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Introduction.

This thesis arose from considering the following question:

HBow cen the notion of continued frectiones be extended to the

- complex plane?

This guestion has been considered severazl times by other

writers. For example, see Hurwitz [1] and Schmidt [2].

All of the previous proposels suffer from verious defects.
In particular, Hurwitz's construction does not reduce to the

cose of ordinery continued fractions if purely rezl numbers ere

employed.

The complex continued frection algorithm in this thesis is
besed on & <construction of McDonnell [3] thaet extends the
greatest integer function to the complex plene. Examination of
the concept of integer function 1led to & vseful definition
which is preéented in section I.1. Properties of the greatest
integer function are given in section I.2. The notion of
duslity, which 1links the greatest integer function with the
least integer function, is discussed in <cection T.3. In
section I.4, 1 will examine the extension of integer functions
to the complex plane. The chapter concludes with & discussion

of the properties of McDonnell's function in section I.5.

Chapter 1II examines some of the theory of continued
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fractions. Sections II.1 and II.2 examine the real continued
fraction algorithm and the real greatest common divisor

algorithm, respectively. Section II.3 examines the extension

of continued fractions to the complex plane. In section I1I.4,

‘the continued fractions for pure imaginary numbers will be

discussed, and the complex gcd and linear Diophantine eguation

are examined in section II.5. In section II.6, I will discuss
the convergence of infinite continued fractions. Finally, 1in
section II.7 I will discuss some unsolved problems and

conjectures.

Some comments about the notation used should be made. We
use the symbol % to mean the set of integers. The symbol R is
the set of real numbers. ® 1is the set of real rational
numbers. ¢ is the set of complex numbers. We use %[i] to mean
the set of Gaussian or complex integers. Similarly, ¢@¢[i] is

the set of complex rational numbers.

If A and B are sets, we write A - B for the set theoretic
difference {x:x€ A, xﬂfB}. If-A is a set and x is a number,
then by xA we mean the set {xa:a€ A}. Similarly, by x + A we

mean the set {x+a:ag A}.

We write alb (read: a divides b) iff b/a = n, where ne}

or {[i], depending on the domain in quesfion.

The symbol |A| is used in several ways. If A is a set,



then by |A| we mean the number of elements in the set A. If A
is @ real or complex number, then by |]A| we understand the

magnitude of A.

We write Re(z) and Im(z) for the real and imaginary parts

of a complex number.

Numbers in square brackets refer to the references at the

end of the thesis.



1. Real Integer Functions.

Definition I.1.1.

A (real) integer function is 2 map f:R->% =such that
‘(a) f(x+n) = f£(x) + n for all x€R, n€ ¢

(b) Ix-f(x)] < 1 for 211 x€ R.

This definition is a generelization of familiar functions
such as the greatest integer function.

The gquection immedietely arises: what points in R are

fixed by f? Clearly, since f maps R to %, if x;fz, f(x)#x. 1
claim the converse is truve, that is} if née1, f(n)=n. For by
part (a) of the definition, £(0+n)=£(0)+n. Whet is £(0)? By
part (b) we see |0-£f(0)|=|£(0)|<1. But f(0)e . Hence §(0)=0.
Thus we see f(n)=n. These results are summed up in the

following

Theorem I.1.1.
f(x) = x iff x€ 1.

This shows that integer functions are surjective.

Suppose now we know that x lies between two integers.

What can we say about f(x)?
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Theorem I.1.2.

If n<x<n+l, then f(x)=n or f(x)=n+l.

Proof.

Assume f(x)<n-1. Then, since xzh by hypothesis, x-f(x)>1

- which contradicts part (b) of Definition I.1.1.

Now eesume f(x)>n+2. Then, since x<n+l, x-f(x)>1 which

2lso contradicts part (b) of the definition.

Hence f(x)=n or f(x)=n+l, a2s was to be shown. -

Theorem I.1.3.

The set of all real integer functions may be placed in 1-1
correspondence with the set of all functions g:(0,1)-->{0,1}.
In fact, any function g:(0,1)-->{0,1} may be extended to a

real integer function g'.

Proof.

Suppose we have & reel integer function g. €ince
g(e+n)=n+g(a) for any integer n, g is completely determined by
ite action on [0,1). But g(0)=0 by Theorem I.1.1; hence g is
determined by its action on (0,1). Define g' @&s the
restriction of g on (0,1). By Theorem 1I.1.2, g'(x)=0 or

g'(x)=1 for 0<x<1.

Now suppose g#f. We wish to show g'#f'. PRut g#f => there



is some x such that g(x)#f(x). Evidently xﬁfz for by Theorem
I.1.1, g(x)=x end f(x)=x if x€ §%. Hence we may assume x=n+x'
where 0<x'<1. Then g(x)=g(n+x')=n+g(x')=n+g'(x'); similerly,
we see f(x)=f(n+x'")=n+f(x'")=n+f'(x"). Hence
rg(x)-f(x)=g'"(x)-f'(x). The left side is not 0 by hypothesis;

hence g(x')#f(x'). Thus g'(x")#f'(x").

To show the second part of the theoremn, suppose we heve
some g:{(0,1)-->{0,1}. Define g', the extension of g, as
follows:

g'(n) = n for n€1}. -

If n<x<n+l, g'(x) = n+g(x-n).

I cleim g' 1is & real inteéer function. The translation

property is obvious. Also,

lg' (x)-x| = In+g(x-n)-x|
= |n+g(u)=-(u+n) |, u=x-n
= Jg(u)-ul < 1, since 0<u<l and g(u)=0 or
gf(u)=1,

Another way to consider these functions is to consider the

l(n). Since g_l(n)=n+g_1(0), it suffices to exemine the

set g
kernel, The next theorem completely characterizes the kernels

of all real integer functions.

Theorem I.1.4

Let X be a set of real numbers. Then X is the kernel of



come real integer function iff
(a) If x€X, |xi<1.
(b) X U xXx+1D1[0,1]

(c) XNX+l = ¢

Proof.

-1

£10).  Then 1+£ Y(0)=f"1¢

]

Suppose X 1). Now cleerly

s oyn £y

@. This proves (c). The definition of f
implies (a). If xe€l0,1], then f(x)=0 or £f(x)=1 by Theorem

I.1.2. Bence (b).

Now suppose (2)-(c) hold. Define f on [0,1) by
f(a)

0 if a2 €X

f(a) =1 if agX.
I claim thet f', the extension of f 2g given in Theorem 1.1.3,

is 2 rea2l integer function and that the kernel of f' is X.

Evidently [f(a)-2l<1 for a#0. Since 0€ X U X+1, we know
that either 0 € X or -1€ X. But by (8), if x€ X, Ixl<l; hence
0 X. Thus |f(x)-x|<1 for a8l1ll x€]0,1). Thus f£', the

extension of f, is @ real integer function.

Now we wish to show that X 1is the kernel of f'. Suppose
f'(a)=0. Then either a€ XN [0,1) or a+l€XN[0,1). 1In the
first case, clearly a€X. In the second case, by (a) and (b)
of the hypothesis, we see that a+l € X+1, which implies that

aecX.



This shows f'-l(O)C X. Now suppose a € X. We must show
f'(a)=0. Clearly if aeXN][0,1), then f'(a)=0 by definition of
£'. Suppose a€X but agxafo0,l). Then a e(—l;O) by (a).
Hence a+l € (0,1). Then a+1g€ X+10 (0,1). Hence f'(a+l)=1 and

- £'(a)=0.
Now we will wuse the definition of integer function to
define a generalized “"remainder" or "residue" relative to any

integer function f.

Definition I.1.2,

resf(a,b) =

{b—a-f(b/a) , a#0

b , a=0
for a,be R.

Definition I.1.3.

frf(x) = resf(l,x) = x~-f(x) (x €R).

The function frf is often called the fractional part.

Theorem I.1.5.

lresf(a,b)lqa] for a,b €R, a#0.

Proof.
Ib/a - f£(b/a)| < 1
lallb/a - f£(b/a)l < lal
Ib - a-f(b/a)| < lal

- 6 -



lresf(a,b)l < lal.

Theorem I.1.5 is sometimes stated in the following form,

often called the division theorem.

Theorem I.1.6.

Given a,b€ R, there exists g€ and r € R such that |rl<]al

and b = ag+r. (McDonnell [3]).

Proof.
Put g=f(b/a) where f is an integer function, and

r = resf(a,b). Then |ri<lal by the preceeding theorem and

ag+r = a-f(b/a)+b-a+f(b/a) = b.

Of course, as of yet we have not exhibited any functions f

with the decired properties; this will be done in section I.2.
The function res defined above corresponds closely to the
notion of congruence, as will be shown by the following

theorem.

Theorem I.1.7.

resf(a,b) = resf(a,c) for a#0 iff alb-c.
Proof.
Assume resf(a,b)=resf(a,c). Then b-asf(b/a)=c~a«f(c/a).
Hence b-c = a[f(c/a)-f(b/a)}. But a divides the right side.



Hence alb-c.

Now assume alb-c. Then

resf(a,b)-resf(a,c) b-a-f(b/a) - [c-a-f(c/a)]

b-c + a[f(c/a)-f(b/a)].
But alb-c; hence b - ¢ = ka for some k, and b = ka+c. Hence

resf(a,b)—resf(a,c) = b-c + a[f(c/a)-f((ka+tc)/a)l

It

b-c + alf(c/a) - f(c/a) - k]

1]
o
|
Q

~ ak

Theorem I.1.8.

resf(a,c) b-resf(a/b, c/b), Db#0.

Proof.
resf(a,c) = c - a-f(c/a)
= b(c/b - a/b-f(c/a))
= b(c/b - a/b-£f((c/b)/(a/b))
= b-resf(a/b,c/b).
Since resf(a,b) is an integer if a and b are both

integers, 1let us consider what the results of resg are if a is

fixed and b ranges over all integers.

Definition I.1.4.

csrf(a) {z:z = resf(a,b) for some b€ f}.



The set csrf(a) is called a complete system of residues for

a (relative to the function f). A criterion for an integer x
to be in the complete system of residues for a given integer a

is the following

Theorem I.1.9.

X € csrf(a) <==> resf(a,x) = X.
Proof.
<== is clear. Assume X = resf(a,b) for some b€ Z. Thus
X = b - a-f(b/a) i
X - b = -a.f(b/a)
Hence alx-b. By Theorem 1I1.1.7, ;esf(a,x) = resf(a,b). But
then res(a,x) = x, as desired.

The next theorem is based on a suggestion of McDonnell

[13] and gives another characterization of the set csrf(a).

Theorem I.1.10.

If x,a€? and a#0, then x € csry(a) iff xe a-£1(0).

Proof.

Let xéicsrf(a). Then, by Theorem I.1.9, x = resf(a,x).
But then x = x-a<f(x/a). Hence a-f(x/a)=0. But a#0 by
hypothesis. Hence f(x/a)=0 and if n=x/a, then x=an where
net t0).



Now let x=as where f(s)=0. Hence resf(s)=s. Hence by

Theorem I.1.7, resf(a,as)=as. Hence resf(a,x)=x.

Theorem I.1.11.

Icsrf(a)l = |al.

Proof.
Since Iresf(a,b)l < fal by Theorem I.1.5, it is clear that
resf(a,b) can attain at most the 2]al-1 distinct values 1-lal,

2-lal,...-1,0,1,2,...]al-1. We see that 0 is always in the

complete system of residues. I claim that if x<0 is in the
complete system, then x+lal 1is not, and if x>0 is in the
complete system, then x-|al is not. This follows from the

(readily verified) fact that resf(a}lal—k) = resf(a,—k). Also,
the numbers resf(a,O), resf(a,l),...resf(a,]al—l) are different
by Theorem I.1.7. Hence there are exactly l|al elements in the

complete system for a.

The next theorem characterizes all complete systems of

‘residues.

Theorem I.1.12,

There are exactly 2lal—l different complete systems of
residues for any af0€ .
Proof,

0 is a member of any system of residues. If we arrange

- 10 -
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the integers from 1-]al to lal-1 in two lines
l_lall 2_la|’ 3—lall . - . 7 _3, "'2, —1
1, 2, 3, « « . ,lal-3, lal-2, l|al]-1

then we see from the previous theorem, if any number in the

: first line is in the complete system, the corresponding number

in the second‘line is not. Hence there are at most ZIaI-l

subsets corresponding to this choice of residues.

Now we must show that, given any subset of residues chosen

according to this system, there corresponds an integer function

f. -
Let - Y LN be the |al distinct residues. Let X be
the set |
U, t2a-1)/2121, (2a,+1)/21al),
a union of half-open intervals. It is easy to see that by
Theorem I.1.4, X is the kernel of an integer function f. in

fact, the function f constructed in the proof of the theorem is

the very one such that csr_(a) consists of the residues a a

£ 1" 2!

This concludes our discussion of the general properties of
real integer functions. In the next section, we will discuss

some of the properties of a particular integer function, the

greatest integer or floor function.

- 11 -



2. The Floor Function.

Probably the most familiar integer function is the floor

function. This function is variously known as

the greatest
See Knuth [4].

integer, integer part, and entier function.

Definition I.2.1.

The floor function fl(x) is defined as

f1(x) = sup{ke %|k<x}

This definition shows why the floor function is often

£l (x}
2 3
l @ &
-3 -2 -1 ’ﬁ €>‘1 2 3 X

@
/K
k.Jl

et

P Y

AN )
1
ny

Fitgure 1: The Floor Function
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Theorem I.2.2

called the "greatest integer" function. See Figure 1.

The fundamental property of the floor function is given in

the next theorem, which is easily derived from the definition.

Theorem I.2.1,

0 < x - fl(x) < 1.

The next theorem shows that, indeed, the floor function is

an integer function.

fl(x) 1is a real integer function.

Proof.

Evidently f1l(x) maps R-->%. We also have

£l (x+n)

sup{k € L|k<x+n}

sup{k € £ |k-n<x}

sup{k'+n € #|k'<x}

n + sup{k'e 7|k'<x}

n + fl(x).

Hence fl(x) satisfies part (a) of Definition I.1l.1. It
remains to show that fl satisfies part (b). But this is just
Theorem I.2.1.

For the rest of this section, we will understand fr(x) and

_‘13_
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res(a,b) to mean the functions of section I.1 with respect to
the floor function. 1In particular we have the following useful
theorem, which is a consequence of Theorem I.2.1 and the

definition of fr(x).

Theorem I.2.

Jw

0 < fr(x) < 1.

The next two theorems were given as exercises in Knuth

141, and are easily proved.

Theorem

|-
.

1IN
.

|

n < x < ntl iff fl(x) = n for n€ %, xe€R.

Theorem

|+
180
fen

x-1 < n < x iff n

It

fl(x) for ne€ef, x€ R.

Theorem I.2.6.

£1(x) + £l(y) = fl(x+y) iff fr(x) + fr(y) < 1.

fl(x) + f£1(y) fl(x+y) - 1 iff fr(x) + fr(y) > 1.

Hence fl1(x) + fl(y) < fl(x+y).

Proof.
(i) Suppose 0 < fr(x) + fr(y) < 1. Then by Theorem

I.2.1, f1(x) < (x) and fl(y) < (y). Hence fl(x) + fl(y) < x+y.

]

Also, x fl(x) + fr(x), vy = fl(y) + fr(y) by definition.

- 14 -
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Hence .
X +y = fl(x) + fl(y) + fr(x) + fr(y)
< f1(x) + fl(y) + 1.
Combining these, we get |
fl1(x) + fl(y) < x + y < fl(x) + fl(y) + 1.

Hence by Theorem I.2.4, fl(x+y) = fl(x) + fl(y).

(ii) Now suppose 1 <fr(x) + fr(y) < 2. Then an argument

similar to that for (i) shows that fl(x+y) = fl(x) + fl(y) + 1.

To see the converses, assume fl(x) + fl(y) = fl(x+y) but
1 < fr(x) + fr(y) < 2. Then by part (ii), above,

fl(x+y) = fl(x) + fl(y) + 1, contrary to assumption.

Similarly, assume fl(x) + fl(y) = fl(x+y) + 1 but
0 < fr(x) + fr(y) < 1. Then by part (i), above,

fl(x+y) = fl(x) + fl(y), contrary to assumption.

Theorem I.2.7.

fla(x) = fl(x+a), 0 < a < 1, is a real integer function.

Proof.

fla(x+n) = fl(x+n+a)

fl(x+a) + n = fla(x) + n.

Hence fla satisfies part (a) of the definition. It is

also easy to see that fla satisfies part (b).

- 15 -
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In particular, taking a = 1/2, we get

Definition I.2.2

mid(x) = fll/Z(X) = fl(x + 1/2).

mid(x) is usually interpreted as the "integer nearest x",
with the proviso that if x = n + 1/2, then mid(x) = n + 1. See

Figure 2, below.

- W -
atd({x3

e | @—1-o©
ity

*——c =2

Figure 2: The Mid Function

Theorem I.2.8.

rnd(n,x) = (mid(x-lon))/lon is precisely x rounded to n

- 16 -



decimal digits.

Examples.
rnd(2,3.14159) = 3.14
rnd(1,2.75) = 2.8
rnd(-2,34567) = 34600
rnd(3,-.2345) = -.234

Theorem I.2.9.

fl ({m+x)/n)

Proof.

(m+x)/n - 1

A

I claim o

(m+£f1(x))/n

(Knuth,

[41).
fl1((m+£fl(x))/n)

for xe R, m,ne %, n>0.

(m+x)/n - 1/n - (n-1)/n
(m+x-1)/n - (n;l)/n

(m+£f1(x))/n - (n-1))/n (Theorem I.2.1)

(n-1)/n < £1((m+£1(x))/n)

This is evidently true for n = 1, Assume n > 2. Now write
m+fl(x) = kn + ¢ where 0 < ¢c < n - 1. The proof splits into
two cases:
Case I 0 S‘C <n - 2.
Then
(m+fl(x))/n - (n-1)/n = (kn+c-(n-1))/n
= (k=1) + (c+l)/n
< k

- 17 -



f1((kn+c)/n)

f1((m+£f1(x))/n)

Case II. ¢ =n - 1.
: Then

(m+fl(x))/n - (n-1)/n

]

Thus we have

(m+x)/n - 1 < £f1((£1(x)+m)/n) < (m+x) /n.

By Theorem I.2.5 we have the desired conclusion.

Remark.

If m = 0, we obtain the useful result

fl(x/n) = f1(fl(x)/n).

Theorem I.2.10.(Uspensky and Heaslet)

nel

E fl(x + k/n)
K=o

]

fl{nx) for xe€ R, n>0€12.

Proof.

Let j/n < fr(x) < (j+1)/n for some j, 0<j<n.

0<k<n-j-1, fl(x + k/n) fl1(x). For n-j<k<n-1,

fl(x + k/n) = fl(x) + 1.

Hence

- 18 -

(kn)/n = k = fl((m+£f1l(x)/n).

Now for

we have



n=1 n-) -1

N
h
o}
)
+
~

~
3
I

K=0 k=eo

]

nfl(x) +

j But fl(x) + j/n < x < f1l(x)
see that

f1 (nx)

nfl(x) + j

3

n—1

Kon-~

}E: £1(x + k/n) + ;E:_ £1(x+ k/n)
J .

(n=3) £1(x) + J(1+£f1l(x))

+ (j+1)/n. By Theorem I.2.7, we

.

Hence the desired conclusion.

The functional relation

as the replicative relation.

(h Theorem I.2.11.

in the previous theorem 1s known

£1(2x) + f1(2y) > fl(x) + fl(y) + fl(x+y)

Proof.

We can split the proof into four

Case i: . fr(x) < 1/2
Case ii: fr(x) < 1/2
Case iii: fr(x) > 1/2

Case iv: fr(x) > 1/2

Case i: We
2x = 2fl(x) + 2fr(x).
But 2fr (x) < 1; hence

C : £1(2y) = 2fl(y) and £l (x+y)

NN}

;7 fr(y)
;7 fr(y)
;7 fr(y)

i fr(y)

have

f1(2x)

= f1 (x)

- 19 -
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2

Iv

cases:

1/2

1/2

1/2

1/2

= f1(x) + fr(x) and
= 2f1(x). Similarly

£f1(y) by Theorem I.2.6.



Hence f1(2x) + £f1(2y) = fl(x) + fl(y) + £l (x+y) .

The remaining three cases can be disposed of with tedious

reasoning similar to that in case i.

Many other properties of the floor function are given in
Uspensky and Heaslet [5], Roberts [6], Knuth [7], Leveque [4],

and Ryde [15].
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3. Duality.

Another commonly used integer function is the so-called

least integer or ceiling function. This function is intimately

‘related to the floor function of the previous section.

Definition I.3.1.

ce (x) inf{n € $In>x}.

Theorem I.3.1. (Duality)

ce(x) = ~-fl(-x). -
Proof.
fl1(-x) = sup{né€ %|n<-x}
= sup{n€?| -n > -x}
= -inf{nef| n > x}
= —-ce(x).
We define the dual function of f, T as T(x) = -f(-x). It
~
is easy to see that T is the same as f. Then we have the
following

Theorem I.3.2.

If f is an integer function, then so is its dual f.

Proof.

(a) #(x+n) = -f(-x-n)

- 21 -



-f(-x) + n

£(x) + n
(b) Ix - T(x) |

Ix — (-£(-x))|

= |x + £(-x)|
= |[f(u) - ul (u = -x)
< 1.

For more on the notion of duality, see Halpern [12].

From Theorem I.3.1 and Theorem I1.3.2 we immediately find

Theorem I.3.3

ce(x) is a real integer function and 0 < ce(x) - x < 1.

Figure 3 shows a graph of the ceiling function.

- The duality relationship between the floor and ceiling

functions expressed in Theorem I.3.1 implies many theorems

about the ceiling function which are easily derived.

Theorem I.3.4

(a) ce(x) n iff n -1 < x < n.

(b) ce(x) n iff x < n < x + 1.
(c) cea(x) = ce(x-a) is a real integer function
for 0 < a < 1.

(d) ce((m+x)/n)

ce((m+ce(x))/n)..

n-t

(e) zi: ce(x - k/n) = ce(nx) for x€ R, n>0€ 1.
K=o
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(f) ce(x) + ce(y) > ce(x+y)

(g) ce(2x) + ce(2y) < ce(x) + ce(y) + ce(x+y).

As an example, let us prove (4):

We have

f1((-m-x)/n)

fl((-m+£fl(-x))/n) by Theorem I.2.9.

£l (- (m+x)/n)

fl{(-(m-f1(-x))/n)

-fl(-(m+x)/n) -fl (- (m+ce(x))/n)

I

ce((m+x)/n) ce((m+ce(x))/n).
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Another useful ineguality is the following, which relates

the floor to the'ceiling function.

Theorem I.3.5.

ce(x) - 1 < fl(x) < ce(x) <1+ fl(x).

Proof,.

If x = n, an integer, then n = fl(n) = ce(n). Hence
assume x = fl(x) + fr(x), fr(x) # 0. Then ce(x) = 1 + fl(x),

from which the inegualities follow.
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4. Complex Integer Functions.

At this point, we would like to extend our notion of
integer functions to the complex plane. In analogy with

-Definition I.1.1, we make the following

Definition I.4.1.

A complex integer function is a map f:¢-->%[i] such that
(a) f(w+z) = f(w) + z for all we €, ze §[i]

(b) lw - f£(w)| < 1 for all we €.

It should be clear that the restriction of any complex

integer function to the real line is a real integer function.

As in the case of real integer functions, we have the

following

Theorem I.4.1.

If f is a complex integer function, then f£(z) = z iff z is

a complex integer.

The proof is exactly as in the real case.

Theorem I.4.2.

If m < Re(z) <m+ 1 and n < Im(z).< n+ 1, then

]

f(2) m+ni or f(z) = m+l + ni or f£(z) = m 4+ (n+l)i
L or f(z) = (m+l) + (n+l)i.
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Again, the proof is a trivial consequence of part (b) of

the definition.

Remark.

Unlike the real case, not every function g:5-->{0, 1, i,
1+i} where SA= {a+bi|0<a<l, 0<b<1l}, 1is an integer function.
For example, if g(x) = 1+i for all x€S, then g(.1l) = 1+i; so
we find

lg(.1) - .11 = 1.3 > 1.

As in the real case, we can also characterize the kernel

of a complex integer function abstractly.

Theorem I.4.3.
A set X is the kernel of a complex integer function iff
(a) If x€X, then |x| < 1.
(b) Let S = {a+bi:0<a<l, 0<b<1}
Then X U X+1 U X+i U X+1+iD][0,1].
(c) The sets X,FX+1, X+i, X+1+i are pairwise

disjoint.

The proof uses the same reasoning as the proof of Theorem

I.1.4, and is left to the reader.

The residue and fractional part-functions, previously
defined only for real numbers, have analogues in the complex

plane. We make the following two definitions:
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Definition I.4.2.

z - w-f(z/w), w#0.
resf(w,z) = {

z , w=0.

for w,z € (.

Definition I.4.3.

Theorem I.4.4

frf(w) = resf(l,w) =w - f(w), wed(.

The following four theorems are easily proved following

the ideas for the proofs of their real analogues given

section I.1. -

Iresf(w,z)l < {w] for w,ze (¢, W#O.

Theorem I.4.5.

Given w, z€ (¢, there exists g€ %[i] and re ¢ such that

lr] < |wl and z = wg + r.

Theorem I.4.6.

resf(w,z) resf(w,x) for w#0 iff wlz-x.

Theorem I1.4.7.

resf(w,z) = X resf(w/x,z/x), x#0.

We can also extend the idea of a complete system

residues to the complex plane:

- 27 -

in

of



/\\

Definition I.4.4.

cscrf(a) = {z:z = resf(a,b) for some b€ 2[i]}.

The set cscrf(a) is called a complete system of complex

“residues. As in the real case,.we have the following theorems:

Theorem I.4.8.

zé'cscrf(w) <{==> resf(w,z) = Z.

Theorem I.4.9.

If z, wef[i] and w#0, then zecscr'f(w) iff zew-f_l(O).

The previous two theorems can be proved using the same

methods used in the real case.

Theorem I.4.10.

lcscrf(w)l = le2 for w#0 € $[i].

Proof.
From Theorem 1I1.4.6 and Theorem I.4.8 we see that
lcscrf(w)l is the same as the number of distinct cosets in the

quotient %[i]/(w)%[i]l. We use the following argument due to G.

Tunnell:

As an abelian group %[i] is isomorphic to % & %. The
basis {1,i} is used for f[i]. Let w = a+bi. The submodule

(a+bi)$[i] is a subgroup with basis {a+bi, -b+ai}. The matrix
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relating the two bases is

- [1]

The abelian group %[i]l/(a+bi)%[i] is isomorphic to
Z/dlz ® Z/dZZ ® ...Z/dSZ

with di d2 ...ds = det M = a" +

T{i1/(a+bi)%[i] is therefore also a2 + b = |w]

2 b2. The order of

2. See Jacobson

[14].

It would be interesting to obtain a purely arithmetic

proof of this theorem that did not use the theory of modules.

The first-example of a complex integer function was given

by Hurwitz [1l]. His definition is équivalent to the following:

Definition I.4.2.

Let z = x+iy, x,y€ R. Write z' = fl(x) + ifl(y). Then
z' + 0 if fr(x)<1/2, fr(y)<l/2
z' + 1 if fr(x)>1/2, fr(y)<1l/2
cmid(z) =

z' + 1 if fr(x)<1/2, fr(y)>1/2

z' + 1+1 if fr(x)>1/2, fr(y)> 1/2

Theorem I.4.11.

cmid is a complex integer function.

- 29 -



Proof.
The translation property is evident. Let us prove
|cmid(z) - z| < 1.

Case I. fr(x)<1/2, fr(y)>1/2.

Then cmid(z) cmid (x+iy) = fl(x) + ifl(y).

|cmid(z)—z|2 (x-fl(x))2 + (y—fl(y))2

]

= (fr(x))% + (fr(y))?

<1/4 + 1/4 < 1/2.

Cases II, III, and IV are equally tedious and are left to

the reader. -

Figure 4 below is a representation of the cmid function.

Remark.

cmid is an extension of the mid function to the complex
plane. It is easily seen that cmid(x) = mid(x) if x€ R. Also,
cmid(x) may be interpreted as the "complex integer nearest x"
with the prdviso that when there are two or four T"nearest
integers”, x gets mapped to the number with the larger real or
imaginary part. That is, cmid(l1/2) =1, cmid{(i/2) = i, - and

cmid ((1+1i)/2) = 1+i.
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5. The Complex Floor Function.

At this point, we would like to extend the floor function
of section I.2 to the complex plane. One such extension was

- provided by McDonnell [3].

Definition I.5.1.

Let z = x+iy, z' =7fl1(x) + ifl(y). Then
z' if fr(x) + fr(y) < 1
cfl(z)

z' + 1 if fr(x) + fr(y) > 1 and fr(x) > fr(y)
z' + i if fr(x) + fr(y) > 1 and fr(x) < fr(y).

Theorem I.5.1.

cfl(z) is a complex integer function.

Proof.
Again, the translation property should be obvious. The
reader may convince himself that |cfl(z) - z| < 1 by noting

that cfl_l(O) lies totally within the unit circle. See Figure
5 below.

Some of the nice identities for the real floor function do
not extend directly 1in this generalization to the complex
plane. For example, it is not true in general that

|cfl(z)+cfl(w) ] < Jcfl(w+z) |

or [cfl(w) | + lcfl(z)] < lcfl(w+z) |.
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these

real

As the

is w =

However,

identities.

function.

we can obtain a

Definition I.5.2.

sum{z) =

Re(z) + Im(z).

reader may verify,

33 -

1.2 - 1.9i, z = 1.1 - 1.21.

These generalizations

use

certain generalization

the

a counter-example to both of

of the

following



AN
) \

Theorem I.5.2.
sum(z) is a linear function of z, i. e.,
sum(w+z) = sum(w) + sum(z)

sum(cw) = cesum(w) if ¢ is real.
The proof is trivial and is left to the reader.

The following theorem relates the cfl and sum functions in

an interesting way:

Theorem I.5.3.

sum{cfl(z)) = fl(sum(z)).

Proof.
The proof splits into three cases that correspond to the
three parts of Definition I.5.1. We will show the first case,

and leave the other two cases to the reader.

Case I. z=x+iy, fr(x) + fr(y) < 1.
Then cfl(z) = fl(x) + ifl(y). . Hence
sum(cfl(z)) = £f1(x) + £fl(y). On the other hand, sum(z) = x+y
and» by Theorem 1I.2.9, fl(sum(z)) = fl(x+y) = fl(x) + fl(y)

since fr(x) + fr(y) < 1.

We have the following generalization of Theorem I.2.9.
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Theorem I.5.4.

sum(cfl (w)+cfl(z))<sum(cfl (w+z)) for w,z€ ¢.

Proof.

sum(cfl (w)+cfl(z)) sum(cfl (w)) + sum(cfl(z))
= fl(sum(w)) + fl(sum(z))
< fl(sum(w) + sum(z))

= f1 (sum(w+2z))

= sum(cfl(w+z)).

Repeated use of the above technigue proves the following

three theorems.

Theorem I.5.5.

sum(cfl((z+m)/n)) = sum(cfl((cfl(z)+m)/n))

for all ze¢, me #(i], ne %, n>0.

Theorem I.5.6.

sum(cfl(nz)) for z€ ¢, n>0.

sum(z cfl(z + k/n))

sum(cfl (2x) + cfl(2y)) > sum(cfl(x) + cfl(y) + cfl(x+y)).

The following theorem relates the real and imaginary parts

of cfl(z) and will be useful in Chapter II.
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Theorem I.5.8.

If Re(z)>Im(z), then Re(cfl(z))>Im(cfl(z)).

Proof.

Let z = x+iy. The proof splits into two cases:

Case I. X > y+1. " Then by Definition I.5.1,
cfl(z) = fl(x) + 1ifl(y) or 1+£f1(x) + ifl(y) or
fl(x) + i(1+fl(y)). In each instance, the desired conclusion
follows.

Case II. y < x < y+l. Again, by definition I.5.1, either
cfl(z) = fl(x) + ifl(y) or 1+£1(x) + ifl(y) or
fl(x) + i(1+fl(y)). In the first two cases, the conclusion
follows. The last, cfl(z) = fl(xi + i(1+fl(y)), occurs only
when fr(x) + fr(y) > 1 and fr(x) < fr(y). Now y < x < y+l1 ==
fl(x) = fl(y) or fl(x)

]

1+f1(y). Assume fl(x) = fl(y). Then

x = fl(x) + fr(x), y = fl(y) + fr(y) = fl(x) + fr(y). Now
fr(x) < fr(y), so we find x < Y, contrary to assumption. Thus
we must have fl(x) = 1+fl(y) and the conclusion follows.

We also have the following theorem which is easily

verified from the definition of cfl.

Theorem I.5.9.

If a is real, then cfl(ai) = i+fl(a).

- 36 -



Now we will define the analogue of the ceiling function in

the complex plane. We will wuse the idea of duality in the

following definition.

» Definition I.5

3.

cce(z) = ~cfl(-z) for all ze¢ ¢.

By the analogue of Theorem I.3.2 in the complex plane,

immediately find

Theorem I.5.10. )

cce(z) is a complex integer function.

Figure 6 illustrates the complex ceiling function.
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