
Merrily We Roll Along: Some Aspects of ?

J. O. Shallit

Department of Mathematics
and

Department of Computing Services
University of California, Berkeley

Berkeley, CA 94720
(415) 642-5523

1. Abstract.

We present an efficient method for determining the
number of invocations of ? given the value of EIRL,
and solving the inverse problem. A full implementation is
given for the random-number generator in APL\360 and
its descendants.

2. Introduction.

The APL function ? is a pseudo-random number gen-
erator. The numbers generated by .9 depend on both the
argument(s) to the function and the system variable
D RL, the random link.

Suppose you are running a program that uses random
numbers (for example, a simulation of the length of
queues at the post office, where customers enter at ran-
dom times). You execute the program, but interrupt it
before the simulation is complete. Now you'd like to
know how far the simulation proceeded; since each time .9
is used, a new random link is generated, it is possible to
determine the number of invocations of ? by looking at
DRL

Similarly, you might want to know what value should
be assigned to ~RL to get the effect of having executed .9
a given number of times; for example, to run the third
simulation in a sequence without having to rerun simula-
tions one and two.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distr ibuted for direct commercial advantage,
the ACM copyr ight notice and the t i t le of the
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To. copy otherwise, or to
republish, requires a fee and/or special permission.

01983 ACM-0-89791-095-8/83/0400-0243 $ 00.75

Recent number-theoretic results permit these ques-
tions to be answered in a reasonable length of time. We
will solve two problems:

(a) Given k, compute the value of DRL after ? has
been executed k times.

(b) Given [2RL, compute the number of times that
.9 has been invoked. Since the random number generators
discussed are periodic with period P, we can answer this
question only up to a multiple of P.

In order to facilitate exposition, we will use both con-
ventional mathematical notation and APL notation.
Direct definition is used where the form of functions
being discussed is appropriate. For a program to process
direct definitions, see [6].

Following McDonnell [13], we will use the symbols
w and ^ to represent god and lcm, respectively. Index

origin 1 is assumed throughout.

No attempt will be made to rate the "quality" of the
random number generators being discussed. It may be
worthwhile to note, however, that the generator com-
monly in use may, in fact, be inadequate. See, for exam-
ple, [3] or [51.

3. The Linear Conguential Method for Pseudo-Random
Number Generation.

The algorithm for ? used in APL\360 and its descen-
dants, including APLSV, APL\CMS, VS APL,
APL*PLUS, and SHARP APL, generates a new random
link from the old one by

[]RL*.-- 2147483647 [16807 x •RL (1)

See McDonnell [14]. Note that 2147483647 - 231 - 1, a
prime, and 16807 = 75. The default for EIRL in a clear
workspace is 16807. In the systems mentioned above,
equation (1) is performed once for each use of ? on a

- 243 -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800062.801223&domain=pdf&date_stamp=1983-03-01
Jeffrey Shallit
APL '83: Proceedings of the international conference on APL
April 1983
Pages 243–249

scalar; for arguments which require more than one ran-
dom number to be generated, (1) is executed an appropri-
ate number of times. In addition, (1) is executed twice if
the right argument is larger than 2"31. We call the execu-
tion of (1) an invocation of ?; hence ?1 2 3 4 counts as
four invocations.

The APL\360 method is a particular instance of a
more general technique usually called the linear
congruential method. In this technique, we start with an
initial seed X 0 , and generate new ones by

Xn+ 1 -- aX , + c (rood M). (2)

Here M is called the modulus, a is called the multiplier
, and c is called the increment. See Knuth [8]. The nota-
tion (mod M) means that arithmetic is done modulo M;
the reader whose elementary number theory is a little
rusty should at this point read through Appendix I.

All of the A P L systems that the author has seen use
the linear congruential method to generate the values of
F 1 R L . Table 1 gives a brief summary of the parameters
for some commonly used systems.

W h e r e used

APU360 et at

Waterloo microAPL

DG AOS/VS APL

APL*MYRIADE

@ ¢

16807 0

1001 0 i 345

16807 273905815 57794127

23813 0

Burmulhs API,JT00 152587890723 116177073373 131131704~6

DEC APLSF 30517578125 7261067085

D. H, Lehmet 1429 0

A. Ro~enberll 129 I

R. R. Coveyou 3 3 0

X 0 M Referent4

16807 231--1 [I t |

32749 [24]

i
232 1161

!
I 32749 [22]

239 Its 171

0 : 6 171

2 3 1 _ I 1121

~S 1231

- 213 ii01

Table 1: Parameters for Some Common
Pseudo-Random Number Generators

be able to calculate the two quantities

and

akXo (rood M)

c(l+a+a 2+ ... +a k-l)

(4)

(mod M) (5)

Since the value of k may, in general, be very large, we
cannot use simple iteration; such a method would require
time proportional to k. The quantity in equation (4) is
amenable to the so-called "binary method". Since this
method may not be familiar in the general form we will
use later, we pause to sketch it here.

Sometimes a function f (n) will be defined in terms of
f (n - 1) . To compute f(32), for example, we must first
compute f(31), f(30), . . . , f (1) . If, however, it is
possible to quickly compute f (2n) in terms of f (n) , we
can compute f(32) in only 5 steps:

f (1) --. f (2) - . f (4) --. f (8) --- f(16) --. f(32)

We call this sort of idea a binary scheme. Suppose G is a
dyadic function such that

a G to+l , - " a I N C R E a G co

a G 2o, "- ' -" D O U B L E a G to

a G 0 ~-"~ IDENT a

Then the function B I N computes a G to in time propor-
tional to log(to).

V Z÷X BIN N
[1] s GENERAL BINARY SCHEME
[2] ÷((N=O),I=2IN)/LO,LI
[3] Z÷DOUBLE X BIN N÷2
[~] ÷0
Is] LO:Z÷IDENT'X
[6] ÷0
[7] LI:Z+X INCRE X BIN N-I

V

For example, if the definitions of IDEN~ INCRE,
and DOUBLE are

I D E N I ' : (t l ÷ p ~) o . = , l + p W
INC t~E : a + . x m
D O U B L E : ~o+ . ×co

We will now solve the first of our two problems for the
general linear congruential scheme. Iteration of equation
(2) gives

Xn+k m

akXn -F c(1 ÷ a + • • • + a k-l) (r o o d M). (3)

In order to answer the first of our two questions, we must

then M B I N N computes the N-th power of the matrix
M.

0+3'/+2 2pO 1 1 1
0 1
1 I

t4 B I N 10
3~ 55
55 89

14 B I N 29
3 1 7 8 1 1 5 1 4 2 2 9
5 1 t t 2 2 9 8 3 2 0 4 0

Shallit - 244 - Merrily We Roll Along: Some Aspects of ?

It is now clear how to compute the quantity in equa-
tion (4) quickly. We could use the following definitions,
where M is a global variable.

IDENT : MI1
INCRE :Mlax=
DOUBLE: Ml¢xu

Here X B I N N computes M[X*N.

It is a little harder to compute the quantity in (5)
efficiently.

[Knuth [8] replaces the polynomial
a k - 1

1 + a + a 2 + • • • + a k-I by the expression
a - l '

which, Unfortunately, is expensive to compute when k is
large. And we cannot replace the numerator and denomi-
nator by their values (mod M) when a - 1 has a factor in
common with M , since then a - 1 does not have a mul-
tiplicative inverse (rood M).]

We now sketch an efficient way to calculate both

a k (rood M)

and

1 + a + a 2 + • " • + a k-1 (mod M)

simultaneously.

We will compute with pairs of numbers,

(f (n) , g (n)) - (a n , l + a + a 2 + . . . + a n - l) ;

all values are considered (rnod M). Then we find

f(O) l l ; g(O)--O

f (n + l) -- a "+1 -- a . a n -- a . f (n)

g (n + l) - - l + a + a 2 + . . . + a " - - l + a . g (n)

f (2 n) -- a 2" -- (an) 2 -- f (n) 2

g(2n) -- 1 + a + a 2 + • • • + a 2"-1

-- g (n) + f (n) g (n)

These equations reduce the problem to a simple applica-
tion of the binary scheme.

IDENT : M[1 0
INCRE : M[0 1+axe
DOUBLE: MI (u[1]*2),~[23x1+w[1]

Now it is easy to compute X k given X0, a, c, and M as
global variables:

LINCON: M I (x O , C) + . x A B IN m

The function L I N C O N takes as its right argument the
number of invocations of ?, and returns the proper value
of 13RL For example, suppose X 0 - 73, a - 371,
c - 995, and M - 1024. Then we find

L I N C O N 0
73

L I N C O N 100
49

L I N C O N I000
985

Unfortunately, it is possible for this method to give
incorrect answers in practice; this occurs when M 2 is so
large that it is not exactly representable in the word size
of the machine. We must then use an extended precision
arithmetic package. In Appendix II, we give the functions
to solve the first problem for the APL\360-der ived
pseudo-random number generator. The function R L A I
returns, for its non-negative integer right argument K,
what U R L would be after K invocations of ?. For
example,

DEL
16807

Op?2OOOpl

DRL
1625538587

R L A I 2000
1625538587

4. The Second Problem.

Finding k so that k invocations of ? result in some
chosen value of I 'IRL is a much harder problem, as we
will see below.

Suppose in equation (3) above we have been given
X k, X o, a, c, and M; we wish to find k. Then from

Xk--
a k X o + c (l + a + ' ' ' + a k - 9 (m o d M) (6)

we multiply both sides by (a - l) and add c to get

(a - I) X k + c - ak ((a - -1)XO + c) (rood M) (7)

If we assume that X 1 ;~ X 0 (rood p) for all primes p that
divide M, then

Xi - Xo ;e 0 (rood p)

ago + c - X0 ~ 0 (rood p)

(a - 1) X o + c ~ 0 (m o d p) ,

and so (a - 1)X o + c is invertible (rood M), since it is
invertible for all primes p dividing M.

Shallit - 245 - Herrily We Roll Along: Some Aspects of ?

Now let d be the
(a - 1)X0 + c (rood M). We see that

inverse of

a k n ((a -- I)X k + c)d (rood M) (S)

so we can reduce the linear congruential method to solv-
ing

a k ffi r (mod M) (9)

for k. This problem is called index-finding, or comput-
ing the discrete logarithm . We sometimes write
k - ind a r, where the modulus M is understood. Index-
finding is a problem that is well-known to be difficult in
general if M is large; even if M is prime and the complete
factorization of M - 1 is known, no really good methods
exist. For example, see [1] or [21].

Let us now return for a moment to the simplifying
assumption that X 1 ;e Xo (m0d p). This is not really
much of a restriction, since if Xz - Xo (mod p), then in
fact each X i will be equal (mod p); this is not a very ran-
dom sequence!

Even so, it is possible to solve for the case Where
X 0 - X 1 (rood p) by splitting M into the product of M!
and M2, where X 1 ;e Xo (rood q) for all primes q divid-
ing M 1 but X I - X 0 (m odp) for all p dividing M2.
Then we just solve

a k - ((a - 1) X k + c) d (mod Mi) .

If a solution exists, then the solution is valid (rood M).
This is left to the reader.

In this paper we will only discuss index-finding where
M is a prime, say p. If M is composite, it is easy to
break the problem up into index-finding for each prime
power factor, and combine the results using the Chinese
Remainder Theorem.

5. Index-finding (mod p) .

We consider the problem of solving equation (9) for
a, where M - p, an odd prime. First, we can assume
that a is a primitive root. If it is not, we can find a primi-
tive root g by the method of Appendix I. Then it is easy
to find indar by use of the formula

ind s r
ind a r - (rood p - l)

indga

Hence equation (9) can be rewritten as

g k _ r (m odp)

where g is a generator and p is an odd prime.

(10)

If p is not too large, then we can solve the discrete
logarithm problem easily. The function P O W below com-
putes B[;2]IG*B[;1] for a vector G and matrix B using a
modification of the binary scheme.

V Z~A ~OW B;C;S
[1] a ,A> IS A VECTOR OF LE~GTB E
[2] • <U> IS A X"2 MATRIX
[3] • RESULT IS B[|2]lA*B[tl]
C~] •
[5] A÷('I~I.0A)oA
C6] C*BC;2]
[7] B÷B[;1]
[6] Z÷(oA)01
[93 *
[10] ~1:
[11] S÷((BsO)^O~lIB+Bt2)/tOB
[12] Z[S]÷C[S]iA[S]xZ[8]
[13] 8÷(O=B÷LB)/tOB
[1~] A[S]÷C[S]IA[S].A[S]
[l S] ~(v/B~O)/~I

V

Now

((P-1)pG) POW (-l+zP-1) HOD P

returns a table of the powers of A, hence

-I+(((P-1)0G) POW (-i+IP-1).HOD P)IR

gives the discrete logarithm.

If we wish to solve the problem for a number of
different R, while holding G and P fixed, we can precom-
pute a table and solve the problem by table lookup:

V Z÷IP P
[1] Z÷P
[2] Z[P]÷IpP

V
TAB÷IP ((P-1)0G) POW (-l+tP-1) HOD P

Here I P is a function that, given a permutation, computes
the inverse permutation. Then TAB[A] solves the
discrete logarithm problem for any particular A.

If P has more than 4 or 5 digits, this method becomes
impractical. A second method for index-finding was pro-
posed by Shanks [9]. It is best understood by considering
a simple example. Suppose p - 23, gg - 11, and r - 14.
Assume

g k , r (m o d p)

Suppose k - 5 c + d, where 0 ~< c, d ~< 4. Then

g k . ~ c + d _ • (rood p)

Hence

8 5c -- r ' g - d (mod p) (11)

W e tabulate both sides of this equation for all values of c
and d:

c ~c (mod p) d r.g -d (mod p)
0 1 0 14
1 5 1 18
2 2 2 1

3 ~ 3 3
4 4 4 17

Table 2: Example o f S h a n k s ' method
of Index-findlng

Shallit - 246 - Merrily We Roll Along: Some Aspects of ?

We see that the two sides o f equation (11) coincide for
c - 3, d - 2. Hence k - 5c + d - 17.

To use this method in general, we write the exponent
k in the form

create two lists like !hose in Table 2, and search for an
element common to both lists. If your APL system has
implemented dyadic iota efficiently (see, for example, Ber-
necky [2]), this search can be done in time proportional to
• 4plog p; unfortudately, many APL systems use a simple
search procedure that takes too much time when p is
large. We present a solution that uses the upgrade and
downgrade_primitives, and hence requires time propor-
tional to 4 p log p.

The function INDEX below takes a left argument that
is a prime number, p. The right argument is a two ele-
ment vector; the first element is a generator, g; the
second is a number r such that 1 ~< r < p. The result is
inder.

V Z÷P INDEX GR;B;D;S;IiT;GzR
[i] G÷GR[1]
[2] R÷GR[2]
[3] T÷[P*0.5
[~] l÷'l+tT
[5] B÷(ToG) POF(IxT) MOD P
[6] D÷PIRx(ToINV G,P) POF I HOD P
[7] S÷B FM D
[8] Z÷(P-1)ITI-i+S,D*B[S]

17
23 INDEX ii i~

these are the q - t h roots of unity. If

g k , r (m o d p)

then, by raising both sides to the p - 1 power, we find
q

k (p - l) p--1

00 e - - r ¢ (rood p)
p - I

and so r ¢ is one of the numbers in (12). We can find
the corresponding value of k by a simple table lookup.
This gives k (rood q); we do this for each q dividing
p - 1. See [20].

There is another problem in the implementation of the
Pohiig-Hellman technique for p - 231 - h p2 cannot be
exactly represented in System/360 architecture. There-
fore, we must resort to extended-precision arithmetic.
The most costly operation is reducing an extended-
precision value (mod p); luckily, however, for
p -. 231 - 1, there is an easy method: If we write the
number in base 231, then x (rood 231 - 1) is just the sum
of the digits of x. This is an easily-proved generalization
of the well-known technique called "casting out nines". If
we choose our base of representation to be a small power
of two, say 220 , then it is easy to convert the number to
base 231 for computation of the remainder (rood 231 - 1).

The function PHIF (Pohlig-Hellman index-finding)
uses the above techniques to compute the index of its
right argument. It requires the use of auxiliary tables and
constants which can be precomputed once and stored.
These variables are computed by the function SETUP.
The function NIQ (number of invocations of ?) takes a
right argument which is a purported value of DRL, and
returns the least number of invocations of ? needed to get
that value. For example:

Shank's method works well when p is smaller than l0 T
or so; unfortunately, it is too slow for the case we are
most interested in: where p - 23] - I.

We turn to another method of index-finding first dis-
cussed by Pohlig and Hellman [20]. Their method
requires a table of length q for every prime q dividing
p - l ; hence it is suitable only when p - 1 has all small
prime factors. Luckily for Us, the factorization of 231 - 2
is

2 n -- 2 -- 2.32.7.11.31.151.331

and the factors are small enough to make the computation
feasible.

The Pohlig-Hellman method for solving equation (10)
is to compute the value of k modulo each prime power
factor dividing p - 1; then the exponent k is recon-
structed via the Chinese Remainder Theorem. We
precompute a table holding the values

(p- I) ~ 2(p-1) (q - l) (p -1)
l ;gg q ,gg q , " ' ' , g q ; (12)

DRL
16807

Op?2OOOpl

DRL
1 6 2 5 5 3 8 5 8 7

NIQ DRL
2000

The function NIQ takes about 5 seconds of CPU time
to execute on an IBM 4341. The amount of time is
independent of its right argument. NIQ does better than
simple search if the number of invocations of ? is greater
than about 6000.

See Appendix II for definitions.

In closing, it may be of some interest to note that
Plumstead [19] has shown how to deduce the values of a,
c, and M in equation (2), given only the first few values
of X v

Shallit - 247 - Merrily We Roll Along: Some Aspects of ?

6. Acknowledgements.

The author would like to thank Gene McDonnell for
several suggestions, and the referee for corrections to the
first draft.

Thanks also go to Doug Forkes, who suggested a way
to speed up the implementation of Pohlig and Hellman's
method.

References

[1] Leonard Adleman, A Subexponential Algorithm for the
Discrete Logarithm Problem, with Applications to Cryptography,
Proceedings of the 1980 Conference on Foundations of Computer Science
(FOCS), IEEE, 55-60.

[2] Bob Bernecky, Speeding up Dyadic Iota and Dyadic Epsilon,
APL 73 Congress Proceedings, North-Holland.

[3] George S. Fishman and Louis R. Moore, A Statistical Evalua-
tion of Muitiplicative Congruential Random Number Generators with
Modulus 2 ~t -- 1, Journ. Amer. Stat. Assoc. 77 (1982) 129-136.

[4] G. H. Hardy and E. M. Wright, An Introduction to the
Theory of Numbers, Oxford, Clarendon Press (1971).

[5] Thomas N. Herzog, Generating Uniform Pseudorandom
Numbers, APL Quote Quad12 (2) (1978) 22-23.

[6] K. E. Iverson, Notation as a Tool of Thought, CACM 23
(1980) 465.

[7] Doug Keenan, personal communication (I P Sharp Mailbox
#1675771).

[8] D. E. Knuth, The Art of Computer Programming, V. 2 (Sem-
inumerical Algorithms), Addison-Wesley, Reading, Mass. (1981), 9-
14.

[9] D. E. Knuth, The Art of Computer Programming, V. 3 (Sort-
ing and Searching), Addison-Wesley, Reading, Mass. (1973) 9, 575-
576.

[10] J. B. Kruskal, Extremely Portable Random Number Genera-
tor, CACM I2 (1969) 93-94.

[11] R. H. LathweU and J. E. Mezei, A Formal Description of
APL, IBM Philadelphia Scientific Center Technical Report 320-3008,
(November, 1971)o8,11.

[12] D. H. Lehmer, Random Number Generation on the BRL
High-Speed Computing Machines, rev. by M. L. Juncosa, Math. Rev.
15 (1954) 559.

[13] E. E. McDonnell, A Notation for the GCD and LCM func-
tions, APL 75 Congress Proceedings, ACM (1975) 240-243.

[14] E. E. McDonnell, How the Roll Function Works, APL Quote
Quads (3) (1978) 42-47.

[15] E. E. McDonnell, personal communication (I P Sharp Mail-
box # 1675603).

[16] Randall Mercer, personal communication.

[17] Ronald C. Murray, personal communication (I P Sharp Mail-
box # 1678290).

[18] C. D. Oids, Continued Fractions, Random House, 1963.

[19] Joan B. Plumstead, Inferring a Sequence Generated by a
Linear Congruence, to appear.

[20] Stephen C. Pohlig and Martin E. Hellya~n, An Improved
Algorithm for Computing Logarithms over GFtp) and its Crypto-
graphic Significance, IEEE Trans. Itlfo. Theory IT-24 (1978) 106-110.

/11121] J. M. Pollard, Monte-Carlo Methods for Index Computation
od p) , Math. Comp. 32 (1978) 918-923.

[22] L. P. A. Robichaud, personal communication (I P Sharp
Mailbox # 1675876).

[23] A. Rotenberg, A New Pseudo-Random Number Generator,
JACM7 (1960) 75-77.

[24] John Wilson, personal communication.

Appendix I

Some Number-Theoretic Functions

1. Multiplicative inverses (rood N) .

Given two relatively prime numbers A and N, a well-
known theorem states that it is possible to find B such
that 1 - N I A × B. This integer B is called the (multipli-
cative) inverse of A (rood N).

One quick way to find the inverse of A (rood N) is to
use continued fractions. Continued fractions are a sub-
ject in themselves and we do not have space here to go
into the theory in detail. The interested reader is referred
to [4] and [18].

The function INV takes a two element vector X as its
right argument; the result is the inverse of
X[1] (rood X[2]). It is assumed that 1 = v/X.

INV: m [2] l (- l * o T) x (g C 2 T~CP ~) [2 : 1]
PC2: (PC2 - l t ~) * . x 2 2pO 1 1 , - 1 ' ~ : O=p~ : 2 2pO 1 I 0
CF: (L t / ~) , CP I \ ¢ ~ : 0 = ' 1 ÷ ~ : 10

2. The Chinese Remainder Theorem.

This theorem states that the system of equations

x -- a 1 (rood M 1)

X = a 2 (rood M 2)

has a un ique solut ion 0 ~< x < M t M 2 if M 1 and M 2 are
relatively prime.

One way to find this solut ion is to compute b 1 and b 2
such that

b 1 = 1 (m o d M 1) , b 2 - 0 (m o d M 1)

b 1 = 0 (m o d M 2) , b 2 - - 1 (m o d M 2)

T h e n x is g iven by

x R a l b t + a2b2 (rood MtM2) .

In fact we can take b t - M 2 c2, b2 - M1 cl, where c2 is

Shallit - 248 - Merrily We Roll Along: Some Aspects of ?

Appendix II

Function Listings

the inverse of M 2 (rood M 1) and c I is the inverse of
M 1 (rood M2).

The function CR T is defined such that

M I A C R T M . - - " A

for two-element integer vectors A and M with 1 - V / M .

CAT: (~ / ~) I ~ +.~ (~) x (I I~W ~o~), INV

3. Primitive Roots

A primitive root, or generator, for an odd prime p is
a number g such that the p - 1 numbers

e , E , . . ° , ~p--1

form a permutation of I, 2, • • • , p - l . Every prime has
at least one primitive root [4].

Given the factorization of p - 1, it is easy to deter-
mine if a gi,~en g is a primitive root: we just check to see
that

p-1
g q ; e l (moLlp)

for all primvs q dividing p - 1. This is implemented in
the functio:~ IPR. The left argument is a 2-colurnn
matrix F cc ntaining the factorization of P - 1 in canoni-
cal form; the first column contains distinct primes and the
second column contains exponents. The right argument
G is a purported generator. The result is 1 if G is a prim-
itive root; 0 otherwise.

IPR~ ^ / l~ ((l~p=)0m) POW (T t a [; 1]) MOB l + T ÷ ~ [l l] x . * = [| 2]

We can find a generator quickly simply testing 2, 3, 4,
... in order This is done with the function a FPR ca,
which finds the first primitive root of the odd prime a
greater than or equal to o~.

PP~; m ~ -~ IPR m ~ a FPH m÷l

RI~: (~-I)[(PBIF m) - i

RLAI: B l (O . ~) TOTH~ m+l

T I : MOD231 CAR +/0 - l e (3+=) * . xm

MOD: (, a) , [1 . 5] m

V SETUP;E
[1] . EXECUTE ONCE 20 SET UP CONSTANTS ARD TABLES
[2] B÷10~8576 , B~SE OF COMPUTATION = 2*20
[3] P÷21~7;836~7 . 42-31)-1
[~] ~÷16807 , THE GENERATOR
[5] ~÷ 2 7 9 11 31 151 331 , PRIME POWER FACTORS OFf-1
[6] ~+'1 0 CRT' APPLX ~.[1.5] ~x.*(t7)..~17
Iv] ~÷1
[83 LI~
[9] a' V ' , (v F [K]) , ' + M T A B ~[X]'
[103 * ((p ~) e X ÷ K + l l / L 1

V

V Z+Y TOTRE N
[1] Z+ 0 1
[23 ÷(N=o)/0
[3] L I : ÷ (0 = I I R + N t 2) / L 0
[~] Z÷Y TI Z
[5] ÷(0=R÷LN)/0
[6] LO:Y+I TI Y
[7] ÷L1

V

V Z÷HOD231 V;T|S
[I] T÷.~(20p2)TV
[2] S÷[(0T)t31
[3] Z÷(20R)TP~+/21~(R.31)p(-Sx31)tT

V

V Z÷CAR V
[1] Z÷(0 .BIV)÷(LV÷B) ,0
[2] L0:
[3] * (^ / B > Z) / O

[5] *LO
V

V Z÷PBIF A;M
[1] a POHLIG-HELLMAN INDEX-FINDING FOB <A>
[2] A÷(2pB)TA
[3] M~'A ~LOC t A P P L ~
[~] Z÷(P-1)JS÷.x£

V

V Z+F APPL~ X
tl] Z+~0
[2] X+l
[3] L0:
[~] ~(K>i÷pX)/0
[5] Z÷Z.~P. i X[K'.((-l+ppX)pl;').*] '
[6] X~X+l
[7] ÷L0

V

V Z÷HTAB Q;R;T
[I] /~-Y÷(0.~) rOTSE(~-l)tq
[2] Z÷.I
[3] LO:
[~] ~(Q=pZ)/O
IS] Z÷Z,B~B

[7] ÷L0
V

V Z÷A FM B;E;F;G
[1] a FIND MATCR
[2] • ~A> AND ARE VECTORS WITH AT LEAST
[3] , ONE ELEMENT I8 COMMON; RESULT IS TRE INDEX
[;] . INTO <A> OF A COMN08 RLEMEST
[5] E÷~A.B
[6] F÷~VA.e
[7] G+(ExP)/~pE
[8] Z÷L/E[G]

V

V Z÷X ILOC I;2
[1] T÷BIX TOTHE(P-1)t~
[2] Z÷~I'V'.(VY)~'~T')-I

V

Shal]it - 249 - Merrily We Roll Along: Some Aspects of ?

