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Abstract

We present a new algorithm to compute the Jacobi symbol, based on Stein’s binary
algorithm for the greatest common divisor, and we determine the worst-case behavior
of this algorithm. Our implementation of the algorithm runs approximately 7-25% _
faster than traditional methods on inputs of size 100-1000 decimal digits.

1 Introduction

Efficient computation of the Jacobi symbol (ﬁ) is an important component of the Monte
Carlo primality test of Solovay and Strassen [9]. Algorithms for computing the Jacobi symbol
can also be found on symbolic algebra systems such as Mathematica and Maple.

Several efficient algorithms modeled on Euclid’s algorithm for computing the greatest
common divisor (gcd) have been proposed and analyzed; see, for example, [12, 3, 8]. Indeed,
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it is possible to compute (;) in O((log a)(log n)) bit operations using the “naive arithmetic”
model. Using Schonhage’s result [7], it is possible (see [1]) to compute (%) (for 0 < a < n)
using O((log n)(log log n)%(log log log n)) bit operations, but this is not likely to be useful in
practice.

Stein [11] proposed a “binary” algorithm for computing gcd(w,v); this algorithm is based
on the binary expansion of the numbers, and performs no divisions (other than divisions by
2). It has a particularly efficient implementation on binary digital computers, where division
by 2 can be done quickly by using a “shift”. Although it is not surprising that it is possible
to adapt Stein’s algorithm to compute the Jacobi symbol, it does not seem to have been
remarked before that this method is actually simpler and more efficient in practice than
familiar methods. We have implemented this method in C++, and our results show that the
new algorithm runs approximately 7-25% faster than the traditional methods.

This paper is organized as follows: first, we present Stein’s binary algorithm and deter-
mine its worst-case behavior. Next, we present pseudo-code for two familiar algorithms for
computing the Jacobi symbol, and our new binary Jacobi symbol algorithm. We determine
the worst case of the binary Jacobi symbol algorithm. Finally, we present our timing results.

2 Stein’s binary gcd algorithm

We first present Stein’s binary ged algorithm:

Binary Ged(u,v) /* inputs are integers u, v > 0 */

g = 1;

while (u mod 2 = 0) and (v mod 2 = 0) do
u = u/2;
v = v/2;
g = 2%g;

while (u <> 0) do
if (u mod 2 = 0) then u := u/2
else if (v mod 2 = 0) then v := v/2
else
(1) t := abs((u-v)/2);
if (u>=v) thenu := t else v := t;

return(g*v) .

In an environment which supports bit-shifting operations, division and multiplication by
2 are relatively inexpensive operations, compared to step (1). We call an execution of step
(1) a subtraction step.




We now determine the worst case of this algorithm, that is, the lexicographically least
pair (u,v) that forces the algorithm to perform n subtraction steps. (We say a pair (u,) is
lexicographically less than a pair (u',v') if u < %/, orif u = v’ and v < v'.)

Lemma 1 Let R(u,v) denote the number of subtraction steps performed by Binary Gecd on
input (u,v). Then R(u,v) < |log,(u+ v)].

Proof.

It suffices to prove that R(u,v) < log,(u + v); from this the result follows, since R(u,v)
is an integer. The proof is by induction on u + v. It is clearly true if u = v = 1, for then
the algorithm performs one subtraction step. Otherwise, we proceed by induction. If both
u and v are even, then R(u,v) = R(u/2,v/2) < log,(u/2 + v/2) < log,(u + v). A similar
inequality holds when u is even and v is odd, and when u is odd and v is even.

Finally, assume both u and v are odd. Thenifu > v, the algorithm performs a subtraction
step and replaces u with (v — v)/2. Hence we have

R(u,v) = 1+ R((u — v)/2,0) < 1 +logy((u = v)/2 +v) = 1 +logy((u+ v)/2) = logy(u + v).
The same thing occurs ifu <v. ®

We note that a similar, though weaker, result has been given by D. E. Knuth [5, Exercise
4.5.2.28]. For heuristic average-case analysis of the binary algorithm, see Brent [2].

Theorem 2 Letu > v > 0, and let (u,v) be the lezicographically least pair such that Stein’s
binary gcd algorithm performs n subtraction steps on input (u,v). Then u = 2™! 4+ 1,
v=2""1_1 forn > 2.

Proof.

Observe that u > 277!, for otherwise by the lemma we have R(u,v) < n. But u cannot
equal 2"7', for then the first step performed is to divide u by 2, and subsequent processing
cannot result in more than n — 1 subtraction steps. Thus u > 2"! 4+ 1. It is easy to see that
R(2""' 4+1,2" —1) = nfor n > 2. It remains to see that if n > 3, then R(2* '+ 1,v) <n
for all v with 1 < v < 2*! — 1. It suffices to consider the case where v is odd, for when
v is even, the next step of the algorithm changes v to v/2. Hence assume v is odd, and
1 <v < 2"! — 1. After one subtraction step we are left with the pair ((2"~! + 1 — v)/2,v),

and by the lemma above we have R((2"' + 1 —v)/2,v) < [log,(2"! — 1)| < n — 2. Hence
R2"'+1,v)<n—-1. =




3 Three algorithms for computing the Jacobi symbol

In this section, we present three algorithms for computing the Jacobi symbol (ﬁ) . The first,
which we call the “ordinary” algorithm, is essentially that given by Williams [12]. It has
been analyzed by Collins and Loos [3] and Shallit (8]-

We write the algorithms in a Pascal-like pseudocode. We do not use begin/ends, how-
ever, preferring to let the scope of the loops be specified by indentation.

All three algorithms assume that the inputs a,n are integers with n positive and odd.
The first and third algorithms also assume that g is non-negative. The correctness of the
algorithms follows from the following five identities, where m and n are positive odd integers:

{
0y { 1, fn=g
n) 10, otherwise.

2 __{1, ifn =1,7 (mod 8);
~l-1, ifn=3,5 (mod 8).

(m> _ {—(g), if n,m = 3 (mod 4);

1) , - otherwise.

mmodn) (m
n T \n)/)
The ordinary Jacobi symbol algorithm is similar to Euclid’s algorithm for computing the

ged, except that powers of 2 are removed when possible:

Jacobi(a,n) /* a >= 0; n > 0; n odd */

t =1
while (a <> 0) do

while (a mod 2 = 0) do
a ;= a/2;
if (n mod 8 = 3) or (n mod 8 = 5) then t := -t;

interchange(a, n);
if (amod 4 = 3) and (n mod 4 = 3) then t := -t;

a := a mod n;

if (n = 1) then return(t) else return(0).




The next algorithm we present is due to Lebesgue [6]. It is similar to the least-remainder
algorithm for computing the gcd.

LR Jacobi(a,n) /* n > 0; n odd */

t :=1;
while (a <> 0) do

if (a < 0) then

a := -a;
if (n mod 4 = 3) then t := -t;
while (a mod 2 = 0) do
a := a/2; ,
if (n mod 8 = 3) or (n mod 8 = 5) then t := -t;

interchange(a, n); :

if (amod 4 = 3) and (n mod 4 = 3) then t := -t;
a := a mod n;

if (a > n/2) then a := a-n;

if (n = 1) then return(t) else return(0).
Finally, we present our new algorithm, based on Stein’s binary algorithm discussed above:

Binary Jacobi(a,n); /* a >=0; n > 0; n odd */

t = 1;
while (a <> 0) do

while (a mod 2 = 0) do
a := a/2;
if (n mod 8 = 3) or (n mod 8 = 5) then t := -t;

if (a < n) then
interchange(a,n);

if (amod 4 = 3) and (n mod 4 = 3) then t := -t;

(*) a := (a-n)/2;
if (n mod 8 = 3) or (nmod 8 = 5) then t := -t;

if (n = 1) then return(t) else return(0).
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We call an execution of step (*) a subtraction step. Because of the similarity of this
algorithm to Stein’s binary gcd algorithm, it is easy to determine its worst-case behavior:

Theorem 3 Let (a,n) (withn > a > 0, n odd) be the lezicographically least pair such that
Binary Jacobi(a,n) performs m subtraction steps. Then a = 2™ — 1, n = 2™ + 1.

Proof.
This follows immediately from Theorem 2. W

4 Experimental Results

In this section, we present our experimental results. We programmed our algorithms in C++,
using a package developed by the second author at Butler University.

We timed our algorithms on two different platforms; the source code was identical on
each machine except for the system call used to obtain the current time. In addition, on
each platform, we implemented the interchange( , ) procedure in two different ways: by
interchanging pointers and by interchanging values. These four sets of timing results are
given below.

Average running times in CPU seconds on a CompuAdd 486/33 PC running MS-DOS
5.0 at Butler University are as follows:

Interchanging Pointers

Interchanging Values

Dectmal | Jacobi LR Binary Decimal | Jacobi LR Binary
Digits Jacobi Jacobi Dagits Jacobi Jacobi
100 | 0.0405 0.0429 0.0413 100 | 0.0458 0.0461 0.0445
250 { 0.1910 0.1838 0.1727 250 | 0.2103 0.2058  0.1907
500 | 0.6610 0.6510 0.5745 500 | 6.7300 0.7360 0.6350
1000 | 2.416 2.463 2.079 1000 | 2.675 2.780 2.307

Interchanging Pointers

Average running times in CPU seconds on a DECstation 5500 running Ultrix at the Univer-
sity of Waterloo are as follows:

Interchanging Values

Decimal | Jacobi LR Binary Decimal | Jacobi LR Binary
Digits Jacobi Jacobi Dagits Jacobi Jacobi
100 | 0.0183 0.0190 0.0170 100 | 0.0215 0.0220 0.0197
250 | 0.0865 0.0900 0.0720 250 | 0.1023 0.1080 0.0870
500 | 0.3060 0.3275 0.2385 500 | 0.3645 0.3960 0.3000
1000 | 1.162 1.239  0.864 1000 | 1.387 1.503 1.115
Implementation notes:
-9 -




o All three algorithms were given the same set of 10 input pairs for each input size. For

each input pair, each algorithm was run multiple times. The time listed in the table is
the overall average.

e All divisions by 2 were implemented using bit shifts, and the mod 4 and mod 8 opera-
tions were done by examining the least significant bits of the numbers (i.e. no divisions
were performed).

e In our experiments, we found that the LR Jacobi algorithm performed the fewest
iterations of its main loop (about 980 for 1000 digit inputs). The Jacobi algorithm
performed roughly 20% more iterations. The Binary Jacobi algorithm performed
almost twice as many iterations as the Jacobi algorithm.

5 Additional Remarks

Although we did not do this, it would be easy to modify our algorithm to compute the
generalized Jacobi symbol called the Kronecker symbol (see, e.g., Hua [4].)

There is a “k-ary” Jacobi symbol algorithm along the lines of the k-ary GCD algorithm
[10], which is likely to be efficient in practice.
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