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Abstract 

This paper discusses the application 
of infinite arrays to several areas, 
notably the formation of "do-while" 
expressions. The functions diagonal 
and inverse diagonal are deflned, with 
appllca~s to processing both finite 
and infinite arrays. Infinite arrays 
are shown to be useful in mathematical 
exposition. Finally, suggestions are 
given for the implementation of 
diagonalization functions. 

I. Introduction. 

In a previous paper [I], E. E. 
McDonnell and the author briefly 
discussed the implications of arrays 
containing a countably infinite number 
of elements. The present paper examines 
some applications in greater detail. 

Origin 0 is used throughout. 
Certain non-standard notation is employed, 
and the reader is urged to scan the 
appendix before proceeding. Direct 
definition is used throughout; for a 
program to process direct definitions, 
see [2]. 

As in [1]  and [3], the symbol 
(underbar) is used to denote infinity. 
The expression t_ denotes the infinite 
vector Z such that Z[K] ~ K. 

2. Replacin@ the "Do-While" Construct. 

Many algorithms which when coded in 
languages such as PL/I or FORTRAN involve 
constructs like 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

V1981 ACM 0-89791-035-4/81/i000-0281 $00.75 

do i = 0 to n-i 

can be described in APL as functions on 
iN. The ability to generate vectors of 
indices and to process arrays without 
explicitly providing dimensions allows 
single-line formulation of many problems. 

Unfortunately, current implement- 
ations of ADL do not provide simple ways 
to replace the construct often called a 
"do-while" loop. For example, consider 
the problem of determining the number 
of terms of the inverse factorial series 

+ / ÷ ! l f l  

needed to get an approximation to 
accurate to 1E-5. In a PL/I-like 
language, this could be solved as 
follows: 

Procedure count; 

e = exp(1); 
sum = 0; 
i = 0; 

do while iE-5 < (e-sum); 
sum = sum + 1/fact(i); 
i = i+l; 
end; 

return(i); 

However, using infinite arrays, 
this program can be replaced by the 
following ADL expression: 

1+(1E-5<( ,C)-+\÷! i_) t0  
9 
This gives the so lu t ion  of 9 terms 
necessary to sum the series to the 
given accuracy. Further examples 
follo~.: 

A. Find a numerator for a good rational 
approximation to pi: 

l+(v~IE-4>IIOl -Io,×.I+i )tl 
113 

o113 
354 .9999699  

( 0 1 ) , 3 5 5 ÷ 1 ~ 3  
3°141592654  3 ,14169292  
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B. Show that not all numbers of the form 

x 2 + x + 41 

are prime (see, for example, [4]). 

PRIME: 2=÷/0=(1+I~)I~ 
PRIME N ÷+ 1 if N is prime, 

0 otherwise 

T÷( - i pi_)±1 1 41 
5+T 

41 43 47 53 61 
5÷PRIME T 

11 111 
(PRIME"T) ~ 0 

4O 

40±1 1 41 
1681 

41.2 
1681 

Here, the symbol denotes the 
"itemwise" or "each" operator, which 
applies its functional left argument 
to each element of its array right 
argument. See [5] and the appendix. 

C. Find the least prime greater than 
or equal to a given integer: 

LPGE: ~ + (PRIME"~+i)ll 
LPGE 1OOO0 

10007 

In these examples, the fundamental 
concept is that we do not know, a priori, 
an upper bound on how many terms must be 
examined. Hence the infinite vector i_ 
effectively permits computations to 
continue until an answer is found. 

3. Diagonalization. 

The diagonal and inverse diagonal 
transformations were introduced in [1]. 
For finite arrays, these functions are 
given by: 

DIAG: (.~)[&,+/IOTA pw] 
IDIAG: ~p~[i~,+~IOTA ~] 

IOTA: wT~ptx/~ 

In terms of syntax and ranks of argu- 
ments and results, DIAG behaves just 
like ravel (monadic ,) and IDIAG behaves 
like reshape (dyadic p). The functions 
DIAG and IDIAG are inverses; we have 

A ~+ (oA) IDIAG DIAG A. 

We propose use of the (currently 
unassigned) symbol ¢ for both of the 
diagonal transformations. Monadically, 
¢ would behave like DIAG; dyadically, 
it would be IDIAG. Hence the above 
identity may be more elegantly expressed 
as 

A ÷+ (pA)¢¢A. 

This choice has the advantage of form 
following function, since the shape of 
the symbol suggests the transformation: 

A÷5 3 p I 15 

A 

CA 
01324657981012111314 

Using ¢ with finite arrays can 
produce unusual restructuring. For 
example, consider the expression 

( ¢ p A ) ¢ ¢ A .  

A+3 5 p I 15 
A 

0 1 2 3 4 
5 6 7 8 9 

10 11 12 13 14 

( CpA )¢¢A 

5 6 3 

i l l l t 8  
112 13 14 ! 

AS another example of the use of ¢, 
consider the function DET3 below which 
gives the determinant of a 3 x 3 matrix: 

DET3: (ALT ¢~) - ALT 
ALT: +/x/3 3p3+~,w 

DET3 3 3pt9 

DET3 ( t3)o .~ t3  

The function ¢ also exhibits its 
utility in conjunction with infinite 
arrays. For example: 

A. List all composite integers: 

u ¢ ( 2 + t  ) o . x 2 + t  
4 6 8 9 10 12 15 16 14 18 20 21 24 25 . . .  

Here the symbol u is Iverson's "nub" 
function, which selects distinct 
elements from its array right argument. 
See the Appendix and [3]. 
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B. Let PR be an infinite vector of the 
prime numbers in ascending order. Compute 
a vector consisting of all integers that 
are the product of precisely 3 primes 
(counting multiplicities): 

u¢pRo.xpRo.xPR 
8 12 20 18 28 30 27 44 42 50 45 52 66 ... 

C. Generate rows of Pascal's triangle: 

MS: c~ .v c~+~- 1 
¢(~_)o.MS 1+I_ 

I I 1 1 2 1 1 3 3 1 1 4 6 4 1 ... 

Here we are performing an outer product 
with respect to the user-defined function 
MS° 

4. Infinite Arrazs i_n Exposition. 

In the previous three sections we 
have restricted operations using infinite 
arrays to those that could easily be 
implemented in the sense of [1]. Use of 
APL in exposition, however, is not subject 
to such constraints. 

For example, we have the identities: 

.1 ÷+ +/÷!i_ 

and 

01 ÷ ÷  - / 4 ÷ 1 + 2 x t _ .  

More examples follow: 

A. Let V be an infinite vector. Then 

L/v 

is the greatest lower bound or "inf" of 
V; in the same fashion, [/V is the 
least upper bound or "sup". See [6]. 

(f~V)[K] ++ f/K~V 

where f is any scalar dyadic function. 

Then if V is an infinite vector, 
the expression 

L/r~v 

is the "lim sup" and, in a similar fashion, 
F/L~V gives the "lim inf". See [6]. 

D. Define J÷t_. Then show that 

4 ÷+ +/(J+l)÷2*J. 

Proof: 

+/(J+l)÷2*J 

+/(J+l)/2.-J 

+/2.-(J+l)/J 

+/2.-¢Jo.+J 

+/+/2*-Jo.+J 

+/2,1-J 

4. 

Here we are using the proof style of 
Iverson [7] where equivalent statements 
are written below each other. 

E. Prove that the positive rational 
numbers are countable. 

Proof. The expression 

u ¢ ( 1 + l _ ) o . ÷ 1 + l _  
I 0 . 5  2 0 . 3 3 3  3 0 . 2 5  0 . 6 6 7  1 . 5  4 0 . 2  . . .  

exhibits a one-one correspondence between 
t_ and the positive rationals. 

B. Prove th@t the infinite series 

+/÷1+i_ 

diverges. 

Proof: Note that 

1 ÷+ ( 1 + 1 _ ) ^ . ~ ( 2 " 1 _ ) / 2 " 1 + t _ .  

(Here we are using the symbol / to mean 
"replicate"; see the Appendix.) 

Hence (+/÷1+i_) ~ +/÷(2*t_)/2*l+t_; 
and the expression on the right is seen 
to equal +/(2,i_)÷2,1+i_; this is 
just +/_p÷2 or _. Thus the infinite 
series diverges. 

C. Let ~ denote a new operator which we 
will call "right-scan"; for vectors V 
we have 

F. Define a function FACDIV such that 

P FACDIV N 

gives the number of times a given prime P 
divides IN. (See [8].) 

Solution: 

FACDIV: +/L~÷~*i+t_ 

5 FACDIV i0000 
2499  

G. Prove that the set S = {x: 0<x<l} 
is uncountable. 

Proof: (Cantor diagonalization). Assume 
S is countable. Then we can represent S 
by the infinite vector S,and there exists 
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a matrix M of shape _ _ such that the K-th 
row of M is the base-10 representation of 
the K-th element of S, i. e. 

S[K]  ÷+ M [ K ; ] + . x I O * - I * i _ .  

NOW consider the vector 

D÷9 - 1 I ~ M. 

Then D is the base-10 representation of a 
number between 0 and 1 and so 

(D+.x10*-1+i_) e S; 

but D cannot appear anywhere as a row of 
M since we have 

D[K] ~ M[K;K]. 

Hence our original assumption that the set 
S was countable must be false. 

5. Implementation of ¢ .  

In the case where the right argument 
to ~ is a finite array, implementation is 
provided by the functions DIAG and IDIAG 
given in section 3. 

Implementation is much more diffi- 
cult in the case of infinite arrays, 
however. The functions DI (diagonal 
index) and IDI (inverse diagonal index) 
5elow suggest one possible approach. 

These functions are defined such that 

(¢A)[iK] ÷+ A INDEX K DI pA 

and 

(W¢V) INDEX U ÷+ V[(((+/U) IDI W)A.=U)~I] 

where A is an array, U, V, and W are 
vectors, K is a non-negative integer, and 
INDMX is Iverson's generalized indexing 
function given by 

INDEX: ( , e ) [ ~ ( p ~ ) ± ~ ] .  

See [9]. 

V Z~K DI P;J 
[i] Z÷(0,pP)pJ~0 
[2] Li:÷(K~pZ)/L2 
[3] Z~Z,[OIO]eJ PART P 
[4] J~J+l 
[5] ÷Li 
[6] LT:Z÷(K,pP)÷Z 

V 

v Z+K IDI V 
[i] Z÷(0,pV)p0 
[2] Li:÷(K<O)/L2 
[3] Z÷Z,[~IO] K PART V 
[4] K÷K-i 
[5] +LI 
[6] LT:Z÷SZ 

V 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[I0] 

V Z÷K PART V;I;T;B&R 
THE RESULT <Z> IS A MATRIX SUCH 
THAT THE ROWS CONSIST OF ALL 

, INTEGER VECTORS <W> WITH K=+/W 
, AND (O~W)AW<V; THE VECTORS ARE 
A PRODUCED IN REVERSE LEXICO- 

GRAPHICAL ORDER BY A NON-RECURSIVE 
ALGORITHM 

Z÷(O,pV)pO 
~(O~V)/O 
T÷(pV)pI÷O 

[ii] LO:B÷K-+/I~T 
[12] R÷B BREAK I+V 
[13] +(B~+/R)/Li 
[14] T÷(ItT),R 
[15] z÷Z,[OIO] T 
[16] I÷-l+eIo+pV 
[17] Li:I÷((T>O)AI>IpT) RIOTA 1 
[18] +(I<GIO)/O 
[19] T[I]÷T[I]-i 
[20] I÷I+l-OIO 
[21] ÷LO 

V 

? Z÷K BREAK V;R;T 
[i] ~ THE RESULT <Z> IS A VECTOR SUCH 
[2] ~ THAT (pV) = pZ AND K = +/Z (IF 
[3] A POSSIBLE) AND (0~Z)AZ<V AND THIS 
[4] ~ IS THE LAST SUCH <Z> IN LEXICO- 
[5] R GRAPHICAL ORDER 
[6] T÷(K~+\V-i)~i 
[7] R÷(T-~IO)÷V-I 
[8] Z÷(pV)÷R,K-+/R 

V 

V Z~V RIOTA K 
[i] ~ LIKE DYADIC IOTA, BUT GIVES INDEX 
[2] ~ OF FIRST OCCURRENCE OF <K> IN THE 
[3] ~ VECTOR <V~ SCANNING FROM THE RIGHT 
[4] ~ TO THE LEFT; IF <K> DOES NOT OCCUR 
[5] ~ IN <V>, THE RESULT IS 010-1. 
[6] Z÷(-i+TxOIO)+(pV)-(~V)~K 

V 
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ADDendix: Simulation 
of Non-Standard Functions and Operators 

A. F"A denotes itemwise application of 
the function F to the array A such that 

(F"A) INDEX K ÷~ F A INDEX K. 

In the case where E is a scalar function, 
this can be simulated with 

'F' IW A 

where 

IW: (pw)p~ ITEM ,w 
ITEM: (~a,' ',vl÷~),~ ITEM 1+w : 

O=p~ : 
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B. uA is Iverson's nub function (see 
[10]) and is a vector---of the distinct 
elements chosen from the array A. The 
function below performs this task: 

NUB: (('Ipw)=~1~)l~÷,~ 

C. User-defined outer product may be 
mimicked with the use of the function 
OP below, which performs an outer 
product with respect to the function 
F; i. e. 

A OP B ÷~ A o.F B. 

OP: ( (  (PPe)+~Pp~),Ipps)~ 
( p~),p~)pa) F ((pe),p~)ow 

6. H. L. Royden, Real Analysis, 
The Macmillan Company, London: 1968, 
p. 31, 36. 

7. K. E. Iverson, Elementary 
Analysis, APL Press, Swarthmore, Pa.: 1976. 

8. William LeVeque, Fundamentals of 
Number Theory, Addison-Wesley, Reading, 
Mass.: I~7, p. 132. 

9. K. E. Iverson, "The Derivative 
Operator", APL 79 Conference Proceedings, 
pp. 347-354. 

10. K. E. Iverson, "Programming Style 
in APL", An APL Users Meeting, I. P. 
Sharp Associates, Ltd., 1978, pp. 200-224. 

D. Replication is an extension of the 
compression function, and is available 
as a primitive on some systems. It is 
denoted by A/B and replicates its right 
argument according to the pattern given 
by the left argument. For example, 

3 2 0 1 2/10 20 30 40 50 
10 10 10 20 20 40 50 50 

Replication can be simulated for vector 
arguments by the function REP below. 

V Z+A REP B;M;T 
[I] ~ REPLICATES VECTOR <B> ACCORDING 
[2] ~ TO PATTERN <A>; THIS ALGORITHM 
[3] ~ FOR VECTORS IS BASED ON AN 
[4] ~ IDEA OF R. HEIBERGER 
[5] A÷(T÷A~O)/A 
[6] M÷(+/A)pO 
[7] M[OIO++\-i~A]÷I 
[8] Z÷(T/B)[DIO++\M] 

V 
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