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Abstract.

In this note we prove that a binary string of length n can have no more than 28+ -1+
("~k*1) distinct factors, where k is the unique integer such that 28 +k—1<n < 281+ k.
Furthermore, we show that for each n, this bound is actually achieved. The proof uses

properties of the de Bruijn graph.
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I. Introduction.
Let w be a string of 0’s and 1’s, i.e. w € (0+1)*. We say that z € (0+ 1)* is a factor
of w if there exist z,y € (0 + 1)* such that

w = z2y.
In analogy with the function that counts the number of divisors of a positive integer
n, define d(w) to be the total number of distinct factors of the string w. For example,
d(10110) = 12, as its set of factors is given by
{e,0,1,01,10,11,011,101,110, 0110, 1011, 10110}.

Note that we count ¢, the empty string, as a factor of every string.
In this note we discuss the maximum order of d{w).

II. The Main Results.

Theorem 1. Let {w| =n. Then

d(w) < Z min(2,n — i+ 1)
0<in

— (n—’;+1)+2k+1_1,

where k is the unique integer such that 2k +k—1<n< 2+ k.

Proof.

The first inequality is clear, as there are precisely n —i +1 possible factors of length
1, of which at most 2¢ can be distinct.

To see the second equality, note that if 2%k 1 k—1<n <2k +k, then 2k <n—k+1
and 2! > n — k. Hence

E min(2',n —i+1) = Z 28 + Z (n—i+1)

0<i<n 0<i<k k<i<n
=2k 14 ("—Hl).
2

This completes the proof. H
Theorem 2. The upper bound in Theorem 1 is actually attained for all n.

To prove Theorem 2, we use the de Bruijn graph Bj. This graph was apparently first
studied by Flye-Sainte Marie in 1894 [FSM]. Good [G] and de Bruijn [B] independently
rediscovered the graph in 1946. A more accessible reference is Bondy and Murty [BM, pp.

2



181-183] or van Lint [L, pp. 82-92]. For a survey of results on this graph until 1982, see
Fredricksen [F].

Recall that By is a directed graph with 2* vertices {0,1}*, and 2¥*! directed edges
with labels {0,1}**1. There is a directed edge from the head vertex, labeled aja; - - - ak, to
the tail vertex, labeled b1by - - b, iff @z ---ar = by - -- bir_1. In this case the edge is labeled
alag---akbk. )

For example, below is the de Bruijn graph Bj:

A chain is an alternating sequence of distinct edges and possibly non-distinct vertices,
v1,€3,V2,...,€;,Vj, where v;, 2 < i < j, is the tail of e; and v;, 1 <1 < j — 1, is the head
of e;11. If v; = v;, this is a closed chain. A closed chain with distinct vertices (other than
vy = v;) is a cycle. The length of a chain is the number of edges it contains.

We need the following lemma:

Lemma 3.
For each i with 2¢ < i < 281 the graph G} contains a closed chain of length k that
visits every vertex at least once. '

Note that for ¢ = 2%, this is a Hamiltonian cycle, and for i = 2k+1 this is an Eulerian
tour.

Proof.

This theorem can be derived from results in a paper of Yoeli [Y], although it is not
explicitly stated there.
Yoeli proved the following theorems:

Theorem A.
If G& has a cycle of length i, then it has a closed chain of length i + 2%.

Theorem B.
G contains a cycle of length i for any ¢, 0 <1 < 2k,

Combining these two theorems, we see that Gi has a closed chain of any length
between 2% and 2%+, However, it remains to see there exists such a chain that visits every
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vertex of Gi. Yoeli’s proof of Theorem A does in fact construct a closed chain that visits
every vertex of Gi. Since this is nowhere stated in his paper, we briefly go through the
argument.

Yoeli proves the following three lemmas:

Lemma 4. G} is strongly connected.

Define a P-set of cycles of G to be a set of vertex-disjoint cycles covering all the
vertices. (Each cycle must have at least one edge; thus a P-set of G} has 2* edges.)

Lemma 5.

Let C be a cycle of Gi. Then there exists a P-set of cycles of Gy, including no edge
of C. '

Lemma 6.

Let C' and C" be vertex-disjoint cycles of Gy and let e = (u,v) be an edge with u in
C' and v in C". Then there is an edge ' from v’s predecessor in C" to u’s predecessor in
C', and a cycle on the vertex set of C' UC" can be formed using edges of C' UC" together
with e and ¢€'.

Now we can complete the proof of Lemma 3, following the proof Yoeli gave for his
Theorem A.

Let C be a cycle in G, of length i. By Lemma 5 there exists a P-set of cycles Py of G
including no edge of C. Let Hy be the subgraph of G formed by the edges of P; and C.
If the underlying undirected graph of Hy consists of more than one connected component,
then by Lemma 4 there must be an edge e in Gy joining two components of Hy. Edge e
must join two vertex disjoint cycles D' and D" in Py, where no edge of H; goes between
D' and D". Applying Lemma 6 to combine D' and D", we obtain a P-set of cycles P;
including no edge of C, and such that H; = C U P, has one fewer connected component.
Continuing in this fashion leads to a connected subgraph H,, consisting of C' U Py, where
P, is a P-set. Since H, is connected, with each vertex’s in-degree equal to its out-degree,

H, has an Eulerian tour. This provides a closed chain of length 2F + i visiting all vertices.
]

Using Yoeli’s result we can construct a string that achieves the upper bound:

Proof of Theorem 2.

Let n be given, and let k be the unique integer such that 2kt k—1<n< 2!+ k.
Consider the de Bruijn graph Bi. By Lemma 3 there exists a closed chain C of length
n — (k — 1) traversing each vertex in By and repeating no edges. Take the string formed
by the k letters of the vertex label of the first vertex in C, followed by the last letter in
the labels of all subsequent edges in C. The result is a string of length n, and we claim it
is the desired one. ‘

Now this closed chain visits every vertex of By; hence w contains all factors of length
k, and hence all factors of lengths 0,1,2,...k — 1.
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On the other hand, the chain C does not repeat any edge, so all the factors of length
k + 1 are distinct. Hence so are all the factors of lengths k + 2,k + 3, ...,n, since any two
factors of the same length must differ in the first k + 1 positions.

Thus we see .
dw)y= 3 2+ Y n-(k+1),
0<i<k k<i<n
and so the upper bound is achieved. H
An Example.

Let n = 14. Then k = 3 and n — (k — 1) = 12. Looking at Bs, we see there is a closed
chain of length 12, as follows (listing only the vertices):

000 — 001 — 010 — 100 — 001 — 011 — 110q——»
101 — 011 — 111 — 110 — 100 — 000.

This corresponds to the string 000100110111000 of length 14. It has 15 + 66 = 81
distinct factors, which is the maximum possible for any binary string of length 14.
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