
INFINITE ARRAYS AND DIAGONALIZATION

J. O. Shallit
Department of Mathematics
University of California

Berkeley, Ca. 94720
(415) 642-5523

Abstract

This paper discusses the application
of infinite arrays to several areas,
notably the formation of "do-while"
expressions. The functions diagonal
and inverse diagonal are deflned, with
appllca~s to processing both finite
and infinite arrays. Infinite arrays
are shown to be useful in mathematical
exposition. Finally, suggestions are
given for the implementation of
diagonalization functions.

I. Introduction.

In a previous paper [I], E. E.
McDonnell and the author briefly
discussed the implications of arrays
containing a countably infinite number
of elements. The present paper examines
some applications in greater detail.

Origin 0 is used throughout.
Certain non-standard notation is employed,
and the reader is urged to scan the
appendix before proceeding. Direct
definition is used throughout; for a
program to process direct definitions,
see [2].

As in [1] and [3], the symbol
(underbar) is used to denote infinity.
The expression t_ denotes the infinite
vector Z such that Z[K] ~ K.

2. Replacin@ the "Do-While" Construct.

Many algorithms which when coded in
languages such as PL/I or FORTRAN involve
constructs like

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

V1981 ACM 0-89791-035-4/81/i000-0281 $00.75

do i = 0 to n-i

can be described in APL as functions on
iN. The ability to generate vectors of
indices and to process arrays without
explicitly providing dimensions allows
single-line formulation of many problems.

Unfortunately, current implement-
ations of ADL do not provide simple ways
to replace the construct often called a
"do-while" loop. For example, consider
the problem of determining the number
of terms of the inverse factorial series

+ / ÷ ! l f l

needed to get an approximation to
accurate to 1E-5. In a PL/I-like
language, this could be solved as
follows:

Procedure count;

e = exp(1);
sum = 0;
i = 0;

do while iE-5 < (e-sum);
sum = sum + 1/fact(i);
i = i+l;
end;

return(i);

However, using infinite arrays,
this program can be replaced by the
following ADL expression:

1+(1E-5<(,C)-+\÷! i_) t0
9
This gives the so lu t ion of 9 terms
necessary to sum the series to the
given accuracy. Further examples
follo~.:

A. Find a numerator for a good rational
approximation to pi:

l+(v~IE-4>IIOl -Io,×.I+i)tl
113

o113
354 .9999699

(0 1) , 3 5 5 ÷ 1 ~ 3
3°141592654 3 ,14169292

J. 0. Shallit 281 Inf in i te Arrays and Diagonalization

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800142.805375&domain=pdf&date_stamp=1981-09-01
Jeffrey Shallit
APL '81: Proceedings of the international conference on APL
October 1981
Pages 281–285

B. Show that not all numbers of the form

x 2 + x + 41

are prime (see, for example, [4]).

PRIME: 2=÷/0=(1+I~)I~
PRIME N ÷+ 1 if N is prime,

0 otherwise

T÷(- i pi_)±1 1 41
5+T

41 43 47 53 61
5÷PRIME T

11 111
(PRIME"T) ~ 0

4O

40±1 1 41
1681

41.2
1681

Here, the symbol denotes the
"itemwise" or "each" operator, which
applies its functional left argument
to each element of its array right
argument. See [5] and the appendix.

C. Find the least prime greater than
or equal to a given integer:

LPGE: ~ + (PRIME"~+i)ll
LPGE 1OOO0

10007

In these examples, the fundamental
concept is that we do not know, a priori,
an upper bound on how many terms must be
examined. Hence the infinite vector i_
effectively permits computations to
continue until an answer is found.

3. Diagonalization.

The diagonal and inverse diagonal
transformations were introduced in [1].
For finite arrays, these functions are
given by:

DIAG: (.~)[&,+/IOTA pw]
IDIAG: ~p~[i~,+~IOTA ~]

IOTA: wT~ptx/~

In terms of syntax and ranks of argu-
ments and results, DIAG behaves just
like ravel (monadic ,) and IDIAG behaves
like reshape (dyadic p). The functions
DIAG and IDIAG are inverses; we have

A ~+ (oA) IDIAG DIAG A.

We propose use of the (currently
unassigned) symbol ¢ for both of the
diagonal transformations. Monadically,
¢ would behave like DIAG; dyadically,
it would be IDIAG. Hence the above
identity may be more elegantly expressed
as

A ÷+ (pA)¢¢A.

This choice has the advantage of form
following function, since the shape of
the symbol suggests the transformation:

A÷5 3 p I 15

A

CA
01324657981012111314

Using ¢ with finite arrays can
produce unusual restructuring. For
example, consider the expression

(¢ p A) ¢ ¢ A .

A+3 5 p I 15
A

0 1 2 3 4
5 6 7 8 9

10 11 12 13 14

(CpA)¢¢A

5 6 3

i l l l t 8
112 13 14 !

AS another example of the use of ¢,
consider the function DET3 below which
gives the determinant of a 3 x 3 matrix:

DET3: (ALT ¢~) - ALT
ALT: +/x/3 3p3+~,w

DET3 3 3pt9

DET3 (t3)o .~ t3

The function ¢ also exhibits its
utility in conjunction with infinite
arrays. For example:

A. List all composite integers:

u ¢ (2 + t) o . x 2 + t
4 6 8 9 10 12 15 16 14 18 20 21 24 25 . . .

Here the symbol u is Iverson's "nub"
function, which selects distinct
elements from its array right argument.
See the Appendix and [3].

Inf ini te Arrays and Diagonalization 282 J. 0. Shallit

B. Let PR be an infinite vector of the
prime numbers in ascending order. Compute
a vector consisting of all integers that
are the product of precisely 3 primes
(counting multiplicities):

u¢pRo.xpRo.xPR
8 12 20 18 28 30 27 44 42 50 45 52 66 ...

C. Generate rows of Pascal's triangle:

MS: c~ .v c~+~- 1
¢(~_)o.MS 1+I_

I I 1 1 2 1 1 3 3 1 1 4 6 4 1 ...

Here we are performing an outer product
with respect to the user-defined function
MS°

4. Infinite Arrazs i_n Exposition.

In the previous three sections we
have restricted operations using infinite
arrays to those that could easily be
implemented in the sense of [1]. Use of
APL in exposition, however, is not subject
to such constraints.

For example, we have the identities:

.1 ÷+ +/÷!i_

and

01 ÷ ÷ - / 4 ÷ 1 + 2 x t _ .

More examples follow:

A. Let V be an infinite vector. Then

L/v

is the greatest lower bound or "inf" of
V; in the same fashion, [/V is the
least upper bound or "sup". See [6].

(f~V)[K] ++ f/K~V

where f is any scalar dyadic function.

Then if V is an infinite vector,
the expression

L/r~v

is the "lim sup" and, in a similar fashion,
F/L~V gives the "lim inf". See [6].

D. Define J÷t_. Then show that

4 ÷+ +/(J+l)÷2*J.

Proof:

+/(J+l)÷2*J

+/(J+l)/2.-J

+/2.-(J+l)/J

+/2.-¢Jo.+J

+/+/2*-Jo.+J

+/2,1-J

4.

Here we are using the proof style of
Iverson [7] where equivalent statements
are written below each other.

E. Prove that the positive rational
numbers are countable.

Proof. The expression

u ¢ (1 + l _) o . ÷ 1 + l _
I 0 . 5 2 0 . 3 3 3 3 0 . 2 5 0 . 6 6 7 1 . 5 4 0 . 2 . . .

exhibits a one-one correspondence between
t_ and the positive rationals.

B. Prove th@t the infinite series

+/÷1+i_

diverges.

Proof: Note that

1 ÷+ (1 + 1 _) ^ . ~ (2 " 1 _) / 2 " 1 + t _ .

(Here we are using the symbol / to mean
"replicate"; see the Appendix.)

Hence (+/÷1+i_) ~ +/÷(2*t_)/2*l+t_;
and the expression on the right is seen
to equal +/(2,i_)÷2,1+i_; this is
just +/_p÷2 or _. Thus the infinite
series diverges.

C. Let ~ denote a new operator which we
will call "right-scan"; for vectors V
we have

F. Define a function FACDIV such that

P FACDIV N

gives the number of times a given prime P
divides IN. (See [8].)

Solution:

FACDIV: +/L~÷~*i+t_

5 FACDIV i0000
2499

G. Prove that the set S = {x: 0<x<l}
is uncountable.

Proof: (Cantor diagonalization). Assume
S is countable. Then we can represent S
by the infinite vector S,and there exists

J. O. Shall i t 283 Inf in i te Arrays and Diagonalization

a matrix M of shape _ _ such that the K-th
row of M is the base-10 representation of
the K-th element of S, i. e.

S[K] ÷+ M [K ;] + . x I O * - I * i _ .

NOW consider the vector

D÷9 - 1 I ~ M.

Then D is the base-10 representation of a
number between 0 and 1 and so

(D+.x10*-1+i_) e S;

but D cannot appear anywhere as a row of
M since we have

D[K] ~ M[K;K].

Hence our original assumption that the set
S was countable must be false.

5. Implementation of ¢ .

In the case where the right argument
to ~ is a finite array, implementation is
provided by the functions DIAG and IDIAG
given in section 3.

Implementation is much more diffi-
cult in the case of infinite arrays,
however. The functions DI (diagonal
index) and IDI (inverse diagonal index)
5elow suggest one possible approach.

These functions are defined such that

(¢A)[iK] ÷+ A INDEX K DI pA

and

(W¢V) INDEX U ÷+ V[(((+/U) IDI W)A.=U)~I]

where A is an array, U, V, and W are
vectors, K is a non-negative integer, and
INDMX is Iverson's generalized indexing
function given by

INDEX: (, e) [~ (p ~) ± ~] .

See [9].

V Z~K DI P;J
[i] Z÷(0,pP)pJ~0
[2] Li:÷(K~pZ)/L2
[3] Z~Z,[OIO]eJ PART P
[4] J~J+l
[5] ÷Li
[6] LT:Z÷(K,pP)÷Z

V

v Z+K IDI V
[i] Z÷(0,pV)p0
[2] Li:÷(K<O)/L2
[3] Z÷Z,[~IO] K PART V
[4] K÷K-i
[5] +LI
[6] LT:Z÷SZ

V

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[I0]

V Z÷K PART V;I;T;B&R
THE RESULT <Z> IS A MATRIX SUCH
THAT THE ROWS CONSIST OF ALL

, INTEGER VECTORS <W> WITH K=+/W
, AND (O~W)AW<V; THE VECTORS ARE
A PRODUCED IN REVERSE LEXICO-

GRAPHICAL ORDER BY A NON-RECURSIVE
ALGORITHM

Z÷(O,pV)pO
~(O~V)/O
T÷(pV)pI÷O

[ii] LO:B÷K-+/I~T
[12] R÷B BREAK I+V
[13] +(B~+/R)/Li
[14] T÷(ItT),R
[15] z÷Z,[OIO] T
[16] I÷-l+eIo+pV
[17] Li:I÷((T>O)AI>IpT) RIOTA 1
[18] +(I<GIO)/O
[19] T[I]÷T[I]-i
[20] I÷I+l-OIO
[21] ÷LO

V

? Z÷K BREAK V;R;T
[i] ~ THE RESULT <Z> IS A VECTOR SUCH
[2] ~ THAT (pV) = pZ AND K = +/Z (IF
[3] A POSSIBLE) AND (0~Z)AZ<V AND THIS
[4] ~ IS THE LAST SUCH <Z> IN LEXICO-
[5] R GRAPHICAL ORDER
[6] T÷(K~+\V-i)~i
[7] R÷(T-~IO)÷V-I
[8] Z÷(pV)÷R,K-+/R

V

V Z~V RIOTA K
[i] ~ LIKE DYADIC IOTA, BUT GIVES INDEX
[2] ~ OF FIRST OCCURRENCE OF <K> IN THE
[3] ~ VECTOR <V~ SCANNING FROM THE RIGHT
[4] ~ TO THE LEFT; IF <K> DOES NOT OCCUR
[5] ~ IN <V>, THE RESULT IS 010-1.
[6] Z÷(-i+TxOIO)+(pV)-(~V)~K

V

6. Acknowledgements.

The author would like to thank the
referees for many helpful comments and
suggestions.

ADDendix: Simulation
of Non-Standard Functions and Operators

A. F"A denotes itemwise application of
the function F to the array A such that

(F"A) INDEX K ÷~ F A INDEX K.

In the case where E is a scalar function,
this can be simulated with

'F' IW A

where

IW: (pw)p~ ITEM ,w
ITEM: (~a,' ',vl÷~),~ ITEM 1+w :

O=p~ :

I n f i n i t e Arrays and Diagonalization 284 J .O . Sha l l i t

B. uA is Iverson's nub function (see
[10]) and is a vector---of the distinct
elements chosen from the array A. The
function below performs this task:

NUB: (('Ipw)=~1~)l~÷,~

C. User-defined outer product may be
mimicked with the use of the function
OP below, which performs an outer
product with respect to the function
F; i. e.

A OP B ÷~ A o.F B.

OP: (((PPe)+~Pp~),Ipps)~
(p~),p~)pa) F ((pe),p~)ow

6. H. L. Royden, Real Analysis,
The Macmillan Company, London: 1968,
p. 31, 36.

7. K. E. Iverson, Elementary
Analysis, APL Press, Swarthmore, Pa.: 1976.

8. William LeVeque, Fundamentals of
Number Theory, Addison-Wesley, Reading,
Mass.: I~7, p. 132.

9. K. E. Iverson, "The Derivative
Operator", APL 79 Conference Proceedings,
pp. 347-354.

10. K. E. Iverson, "Programming Style
in APL", An APL Users Meeting, I. P.
Sharp Associates, Ltd., 1978, pp. 200-224.

D. Replication is an extension of the
compression function, and is available
as a primitive on some systems. It is
denoted by A/B and replicates its right
argument according to the pattern given
by the left argument. For example,

3 2 0 1 2/10 20 30 40 50
10 10 10 20 20 40 50 50

Replication can be simulated for vector
arguments by the function REP below.

V Z+A REP B;M;T
[I] ~ REPLICATES VECTOR ACCORDING
[2] ~ TO PATTERN <A>; THIS ALGORITHM
[3] ~ FOR VECTORS IS BASED ON AN
[4] ~ IDEA OF R. HEIBERGER
[5] A÷(T÷A~O)/A
[6] M÷(+/A)pO
[7] M[OIO++\-i~A]÷I
[8] Z÷(T/B)[DIO++\M]

V

References

i. E. E. McDonnell and J. O. Shallit,
"Extending APL to Infinity", Proceedings
of the APL 80 Conference.

, 2. K. E. Iverson, "Notation as a Tool
of Thought", Communications of the ACM,
V. 23, No. 8 (August, 1980) pp. 444-465.

3. K. E. Iverson, "Operators and
Functions", RC 7091, IBM Corporation,
Yorktown Heights, N. Y., 1978.

4. Albert H. Beiler, Recreations in
th e Theory of Numbers, Dover Publicat~ns,
New York: 1966, p. 219.

5. Z. Ghandour and J. Mezei,
"General Arrays, Operators, and Functions",
IBM Journal of Research and Develop-
ment, V. 17, No. 4 (July, 1973), p. 339.

J. 0. Shallit 285 Infinite Arrays and Diagonalization

