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Abstract

A numeration system based on a strictly increasing sequence of positive integers
Uo = 1,u;, U, ... expresses a non-negative integer n as a sum n = Z;:O aju;. In this
case we say the string a;a;_1---aja0 is a representation for n. If ged(ug, uy, . . J=g,
then every sufficiently large multiple of g has some representation.

If the lexicographic ordering on the representations is the same as the usual ordering
of the integers, we say the numeration system is order-preserving. In particular, if
%o = 1, then the greedy representation, obtained via the greedy algorithm, is order-
preserving. We prove that, subject to some technical assumptions, if the set of all
representations in an order-preserving numeration system is regular, then the sequence
u = (u;);>0 satisfies a linear recurrence. The converse, however, is not true.

The p;oof uses two lemmas about regular sets that may be of independent interest.
The first shows that if L is regular, then the set of lexicographically greatest strings
of every length in L is also regular. The second shows that the number of strings of
length n in a regular language L is bounded by a constant (independent of n) iff L is
the finite union of sets of the form wz*y.

1 Introduction

Let ¥ be a finite or infinite alphabet. A numeration system is a map IN — Z* that assigns
a string, called the representation of n, to a nonnegative integer n. Common examples
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of numeration systems include radix-k representation (for & an integer > 2), Fibonacci
representation, factorial representation, etc. See [7, 8] for surveys on numeration systems.

One of the most common ways to construct a numeration system is to start with a strictly
increasing sequence of positive integers ug, uy, u,, ... and try to express n as a non-negative
integer linear combination of the Uj, 88Y N = Y o< aju;. If we can write n in this manner,
we say n is representable, and one representation is the string a;a,_; - - - a;ao. We define

val(a;a; ;- aja0) = 3> aju;.
0<5<i

We say such a representation is normal if q, # 0.
Note that if

ged(uo, uq, . . ) =g,

then every sufficiently large multiple of g is representable.

For some choices of the sequence u = (u;)i0, the “digits” a; may be required to be
arbitrarily large. An example of this is the so-called factorial representation, where u; =
(7 + 1)l See, for example, [7]. In this paper we only consider numeration systems with
bounded digits. A necessary condition to ensure bounded digits is that the ratio uj/uj_q is
bounded by a constant.

Since there may be many normal representations for a number 7, it makes sense to try
to identify one which is “canonical”. This can be done in a variety of ways; for example,
one could choose the lezicographically least or lezicographically greatest representation. (If
T =212y -2; and y = y1y,-- -y, are strings, we say z is lexicographically greater than Y,
and write £ > y, if 1 > j, orif 5 = J and there exists an integer k, 1 < j < n, such that
T1 = Y1, %2 = Y2,. .., Ty = Yg_1, but = > Yk-)

A desirable property of a numeration system is that the mapping that sends an integer n
to its (normal) canonical representation be order-preserving. More precisely, we require that
for representable integers m,n, we have m > n iff rep(m) > rep(n). Here rep(m) denotes
the canonical representation for m.

The greedy representation grep(n) of a positive integer n is defined as follows: let 1 be
the largest index such that u; < n. Then successively set a; « In/ui], n « n — a,u,, and
te—i—luntili < 0. Ifn= 2 o<j<i @5U;, then the greedy representation for n is the string
@iGi-1 - - - @100, and we say n is greedily representable. If not, then the representation for n is
undefined. The greedy representation for 0 is defined to be ¢, the empty string. The set of
representations of all greedily representable integers is written G(u).

Every non-negative integer is greedily representable iff uo = 1. If up # 1, it is possible
for a number to be representable, but not greedily representable. For example, consider
expressing 4 in the numeration system (w0, us,us,...) = (2,3,5,.. .-

It is easy to see that the greedy representation is order-preserving; furthermore, it coin-
cides with the lexicographically greatest representation if ug = 1.




We define R(u) to be the set of canonical representations for all non-negative integers.

More formally,
R(u) = > rep(n).

n>0
n representable

Example 1.
Let u; = k7, for k an integer > 2. Then the set of greedy representations G(u) is

e+ (1424 +k—1)0+1+-+k—1)".

Example 2.
Let u; = Fj,,, where F; is the jth Fibonacci number. Then it can be shown that the set
of greedy representations G(u) is
€+ 1(0 + 01)*.

(For more on Fibonacci representations, see 20, Ex. 1.2.8.34], [25], [4], [19], and [1].)

Example 3. '
Let uj = 27*1 — 1. Then the set of greedy representations is

€+1(0 +1)* + 1(0 4 1)*20° + 20°,
See [3].

Example 4.

Let u; = 27, and consider a numeration system using only the digits 1 and 2. Then
1t is easy to see that every non-negative integer can be written uniquely, and the set of
representations is given by the regular set (1 + 2)*. This numeration system, while not
obtained via the greedy algorithm, is nonetheless order-preserving.

In this paper, we prove the following theorem: suppose the set of all representations
R(u) is regular. Then the sequence u satisfies a linear recurrence with integral constant
coeflicients.

The proof depends on two lemmas about regular sets, which may be of independent
interest.

Remarks on the literature. :

The point of view we will adopt in this paper is similar to that of Frougny, who has
written extensively on this topic. See [9, 10, 11, 12, 14, 13].

In [24], T proved that the set of greedy representations is regular for the numeration
systems with bounded digits considered by Fraenkel [7].

We note several other papers that have examined the relationship between ways of rep-

resenting numbers and regular sets. See [15, 23, 6, 22, 16, 17]. However, these papers have

“adopted a very different point of view.



2 More Notation

Throughout this paper, T is a finite alphabet, and r, s, ¢ denote regular expressions. The
letters v, w, z,y, z denote strings. The lower-case letters a, b, ¢, 9,%, 3, k,m,n and the upper-
case letters A, B, C denote integers. We also use the letters a and b to represent elements
of ¥. The capital letter L denotes a language and the capital letters W, X,Y denote finite
languages.

3 Lexicographically Largest Strings

Suppose L is a regular language over a finite alphabet X. Suppose I has a total ordering; for
example, suppose ¥ = {0,1,2,..., k— 1}. fz,yc Z", wesayz > yifz is lexicographically
greater than y. More precisely, we say & > y if there exists an integer 1,0 <5 <n — 1, such
that z) = y1,2, = y,,...,2; = Yi, but ;47 > y;1y. Then let B(L) be the union, over all
n 2 0, of the lexicographically largest string of length n in L. (By considering L U 0*, we
may assume without loss of generality that there is at least one string of every length in L.)
More formally, define

B(L)={J {zeeLnz" : (yeLnzI") =z >y}

n>0
Lemma 1 If L is regular, then so is B(L).

Proof.

We show that L — B(L), the relative complement of B(L) in L, is a regular set. The
result will then follow, since regular sets are closed under complement.

Let M = (Q,%, 6,90, F) be a deterministic finite automaton accepting L. (See [18] for
basic notions about automata and the notational conventions we use here.) The idea is to
accept L — B(L) with a nondeterministic finite autornaton. We use two “fingers” to mimic
the behavior of M on input w: the first “finger” imitates M precisely. The second “finger”
nondeterministically simulates M on all possible inputs of length |w|, trying to find some
string in L that is lexicographically greater than w. If we succeed, and w is accepted by M,
then we have found a string in L that is not lexicographically greatest, and so we accept.

More formally, let M’ = (Q', %, 6, 90, F'), a nondeterministic finite automaton, where
Q' = @ x Q x {g,e,1}. Here g indicates that in the current state, we have already found
a string lexicographically greater than the prefix of the input w seen so far. Similarly, e
indicates equality, and [ indicates less than. For each a € ¥, define

8([p.9,9),0) = {I6(p, a),8(g,b),9) : be T},
8(lp, 9, ¢l,a) = {[6(p, a), &(g,8),2] : be £},



where:z:=gifa>b,:i:=eifa:b,andw=lifa<b,and

8(lp,q, 1], @) = {[6(p, a), 8(g,),1] : be Y.

Finally, define ¢4 = [go, g, €] and

F'={lp,q,0) : p,g€ F}.
We leave it to the reader to show that M’ accepts w if and onlyifwe L — B(L). m

Corollary 2 If L is reqular, then so is the set

SL)=U {e€lnz" : (ye LNZ") = z < y}.

n>0

of lezicographically smallest strings of every length in L.

4 Bounded Regular Sets

In this section we prove that if L is a regular language such that the number of strings of
length n in L is bounded by a constant (independent of n), then L is the finite union of sets
of particularly simple form. More formally, we have

Lemma 3 The following two statements are equivalent:
(i) L C T* is regular and there ezists a constant ¢ such that ILNE* <cforalln>0
(1) L is the finite union of sets of the form zy*z, where x,y,z € X*.

Proof.
(72) = (z): Suppose

c
*
L= Z Ty 2.
=1

Then for each n > 0, z;y*2 contains at most one string of length n. Hence L contains at
most c strings of length n.

(¢) = (31): Let r be a non-trivial regular expression denoting L. The result is clearly
true for L = 0. Thus we may assume that the regular expression r does not contain . We
will show the following two “reduction” steps:

(a) If r contains a subexpression of the form t*, then L(t*) can be rewritten in the form
X +Y2z* and

(b) If r contains a subexpression of the form s1ts3, where ¢ contains no star, then L(s}ts3)
can be rewritten in the form Wz*X.



The implication (i) = (1) will then follow.

(a) Suppose r contains a subexpression of the form ¢*. Clearly if |L(t)| < 1, then t* is
already of the form zy*z. Suppose IL(t)| = 2, say L(t) = {z,y}. Choose a positive integer
m sufficiently large such that the linear Diophantine equation

alz| + bly| = m (1)

has > ¢ + 1 solutions (q,b) in non-negative integers. (For example, it suffices to choose
m = c lem(|z|, [y|).) Then by the hypothesis, we must have

’ 1
zayb = g yb

for some distinct pairs (a,b), (a', V) satisfying (1), for otherwise ¢ and hence L would contain
2 ¢+ 1 strings of length n, for some n.
Without loss of generality we may assume a > a’, b < ¥. Then

By [21, Prop. 1.3.1] there exists a string z and integers 1, j such that z = 2,y = z7. Hence
(24 9)" = (& + 27)" = X 4 glema)

for some finite set X. Thus we can replace the t* in r by a set of the form X +Y2"
If |L(t)] > 2, we can repeat the argument above on pairs to obtain that each element of
L(t) is a power of some string 2. Let us write '

L(t) = ;i 2%,

Set g = ged(ay, a,, .. .). Then there is a finite subset of the a;, say by < by < ...k, such that
9 = gcd; e bj. Let
m = (bl — 1)(bk - 1)

I claim that for some finite set X ,
L(t)=X + 2™z

For if a; > m, we clearly have 2% ¢ 2™z*, and there are only a finite number of distinct
2% that are not in z™z*. These we put in X. On the other hand, by a result of Brauer (2,
Corollary to Thm. 1], we know that each n 2 ™ 1s a nonnegative integer linear combination
of the b;. Hence every string 2 with 7 > m must be in (2% + 2% 4+ ... 4+ z%)*, and hence in
L(t*). This proves (a) and shows incidentally that L is of star-height 1. Hence by a theorem
of Cohen [5, Lemma 3.1], we may assume that

L=X1+X2++XJ,
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where each X; can be written in the form
* * *
WIT WaT5 - - WeTpWhyy. (2)

To prove (b), suppose r contains a subexpression of the form sits;. Then by the remark
above, we may assume that L(s;) = {z}, L(s2) = {y}, and L(¢t) = {z}.
As above, choose m sufficiently large such that

alz| + bly| = m (3)

has > ¢ + 1 solutions. Then by the hypothesis that L contains no more than ¢ strings of
length n for all n, we must have
z°2y® = z° zy®

for two distinct pairs (a, b), (a’, ¥') satisfying (3). We may assume without loss of generality
that @ > a’ and b < b'. Then

Using [21, Prop. 1.3.4], we see that there exist strings v, w and an integer e such that

ma~al — vw; ybl._b — ’UJ'U; z = v(wv)e — (vw)’v.

Hence

’

2o yb b = (vw)**+2.
Thus we see that
22y = (et 2+’ +- o 4ot (vw) (vw) v(wo) (e + y + y? + - 4+ yBY),

where A = a — o' and B = ¥ — b. Thus we have T*2zy* = X(vw)*Y for finite sets X and Y.

To complete the proof of the lemma, we apply observation (b) repeatedly to terms of the
form (2). At each stage, a term with k > 1 stars is reduced to a sum of terms with k — 1
stars. The final result is a sum of terms with one star, and the result follows. m

5 A Lemma on Linear Recurrences

Suppose we are given a sequence whose even and odd-numbered terms each satisfy a linear
recurrence with integer coefficients, but not the same one, such as

A = 241+ Agnsy
A1 = 3An3+ Agn_a+ Agg — Azns. (4)

Can we then conclude that the sequence A, itself satisfies a linear recurrence with integer
coefficients?
The answer is yes, as the following lemma shows:
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Theorem 4 Let k,d be positive integers, with d > k, and let M = M;; be a matriz of
integers such that for all n > 0 we have

Akn = MyAp,_, + MyApn s+ -+ + M;4Aip_q
Apnoy = My Ap,_ g + Mz Agp_3 + - - + MygAp, gy

Akn-k1 = Mg Agn_p_s + Mz Akn—p-3 + - + Mia Apn gy .
Then the sequence A, itself satisfies a binear recurrence with constant coefficients.

Proof.
Note that d is the maximum degree of the characteristic polynomials for the subsequences

Akn) Akn+17 teey Akn+k—1 .
By successively substituting the relations for Akn_l,A;m_z, -+ in the relation for Apn,
etc., we can find another matrix P — P;; such that for all n sufficiently large, we have

Akn = PyAgn_s + PrpAgngpy+ - 4 PrgAn—k_g41
Akny = Ppdy,_, + PyopApn gy + -+ PrgApn_g_gyy

Abn-at1 = PypAp_ i+ Py Apnpy + -+ + PuagApn_x_g44.

Note that P is a square matrix. Let f(X) be the characteristic polynomial of P. Then each
of the sequences Akny Akny, <oy Akn_k41 satisfies the same linear recurrence, namely, the one
whose characteristic polynomial is f(X ) (at least for n sufficiently large). Thus for n large
enough, A, satisfies the linear recurrence whose characteristic polynomial is f(X Ky, m

Example.
For example, for the recurrence specified by (4), we get

A, 72 2 -9 Az,
Azn—y 311 <1 _ | Azn-z
Azp_s 1oo0o o |~ Azn_g
Azn3 010 0 Azns

The characteristic polynomial for the matrix is X4 — 8X3 — X, so A, satisfies the recur-
rence A, = 84,,_, + A,_6.

6 Proof of the Main Result

In this section, we prove the result mentioned in the introduction. The details of the proof
are a little messy, so it may be helpful to first give the proof in the case of ordinary base-3
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representation. In this case, the set of representations R(u) is e + (1 + 2)(0+1+42)* Itis
easy to see that B(R(u)), the set of lexicographically greatest representations, is 2*. Since

ko k
val(lOO---O):1+val(22-~2),

it follows that
: Uk = 1+ 2upy + 2upy + - 4 2u,. (5)

Similarly, we also have
Ukt = 1 + 2Uk + 2Uk_1 S + 2u0. (6)

Subtracting (5) from (6), we see v
Ukt — Up = 2uy,

and hence uy; = 3u,.
We now state and prove the main result of the paper:

Theorem 5 Let Uo, U1, ... be a strictly increasing sequence of non-negative integers such
that
(a) ged(uo, uy, . . .) =g, and a canonical representation is provided for every sufficiently large
multiple of g; '
(b) for every sufficiently large n, there ezists g representation in R(u) of length n;
and
(c) the numeration system based on u is order-preserving.

If R(u) 1s regular, then the sequence U = (Un)n>o satisfies a linear recurrence with integral
constant coefficients.

Before we begin the proof, let us explain the role of the technical hypotheses (a)-(b). For
(a), if ged(uo, uy, .. .) = g, then every sufficiently large multiple of g has some representation
as a non-negative integer linear combination of the u;. We wish to avoid the case where
“most” representable integers simply do not have a canonical representation.

Hypothesis (b) is needed to exclude cases similar to the following: suppose our numeration
system is

I,UQ,IO,UI,IOO,‘Uz,..., (7)

where u is any sequence that does not satisfy a linear recurrence, and 10° < u; < 10°*!. If we
choose as our numeratjon system ordinary base-10 representation, and simply never use the
u; in any representation, we get a numeration system that is order-preserving, and a set of
representations which is regular. However, the sequence (7) clearly does not satisfy a linear
recurrence.

Note that hypothesis (b) is satisfied by both the greedy representation and the lexico-
graphically greatest representation, for then the representation for Un 15 10™. If up = 1, then
all three hypotheses are satisfied for the greedy algorithm.
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Now let us begin the proof.

Proof (Sketch).

Let g = gcd(uo,uy,...). Then there exists an integer C' such that all n > C are repre-
sentable.

If L = R(u) is regular, then by Lemma 1, the set B(L) of lexicographically greatest
strings of every length in L is also regular. By hypothesis (b) of the theorem, there exists
C' such that B(L) contains at most one string of length j for each 7 > C’. Thus Lemma 3
applies and so

k
B(L) = Z:fviyfzz'- (8)

Similarly, by Corollary 2, the set S (L) can also be written in the form

kl

I I1* 7
Z"’iyiz.'-
=1

For simplicity in this proof sketch, we assume that S(L) = 10*, although this assumption
can easily be removed.
For a string w = wyw, - - - Wy, define

k
(w,u) = Z Wilg—;.
=1

The main idea of the proof is as follows: let w € B (L) be sufficiently long such that val(w) >
C. Let v € S(L) be such that |v| = |w| + 1. Then since the numeration system is order-
preserving, we must have val(v) = val(w) + g. Hence

Ul = (w,u) +g. (9)

Now let
9’ =lemici<k |y;).
ly;l#0

By replacing y; with yf’/ ly"', adding extra terms to z; and z;, and renaming, we can rewrite
(8) such that |y;| = ¢’ for all i for which lyi] # 0.
From (9) we have '
Uilvl+lza) = (2Y72,u) + g.
We also have
I+l

U(i+1)lyl+lez) = (Y7 2,u) + g.

Subtracting, we see
J+1

U(G+1)lyl+|zz] — Ujlyl+fzz} = (.'I:y 2, u) - (myjz) u)

10



— (mijIvHIzl,u) _ (zoﬂylﬂzl,u),

and the last expression on the right is a sum of terms of u such that the smallest non-zero
index is jjy|41,. Hence for 1 sufficiently large, ug;1; can be expressed as a linear combination
of the g previous terms, and the particular linear combination depends only on the value of
i (mod g). 4

By Lemma 4, we can write u itself as a linear recurrence. This completes the proof. m

7 Linear Recurrences and Non-Regular Sets

After seeing the main theorem, one immediately wonders if the converse is true. It is not,
as the following theorem shows:

Theorem 6 Suppose u; = (7 + 1) for 5 > 0. Then the set G(u) of greedy representations
15 not a regular set.

Proof.
Let G(u) be the set of greedy representations, and assume it is regular. Then G(u)n10*10*
would also be a regular set. However, it is easy to see that v

G(u)N10*10* = {10°10° : Ubtat2 > Ubpat1 + Up}
= {10°10° : 8% < 20 + 4},

and this set is evidently not regular. ®

One would like a simple characterization of those sequence u for which G(u) is regular.
The next example shows that such a characterization based on the characteristic polynomial
of the recurrence alone will not suffice.

Let f; =27+ 1 for j > 0. In this numeration system, where the digits are bounded by 2,
every integer except 1 has some representation. For our canonical representation, choose the
lexicographically greatest representation. (Note that this system is not order-preserving. )

Then

R(f)N1"0" = {1°0° : fiya > foracs + foracz + - + fi}
{1°0 : a < 2%+ 1},

and this set is clearly not regular. Hence R(f) is not regular. However, f; satisfies the same
linear recurrence as the sequence u; = 27 — 1, discussed previously in Section 1, for which
G(u) is regular.

It is an open problem to give a sufficient condition for the regularity of R(u).
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