(val(ao, a8yr veo an)) iff the sequence

(ao, ays e an) is legal.
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Remarks.

Hurwitz [1] defined a continued fraction algorithm using
the cmid function. He did not, however, give a rule to decide
whether or not a given expansion was generated by his
"algorithm. An attempt to follow the same procedure as above
leads to many more regions of strange shapes, and it is not
clear, 1in fact, that there are only a finite number of such

regions for Hurwitz's algorithm.



4. Continued Fractions for Pure Imaginary Numbers

In this section, we will examine the first of two special
topics--the description of continued fractions for pure

+ imaginary numbers.

In analogy with regular continued fractions, we may define

similar entities called reduced continued fractions |, as
follows:
1 P — —
val (bo, bl’ . bn) = b0 l/(bl /(... bn)).

rcf(y) = (bo, b .o bn) where

17

Yo = ¥, by =cely), vy, = /(b - y).

This expansion has properties similar to those of regular
continued fractions. For examble, see Tietze[10] and
Sierpinski [11].

In particular, we have

(a) bj > 2 for j > 1.

(b) . The rcf expansion terminates iff x is rational.

(c) An infinite expansion that is not all 2's after some
point represents an irrational number. Conversely,
every irrational number has a non-~terminating
expansion that is not all 2's after some point.

(d) The expansion of the root of a guadratic egquation
with integer co-efficients is periodic after some
point. The converse is also true.

We will now prove the following theorem relating the rcf



expansion to the cf expansion for a pure imaginary number.

Theorem IT.4.1.

Suppose rcf(-a) = (bo, bl’ b2,...), and a is real. Then

ccf(ai) = (—1b0, —1bl, —1b2, cee) e

Proof.
We will use induction. First, for the cf algorithm, we

find

Xg = ai, a, = fl(ai) = ifl(a).

If Xj = bi, then aj = fl(bi) = ifl(b).
xj+1 = l/(xj - aj) = 1/i(b-fl(b)) = -i/(b-£f1 (b))
aj+l = fl(xj+1) = ifl(—l/(b—flfb)) = -ice(l/(b-fl({b))

For the rcf algorithm, we find

Yo = ~ai b0 = ce(-a) = -fl(a)
If yj = -b, then
by = ce(y;) = -f1(b)
Yie1 = l/(bj - Y5 o= 1/(-£f1(b) -(-b)) = 1/(b-£f1(b))
bj+l = ce(yj+1) = ce(l/(b-fl1(b))).

By induction we see
-ib. = a..
J J
Hence the theorem follows.

Example.

It is well known (see Tietze [10]) that
ref(AN2) = (2, 2, 4, 2, 4, 2, 4, ...).

Applying the above theorem, we get
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cf (- ¥2i)

(-2i, -2i, -4i, -2i, -4i, ..
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5. The Complex GCD. The Complex Linear Diophantine Equation.

The method of Section II.2 can now be extended to the

complex plane to give a greatest common divisor algorithm for

~the complex numbers.
The proof of Theorem II.2.1 goes through without change.

As an example, let us calculate the gcd of r and s where

r = 44+17i, s = -22+791.

44+17i = (-i) (-22+79i) + -35-5i )
-22+79i = (-2i) (-35-5i) + -12-9i

=35-51i = (2+41i) (-12+491) + -2-111

-1249i = (-1-i) (-2-11i) + -3-4i

-2-11i = (2+i) (-3-41)

Hence -3-4i is a gcd of r and s.

Now - we will examine another topic of interest--the
solution of the complex linear Diophantine eguation. We have

the following '

Theorem II.5.1.
The complex linear Diophantine equation
Aw + Bz = C (A,B,C,z,w€ $[1])

has & solution (w,z) iff gcd(Ad,B)]|C.
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Proof.
I

Supposé (w,z) is a solution but x = gcd(A,B)+C. . Then x|A

and x|B; hence x|Aw + Bz. Hence we have a contradiction.

Now suppose gcd(A,B)|C. We will construct a solution
(w,2). If we expand A/B_as a continued fraction, we find
cf(a/B) = (ao, ayr ees an).
Let pn/qrl be the n-th convergent to the CF. Then

P,/9, = A/B

Hence A = XPo s B = an for some x€ }¥[i]. Then we have

, _ _q,0n-1
Ph9n-1 = Pp-19, = (1) :
_ n-1
XPpdp-1 = ¥Pp_19, = (1) x.
Bdy_y = BPyy = D7k,
Since x|A and x|B, we have x|C. Thus we find
_ ,_q,0-1
CA/x~qn_1 - CB/x-pn__1 = (-1) C
Thus (an_l/x, —Cpn_l/x) is a solution for n odd, and

(-an_l/x, Cpn_l/x) is a solution if n is even.

Example.

Solve (7+17i)w + (13-3i)z = 7-i in complex integers w,z.

Solution.
Let A = 7+17i, B ; 13-3i, ¢ = 7-1i. We find gcd(A,B) = 1+i
which divides C = (1+i)(3-4i). Also,
cf(a/B) = (i, 1-2i, 4)
and p,/q, = (12+5i)/(5-8i); p,/q; = (3+i)/(1-21).
Hence x = A/pn = 1+1. Since n 1is even, a solution is
(w,2z) = (5+10i, 13-9i). |
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6. Infinite Complex Continued Fractions

Not all infinite complex continued fractions

For example, the convergents to
(¢, 1, i, 1, ...).
are periodic with period 12:
o/1, 1/i, i/0, 0/i, i/-1, -1/0,
o/-1, -1/-i, -i/0, 0/-i, -i/1,

Hence lim val(0, i, i, i, ..., 1) does not exist.
Nn—y oo . | e

V
n

1/0.

The following theorem, which is
simple criterion for convergence.
“~
Theorem II.5.1.
All legal infinite CF expansions not involving

1, 2, -i, -2i, 1+i, 1-i, -1-i converge.

Proof.

Since Ipn/qn = Ppo1/9%,1

it suffices to show lqnl > (1+e)!qn_l| for some e > 0.

then use the Cauchy criterion to prove convergence.

Put kn = qn/qn—l' Then we find

kn = (anqn—l + qn—2)/qn-—l

= an + qn—2/qn—l

1/k, ;-

Since k1 = ql/qO = al/l,. if lk < l+e, then
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converge.

not best possible, is a

the terms

ll/qnqn_ll by Theorem II.1.8,

We can

we have



a; € {0, -1, i, 1, -i}, But the first three values are ruled
out.by Theorem I1I.3.2. The last two possibilities are ruled

out by the hypothesis of the theorem.

Now we'll use induction. Assume Ikn_ll > l+e but

lkyl < l+e. Then o =k - 1/k_, and 11/k _q1 < 1/(1+e). But
Ian! = Ik, - 1/k 11
< 1l+e + 1/ (1+e)

< 2+e’'.
Hence a_€{0, -1, -2, i, 2i, -1+i, 1, 2, -i, -2i, 1+i, 1-i,
~1-i}.  But the first six of these are ruled out by Theorem
IT.3.2; the hypothesis of the theorem rules out the last seven.

Hence we have a contradiction and we see that Iknl > l+e, as

desired.
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7. Unsolved Problems and Conjectures

The theory of complex continued fractions as we have

developed it here is by no means complete. For example, it

‘would be nice to be able to say exactly what infinite complex

continued fractions converge.

The following conjectures are supported by numerical

evidence, but have not been proven.

1. Let cf(x) = (a,, a;, ...) and assume lim val(a,,
0 1 N=—b O 0
ays «e- an) exists and = y. Then y = x.
2. Define an infinite expansion to be legal if there
exists a production D, -=> anDj for all n > 1. Then
n-1 n

val(ao, as ...) converges to a limit x.

3. If (ao, ayr eo- ) is legal, then val(ao, 2y .eo)
is irrational unless there exists N such that aj = -21i for all
j > N. Also, if val(ao, ayr .«.) 1s dirrational, then

cf(val(ao, al, eeo)) = (ao, al, eee) e

4. Let z be an irrational root of
A22 + Bz + C,
where A, B, Ce€1%l[i], A # 0. Then - cf(zl) is eventually

periodic.



5. If (ao, ajs ...) 1is legal and eventually periodic
(and the period is not -2i), then val(ay, aj, ...) is a root of

a guadratic equation with complex integer co-efficients.

- g8 -



References

1. A. Hurwitz, "Uber die Entwicklung Complexer Grossen in
Ketternbruche", Acta Mathematica, V. 11 (1888), pp. 187-200.

2. Asmus L. Schmidt, "Diophantine Approximation of Complex
Numbers", Acta Mathematice, V. 134 (1975), pp. 2-85.

3. Eugene E. McDonnell, 1Integer Functions of Complex
Numbers, with Applications, 1IBM Philadelphia Scientific Center
Technical Report 320-3105 (February, 1973). Also published as
"Complex Floor" in APL Congress 73 (Proceedings), North-Holland
Publishing Company (Amsterdam), edited by P. Gjerlov, H. J.
Helms and John Nielsen, pp. 299-305.

4, Donald E. Knuth, The Art of Computer Programming, Vol. I
(Fundamental Algorithms), Addison-Wesley, Reading, Mass., 1975,
pp. 37-44, 475-479.

5. J. V. Uspensky and M. A. Heaslet, Elementary Number
Theory, McGraw-~Hill, New York, 1939, pp. 94-99.

6. Joe Roberts, Elementary Number Theory: A Problem
Oriented Approach, The MIT Press, Cambridge, Mass., 1977, 4pp.
27-34.

- 7. William J. LeVeque, Topics in Number Theory,
Addiéon—Wesley, Reading, Mass., 1965, pp. 89-92.
8. G. H. Hardy and E. M. Wright, An Introduction to the

Theory of Numbers, Oxford, Clarendon Press, 1971, pp. 129-154.

- 99 -



9. John E. Hopcroft and Jeffrey D. Ullman, Formal Languages

and their Relation to automata, Addison-Wesley, Reading, Mass.,

1969.

10. Heinrich Tietze, - Famous Problems of Mathematics,

-Graylock Press, New York, 1965, pp. 270-274.

11. Waclaw Sierpinski, Elemeﬁtary Theory of Numbers,
panstwowe -Wydawnictwo Naukowe, “Warsaw, poland, 1964, PP -
311-312.

12. Michael M. Halpern, Studies in APL: Algebra, Scan,
Arithmetic, Pérmutations, IBM - Philadelphia Scientific Center
Technical Report 320-3023 (June, 1973). N

13. E. E. McDonnell, personal communication.

14.- Nathan Jacobson, ~Basic Algebra I, W. H. Freeman and
Company, San Francisco, 1974, Pp. 181-182. |

15. Folke Ryde, Aspects of the Greatest ;nteger Function,

Almgvist & Wiksell, Stockholm, 1973.

- 100 -



