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1. Abstract. 

We present an efficient method for determining the 
number of invocations of ? given the value of EIRL, 
and solving the inverse problem. A full implementation is 
given for the random-number generator in APL\360 and 
its descendants. 

2. Introduction. 

The APL function ? is a pseudo-random number gen- 
erator. The numbers generated by .9 depend on both the 
argument(s) to the function and the system variable 
D RL, the random link. 

Suppose you are running a program that uses random 
numbers (for example, a simulation of the length of 
queues at the post office, where customers enter at ran- 
dom times). You execute the program, but interrupt it 
before the simulation is complete. Now you'd like to 
know how far the simulation proceeded; since each time .9 
is used, a new random link is generated, it is possible to 
determine the number of invocations of ? by looking at 
DRL 

Similarly, you might want to know what value should 
be assigned to ~RL to get the effect of having executed .9 
a given number of times; for example, to run the third 
simulation in a sequence without having to rerun simula- 
tions one and two. 
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Recent number-theoretic results permit these ques- 
tions to be answered in a reasonable length of time. We 
will solve two problems: 

(a) Given k, compute the value of DRL after ? has 
been executed k times. 

(b) Given [2RL, compute the number of times that 
.9 has been invoked. Since the random number generators 
discussed are periodic with period P, we can answer this 
question only up to a multiple of P. 

In order to facilitate exposition, we will use both con- 
ventional mathematical notation and APL notation. 
Direct definition is used where the form of functions 
being discussed is appropriate. For a program to process 
direct definitions, see [6]. 

Following McDonnell [13], we will use the symbols 
w and ^ to represent god and lcm, respectively. Index 

origin 1 is assumed throughout. 

No attempt will be made to rate the "quality" of the 
random number generators being discussed. It may be 
worthwhile to note, however, that the generator com- 
monly in use may, in fact, be inadequate. See, for exam- 
ple, [3] or [51. 

3. The Linear Conguential Method for Pseudo-Random 
Number Generation. 

The algorithm for ? used in APL\360 and its descen- 
dants, including APLSV, APL\CMS, VS APL, 
APL*PLUS, and SHARP APL, generates a new random 
link from the old one by 

[]RL*.-- 2147483647 [ 16807 x •RL (1) 

See McDonnell [14]. Note that 2147483647 - 231 - 1, a 
prime, and 16807 = 75. The default for EIRL in a clear 
workspace is 16807. In the systems mentioned above, 
equation (1) is performed once for each use of ? on a 
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scalar; for arguments which require more than one ran- 
dom number to be generated, (1) is executed an appropri- 
ate number of times. In addition, (1) is executed twice if 
the right argument is larger than 2"31. We call the execu- 
tion of (1) an invocation of ?; hence ?1 2 3 4 counts as 
four invocations. 

The APL\360  method is a particular instance of a 
more general technique usually called the linear 
congruential method. In this technique, we start with an 
initial seed X 0 , and generate new ones by 

Xn+ 1 -- aX ,  + c (rood M). (2) 

Here M is called the modulus, a is called the multiplier 
, and c is called the increment. See Knuth [8]. The nota- 
tion (mod M) means that arithmetic is done modulo M; 
the reader whose elementary number theory is a little 
rusty should at this point read through Appendix I. 

All of the A P L  systems that the author has seen use 
the linear congruential method to generate the values of 
F 1 R L .  Table 1 gives a brief summary of the parameters 
for some commonly used systems. 

W h e r e  used 

APU360 et at 

Waterloo microAPL 

DG AOS/VS APL 

APL*MYRIADE 

@ ¢ 

16807 0 

1001 0 i 345 

16807 273905815 57794127 

23813 0 

Burmulhs API,JT00 152587890723 116177073373 131131704~6 

DEC APLSF 30517578125 7261067085 

D. H, Lehmet 1429 0 

A. Ro~enberll 129 I 

R. R. Coveyou 3 3 0 

X 0 M Referent4 

16807 231--1  [ I t |  

32749 [24] 

i 
232 1161 

! 
I 32749 [22] 

239 Its 171 

0 : 6  171 

2 3 1 _  I 1121 

~S 1231 

- 213 ii01 

Table 1: Parameters for Some Common 
Pseudo-Random Number Generators 

be able to calculate the two quantities 

and 

akXo (rood M) 

c(l+a+a 2+ ... +a k-l) 

(4) 

(mod M) (5) 

Since the value of k may, in general, be very large, we 
cannot use simple iteration; such a method would require 
time proportional to k. The quantity in equation (4) is 
amenable to the so-called "binary method". Since this 
method may not be familiar in the general form we will 
use later, we pause to sketch it here. 

Sometimes a function f ( n )  will be defined in terms of 
f ( n - 1 ) .  To compute f(32),  for example, we must first 
compute f(31),  f(30),  . . . ,  f (1) .  If, however, it is 
possible to quickly compute f (2n)  in terms of f ( n ) ,  we 
can compute f(32) in only 5 steps: 

f (1)  --. f (2)  - .  f (4)  --. f (8)  --- f(16) --. f(32) 

We call this sort of idea a binary scheme. Suppose G is a 
dyadic function such that 

a G to+l , - "  a I N C R E  a G co 

a G 2o, "- ' -"  D O U B L E  a G to 

a G 0 ~-"~ IDENT a 

Then the function B I N  computes a G to in time propor- 
tional to log(to). 

V Z÷X BIN N 
[1] s GENERAL BINARY SCHEME 
[2] ÷((N=O),I=2IN)/LO,LI 
[3] Z÷DOUBLE X BIN N÷2 
[~] ÷0 
Is] LO:Z÷IDENT'X 
[6] ÷0 
[7] LI:Z+X INCRE X BIN N-I 

V 

For example, if the definitions of IDEN~ INCRE, 
and DOUBLE are 

I D E N I '  : ( t l ÷ p ~ ) o . = , l + p  W 
INC t~E  : a + . x m  
D O U B L E :  ~o+ . ×co 

We will now solve the first of our two problems for the 
general linear congruential scheme. Iteration of equation 
(2) gives 

Xn+k m 

akXn -F c(1 ÷ a + • • • + a k-l) ( r o o d  M). (3) 

In order to answer the first of our two questions, we must 

then M B I N  N computes the N-th power of the matrix 
M. 

0+3'/+2 2pO 1 1 1 
0 1 
1 I 

t4 B I N  10 
3~ 55 
55 89 

14 B I N  29  
3 1 7 8 1 1  5 1 4 2 2 9  
5 1 t t 2 2 9  8 3 2 0 4 0  
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It is now clear how to compute the quantity in equa- 
tion (4) quickly. We could use the following definitions, 
where M is a global variable. 

IDENT : MI1 
INCRE :Mlax= 
DOUBLE: Ml¢xu  

Here X B I N  N computes M[ X*N. 

It is a little harder to compute the quantity in (5) 
efficiently. 

[ Knuth [8] replaces the polynomial 
a k - 1 

1 + a + a 2 + • • • + a k-I by the expression 
a - l '  

which, Unfortunately, is expensive to compute when k is 
large. And we cannot replace the numerator and denomi- 
nator by their values (mod M) when a - 1 has a factor in 
common with M ,  since then a - 1 does not have a mul- 
tiplicative inverse (rood M). ] 

We now sketch an efficient way to calculate both 

a k (rood M) 

and 

1 + a + a 2 + • " • + a k-1 (mod M) 

simultaneously. 

We will compute with pairs of numbers, 

( f ( n ) ,  g ( n ) )  - (a  n , l + a + a 2 + . . .  + a n - l ) ;  

all values are considered (rnod M). Then we find 

f(O) l l ;  g(O)--O 

f ( n + l )  -- a "+1 --  a . a  n --  a . f ( n )  

g ( n + l ) - - l + a + a  2 +  . . .  + a " - -  l + a . g ( n )  

f ( 2 n )  -- a 2" -- (an)  2 -- f ( n )  2 

g(2n) -- 1 + a + a 2 + • • • + a 2"-1 

--  g ( n )  + f ( n ) g ( n )  

These equations reduce the problem to a simple applica- 
tion of the binary scheme. 

IDENT : M[ 1 0 
INCRE : M[ 0 1+axe 
DOUBLE: MI (u[1]*2),~[23x1+w[ 1] 

Now it is easy to compute X k given X0, a, c, and M as 
global variables: 

LINCON:  M I ( x O , C ) + . x A  B IN  m 

The function L I N C O N  takes as its right argument the 
number of invocations of ?, and returns the proper value 
of 13RL For example, suppose X 0 - 73, a - 371, 
c - 995, and M - 1024. Then we find 

L I N C O N  0 
73 

L I N C O N  100 
49 

L I N C O N  I000 
985 

Unfortunately, it is possible for this method to give 
incorrect answers in practice; this occurs when M 2 is so 
large that it is not exactly representable in the word size 
of the machine. We must then use an extended precision 
arithmetic package. In Appendix II, we give the functions 
to solve the first problem for the APL\360-der ived  
pseudo-random number generator. The function R L A I  
returns, for its non-negative integer right argument K, 
what U R L  would be after K invocations of ?. For 
example, 

DEL 
16807 

Op?2OOOpl 

DRL 
1625538587 

R L A I  2000 
1625538587 

4. The Second Problem. 

Finding k so that k invocations of ? result in some 
chosen value of I 'IRL is a much harder problem, as we 
will see below. 

Suppose in equation (3) above we have been given 
X k, X o, a,  c, and M; we wish to find k. Then from 

Xk-- 
a k X o  + c ( l  + a + ' ' '  + a k - 9  ( m o d M )  (6) 

we multiply both sides by ( a - l )  and add c to get 

( a - I ) X  k + c - ak ( (a - -1 )XO + c) (rood M) (7) 

If we assume that X 1 ;~ X 0 (rood p) for all primes p that 
divide M, then 

Xi - Xo ;e 0 (rood p) 

ago + c - X0 ~ 0 (rood p) 

( a - 1 ) X  o + c ~ 0  ( m o d p ) ,  

and so (a  - 1 )X o + c is invertible (rood M), since it is 
invertible for all primes p dividing M. 
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Now let d be the 
(a - 1)X0 + c (rood M).  We see that 

inverse of 

a k n ((a -- I)X k + c)d (rood M) (S) 

so we can reduce the linear congruential method to solv- 
ing 

a k ffi r (mod M) (9) 

for k. This problem is called index-finding, or comput- 
ing the discrete logarithm . We sometimes write 
k - ind a r, where the modulus M is understood. Index- 
finding is a problem that is well-known to be difficult in 
general if M is large; even if M is prime and the complete 
factorization of M - 1  is known, no really good methods 
exist. For example, see [1] or [21]. 

Let us now return for a moment to the simplifying 
assumption that X 1 ;e Xo (m0d p). This is not really 
much of a restriction, since if Xz - Xo (mod p), then in 
fact each X i will be equal (mod p); this is not a very ran- 
dom sequence! 

Even so, it is possible to solve for the case Where 
X 0 - X 1 (rood p) by splitting M into the product of M! 
and M2, where X 1 ;e Xo (rood q) for all primes q divid- 
ing M 1 but X I - X  0 (m odp)  for all p dividing M2. 
Then we just solve 

a k - ( (a  - 1 ) X  k + c ) d  (mod Mi) .  

If  a solution exists, then the solution is valid (rood M). 
This is left to the reader. 

In this paper we will only discuss index-finding where 
M is a prime, say p. If  M is composite, it is easy to 
break the problem up into index-finding for each prime 
power factor, and combine the results using the Chinese 
Remainder Theorem. 

5. Index-finding (mod p ) .  

We consider the problem of solving equation (9) for 
a, where M -  p, an odd prime. First, we can assume 
that a is a primitive root. If  it is not, we can find a primi- 
tive root g by the method of Appendix I. Then it is easy 
to find indar  by use of the formula 

ind s r 
ind a r - (rood p - l )  

indga 

Hence equation (9) can be rewritten as 

g k _ r  (m odp)  

where g is a generator and p is an odd prime. 

(10) 

If  p is not too large, then we can solve the discrete 
logarithm problem easily. The function P O W  below com- 
putes B[;2]IG*B[;1] for a vector G and matrix B using a 
modification of the binary scheme. 

V Z~A ~OW B;C;S 
[1] a ,A> IS A VECTOR OF LE~GTB E 
[2] • <U> IS A X"2 MATRIX 
[3] • RESULT IS B[|2]lA*B[tl] 
C~] • 
[5 ]  A÷('I~I.0A)oA 
C6] C*BC;2] 
[7] B÷B[;1] 
[6 ]  Z÷(oA)01 
[93 * 
[10] ~1: 
[11] S÷((BsO)^O~lIB+Bt2)/tOB 
[12] Z[S]÷C[S]iA[S]xZ[8] 
[13] 8÷(O=B÷LB)/tOB 
[1~] A[S]÷C[S]IA[S].A[S] 
[ l S ]  ~(v/B~O)/~I 

V 

Now 

((P-1)pG) POW (-l+zP-1) HOD P 

returns a table of the powers of A, hence 

-I+(((P-1)0G) POW (-i+IP-1).HOD P)IR 

gives the discrete logarithm. 

If  we wish to solve the problem for a number of 
different R,  while holding G and P fixed, we can precom- 
pute a table and solve the problem by table lookup: 

V Z÷IP P 
[1] Z÷P 
[2] Z[P]÷IpP 

V 
TAB÷IP ((P-1)0G) POW (-l+tP-1) HOD P 

Here I P  is a function that, given a permutation, computes 
the inverse permutation. Then TAB[A]  solves the 
discrete logarithm problem for any particular A. 

If  P has more than 4 or 5 digits, this method becomes 
impractical. A second method for index-finding was pro- 
posed by Shanks [9]. It is best understood by considering 
a simple example. Suppose p - 23, gg - 11, and r - 14. 
Assume 

g k ,  r ( m o d p )  

Suppose k - 5 c + d, where 0 ~< c, d ~< 4. Then 

g k .  ~ c + d  _ • (rood p) 

Hence 

8 5c -- r ' g  - d  (mod p) (11) 

W e  tabulate both sides of this equation for all values of c 
and d: 

c ~c  (mod p) d r.g -d (mod p) 
0 1 0 14 
1 5 1 18 
2 2 2 1 

3 ~ 3 3 
4 4 4 17 

Table 2: Example  o f S h a n k s '  method 
of Index-findlng 

Shallit - 246 - Merrily We Roll Along: Some Aspects of ? 



We see that the two sides o f  equation (11) coincide for 
c - 3, d - 2. Hence k - 5c + d - 17. 

To use this method in general, we write the exponent 
k in the form 

create two lists like !hose in Table 2, and search for an 
element common to both lists. If  your APL system has 
implemented dyadic iota efficiently (see, for example, Ber- 
necky [2]), this search can be done in time proportional to 
• 4plog p; unfortudately, many APL systems use a simple 
search procedure that takes too much time when p is 
large. We present a solution that uses the upgrade and 
downgrade_primitives, and hence requires time propor- 
tional to 4 p  log p. 

The function INDEX below takes a left argument that 
is a prime number, p. The right argument is a two ele- 
ment vector; the first element is a generator, g; the 
second is a number r such that 1 ~< r < p. The result is 
inder. 

V Z÷P INDEX GR;B;D;S;IiT;GzR 
[i] G÷GR[1] 
[2] R÷GR[2] 
[3] T÷[P*0.5 
[~] l÷'l+tT 
[5] B÷(ToG) POF(IxT) MOD P 
[6] D÷PIRx(ToINV G,P) POF I HOD P 
[7] S÷B FM D 
[8] Z÷(P-1)ITI-i+S,D*B[S] 

17 
23 INDEX ii i~ 

these are the q - t h  roots of  unity. If  

g k ,  r ( m o d p )  

then, by raising both sides to the p - 1 power, we find 
q 

k ( p - l )  p--1 

00 e - -  r ¢ (rood p)  
p - I  

and so r ¢ is one of  the numbers in (12). We can find 
the corresponding value of  k by a simple table lookup. 
This gives k (rood q); we do this for each q dividing 
p -  1. See [20].  

There is another problem in the implementation of  the 
Pohiig-Hellman technique for p - 231 - h p2 cannot be 
exactly represented in System/360 architecture. There- 
fore, we must resort to extended-precision arithmetic. 
The most costly operation is reducing an extended- 
precision value (mod p); luckily, however, for 
p -. 231 - 1, there is an easy method: If  we write the 
number in base 231, then x (rood 231 - 1) is just the sum 
of  the digits of  x. This is an easily-proved generalization 
of  the well-known technique called "casting out nines". If  
we choose our base of  representation to be a small power 
of  two, say 220 , then it is easy to convert the number to 
base 231 for computation of  the remainder (rood 231 - 1). 

The function PHIF (Pohlig-Hellman index-finding) 
uses the above techniques to compute the index of  its 
right argument. It requires the use of  auxiliary tables and 
constants which can be precomputed once and stored. 
These variables are computed by the function SETUP. 
The function NIQ (number of  invocations of  ?) takes a 
right argument which is a purported value of  DRL, and 
returns the least number of  invocations of  ? needed to get 
that value. For example: 

Shank's method works well when p is smaller than l0 T 
or so; unfortunately, it is too slow for the case we are 
most interested in: where p - 23] - I. 

We turn to another method of  index-finding first dis- 
cussed by Pohlig and Hellman [20]. Their method 
requires a table of  length q for every prime q dividing 
p - l ;  hence it is suitable only when p - 1  has all small 
prime factors. Luckily for Us, the factorization of  231 - 2 
is 

2 n -- 2 -- 2.32.7.11.31.151.331 

and the factors are small enough to make the computation 
feasible. 

The Pohlig-Hellman method for solving equation (10) 
is to compute the value of  k modulo each prime power 
factor dividing p -  1; then the exponent k is recon- 
structed via the Chinese Remainder Theorem. We 
precompute a table holding the values 

(p- I )  ~ 2(p-1) (q - l ) (p -1 )  
l ;gg q ,gg q , " ' ' , g  q ; (12) 

DRL 
16807  

Op?2OOOpl  

DRL 
1 6 2 5 5 3 8 5 8 7  

NIQ DRL 
2000  

The function NIQ takes about 5 seconds of  CPU time 
to execute on an IBM 4341. The amount of  time is 
independent of  its right argument. NIQ does better than 
simple search if the number of  invocations of  ? is greater 
than about 6000. 

See Appendix II for definitions. 

In closing, it may be of  some interest to note that 
Plumstead [19] has shown how to deduce the values of  a, 
c, and M in equation (2), given only the first few values 
of X v 
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Appendix I 

Some Number-Theoretic Functions 

1. Multiplicative inverses (rood N) .  

Given two relatively prime numbers A and N, a well- 
known theorem states that it is possible to find B such 
that 1 - N I A × B. This integer B is called the (multipli- 
cative) inverse of  A (rood N).  

One quick way to find the inverse of  A (rood N) is to 
use continued fractions. Continued fractions are a sub- 
ject in themselves and we do not have space here to go 
into the theory in detail. The interested reader is referred 
to [4] and [18]. 

The function INV takes a two element vector X as its 
right argument; the result is the inverse of  
X[1] (rood X[2]). It is assumed that 1 = v/X. 

INV: m [ 2 ] l ( - l * o T ) x ( g C 2  T~CP ~ ) [ 2 : 1 ]  
PC2: (PC2 - l t ~ ) * . x 2  2pO 1 1 , - 1 ' ~  : O=p~ : 2 2pO 1 I 0 
CF: ( L t / ~ ) ,  CP I \ ¢ ~  : 0 = ' 1 ÷ ~  : 10 

2. The Chinese Remainder Theorem. 

This theorem states that the system of equations 

x -- a 1 (rood M 1) 

X = a 2 (rood M 2) 

has a un ique  solut ion 0 ~< x < M t M 2 if M 1 and M 2 are 
relatively prime. 

One  way to find this solut ion is to compute  b 1 and  b 2 
such that 

b 1 = 1  ( m o d M 1 ) ,  b 2 - 0  ( m o d M  1) 

b 1 = 0  ( m o d M 2 ) ,  b 2 - - 1  ( m o d M  2) 

T h e n  x is g iven by 

x R a l b t  + a2b2 (rood MtM2) .  

In  fact we can take b t - M 2 c2, b2 - M1 cl, where  c2 is 
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Appendix II 

Function Listings 

the inverse of  M 2 (rood M 1) and c I is the inverse of  
M 1 (rood M2). 

The function CR T is defined such that 

M I A  C R T  M . - - "  A 

for two-element integer vectors A and M with 1 - V / M .  

CAT: ( ~ / ~ )  I ~ +.~  ( ~ )  x ( I I~W ~o~),  INV 

3. Primitive Roots 

A primitive root, or generator, for an odd prime p is 
a number g such that the p - 1 numbers 

e ,  E ,  . .  ° ,  ~p--1 

form a permutation of  I, 2, • • • ,  p - l .  Every prime has 
at least one primitive root [4]. 

Given the factorization of  p -  1, it is easy to deter- 
mine if a gi,~en g is a primitive root: we just check to see 
that 

p-1 
g q ; e l  (moLlp) 

for all primvs q dividing p -  1. This is implemented in 
the functio:~ IPR. The left argument is a 2-colurnn 
matrix F cc ntaining the factorization of  P - 1 in canoni- 
cal form; the first column contains distinct primes and the 
second column contains exponents. The right argument 
G is a purported generator. The result is 1 if G is a prim- 
itive root; 0 otherwise. 

IPR~ ^ / l~ ( ( l~p=)0m)  POW ( T t a [ ; 1 ] )  MOB l + T ÷ ~ [ l l ] x . * = [ |  2] 

We can find a generator quickly simply testing 2, 3, 4, 
... in order This is done with the function a FPR ca, 
which finds the first primitive root of  the odd prime a 
greater than or equal to o~. 

PP~; m ~ -~  IPR m ~ a FPH m÷l 

RI~: (~-I)[(PBIF m ) - i  

RLAI:  B l ( O . ~ )  TOTH~ m+l 

T I :  MOD231 CAR +/0 - l e (3+=) * . xm 

MOD: ( , a ) ,  [ 1 . 5 ]  m 

V SETUP;E 
[1] . EXECUTE ONCE 20 SET UP CONSTANTS ARD TABLES 
[2] B÷10~8576 , B~SE OF COMPUTATION = 2*20 
[3] P÷21~7;836~7 . 42-31)-1 
[~] ~÷16807 , THE GENERATOR 
[5] ~÷ 2 7 9 11 31 151 331 , PRIME POWER FACTORS OFf-1 
[6] ~+'1 0 CRT' APPLX ~.[1.5] ~x.*(t7)..~17 
Iv] ~÷1 
[83 LI~ 
[ 9 ]  a' V ' , ( v F [ K ] ) , ' + M T A B  ~[X]' 
[103 * ( ( p ~ ) e X ÷ K + l l / L 1  

V 

V Z+Y TOTRE N 
[ 1 ]  Z+ 0 1 
[23 ÷(N=o)/0 
[ 3 ]  L I : ÷ ( 0 = I I R + N t 2 ) / L 0  
[~] Z÷Y TI Z 
[ 5 ]  ÷(0=R÷LN)/0 
[6] LO:Y+I TI Y 
[ 7 ]  ÷L1 

V 

V Z÷HOD231 V;T|S 
[I] T÷.~(20p2)TV 
[2] S÷[(0T)t31 
[3] Z÷(20R)TP~+/21~(R.31)p(-Sx31)tT 

V 

V Z÷CAR V 
[ 1 ]  Z÷(0 .BIV)÷(LV÷B) ,0  
[2] L0: 
[ 3 ]  * ( ^ / B > Z ) / O  

[5] *LO 
V 

V Z÷PBIF A;M 
[1] a POHLIG-HELLMAN INDEX-FINDING FOB <A> 
[ 2 ]  A÷(2pB)TA 
[3] M~'A ~LOC t A P P L ~  
[ ~ ]  Z÷(P-1)JS÷.x£ 

V 

V Z+F APPL~ X 
tl] Z+~0 
[2] X+l 
[ 3 ]  L0: 
[~] ~(K>i÷pX)/0 
[5] Z÷Z.~P. i X[K'.((-l+ppX)pl;').*] ' 
[6] X~X+l 
[ 7 ]  ÷L0 

V 

V Z÷HTAB Q;R;T 
[I] /~-Y÷(0.~) rOTSE(~-l)tq 
[2] Z÷.I 
[ 3 ]  LO: 
[~] ~(Q=pZ)/O 
IS ]  Z÷Z,B~B 

[7] ÷L0 
V 

V Z÷A FM B;E;F;G 
[1] a FIND MATCR 
[2] • ~A> AND <B> ARE VECTORS WITH AT LEAST 
[3] , ONE ELEMENT I8 COMMON; RESULT IS TRE INDEX 
[;] . INTO <A> OF A COMN08 RLEMEST 
[5] E÷~A.B 
[6] F÷~VA.e 
[7] G+(ExP)/~pE 
[ 8 ]  Z÷L/E[G] 

V 

V Z÷X ILOC I;2 
[1] T÷BIX TOTHE(P-1)t~ 
[2] Z÷~I'V'.(VY)~'~T')-I 

V 
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