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Abstract. I survey some of the connections between formal languages and number
theory. Topics discussed include applications of representation in base k, representation
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1. Introduction. In this paper, I survey some interesting connections
Setween number theory and the theory of formal languages. This is a very
‘arge and rapidly growing area, and I focus on a few areas that interest me,
rather than attempting to be comprehensive. (An earlier survey of this
area, written in French, is [1].) I also give a number of open questions.

Number theory deals with the properties of integers, and formal lan-
zuage theory deals with the properties of strings. At the intersection lies

(a) the study of the properties of integers based on their representation

in some manner — for example, representation in base k; and

(b) the study of the properties of strings of digits based on the integers

they represent.

An example of a theorem of type (a) — perhaps the first significant one
— is the famous theorem of Kummer [60, pp. 115-116], which states that
the exponent of the highest power of a prime p which divides the binomial
woefficient (;’1) is equal to the number of “carries” when m is added to
7 —m in base p.

For type (b) I do not know a theorem as fundamental as Kummer’s.
Sut here is a little problem that some may find amusing. Call a set of
sirings sparse if, as n — oo, it contains a vanishingly small fraction of all
possible strings of length n. Then can one find a sparse set S of strings
2 0’s and 1’s such that every string of 0’s and 1’s can be written as the
soncatenation of two strings from S? One solution is to let S be the set of all
sirings of 0’s and 1’s such that the number of 1’s is a sum of two squares.
Then by a famous theorem in number theory — Lagrange’s theorem —
svery number n is the sum of four squares, so every string of 0’s and 1’s is
= concatenation of two strings chosen from S. The sparseness of S follows
Tom an estimate in sieve theory [38]. Further examples of theorems of type

5) can be found in Section 8.1.

“Research supported in part by a grant from NSERC.
JrDepalrtment of Computer Science, University of Waterloo, Waterloo, Ontario,
“anada N2L 3G1. E-mail: shallit@graceland.uwaterloo.ca .

547



Jeffrey Shallit
In D. A. Hejhal, J. Friedman, M C. Gutziller, and A. M.
Odlyzko, eds., Emerging Applications of Number Theory,
IMA Volumes in Math. and its Appl., V. 109, Springer, 1999.


548 JEFFREY SHALLIT

It may be objected that studying the formal language aspects of nu:
ber theory is somewhat artificial, in the sense that it depends on choos:
one particular representation — such as representation in base 2 — z
that there is no reason to choose base 2 over any other base. For examp
recall the famous objection of Hardy to certain kinds of digital problem:

These are odd facts, very suitable for puzzle columns and
likely to amuse amateurs, but there is nothing in them
which appeals much to a mathematician. The proofs are
neither difficult nor interesting — merely a little tiresome.
The theorems are not serious; and it is plain that one
reason (though perhaps not the most important) is the
extreme speciality of both the enunciations and the proofs,
which are not capable of significant generalization. [46, p.
105]

I offer four answers to Hardy’s objection. First, we attempt to m
our theorems as general as possible. For example, we can try to prc
theorems for all bases k£ rather than just a single base. Second, sometims
some bases do occur naturally in problems, and base 2 is one of them: ==
Section 4. Third, the area has proved to have many applications; perk
the most dramatic examples are the recent simple proofs of transcende:
in finite characteristic by Allouche and others; see Section 5. Finally. «
area is “natural”, and I submit as evidence the fact that many good ma
maticians throughout history have worked in it, including Kummer, Luc:
and Carlitz.

2. Notation. I begin with some notation for formal languages.
which a good reference is the book of Hopcroft and Ullman [49].

Let ¥ be a finite list of symbols, or alphabet, and let £* denote *
free monoid over ¥, that is, the set of all finite strings of symbols choss
from ¥, with concatenation as the monoid operation. Thus, if ¥ = {0.1
then

v* = {¢,0,1, 00,01, 10, 11,000, . . .},
where € is the notation for the empty string. A formal language, or ;
language, is defined to be any subset of X*.
Let L, L1, Lo be languages. We define the concatenation of languzs

as follows:

L1Ly = {:1,‘1372 iz € Ly, 20 € Lz}

1The two problems he cited as examples were (a) show that 8712 and 9801 ar=
only four-digit numbers which are nontrivial integral multiples of their reversals anc
show that 153, 370, 371, and 407 are the only integers > 1 which are equal to the su
the cubes of their decimal digits. Today, digital problems continue to attract atte=
and criticism; see, for example, [35].
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Define L% = {¢}, and L* = LL*! for i > 1. We define the Kleene closure
of a language by

L=\

i>0

A regular expression over an alphabet ¥ is a way to denote certain lan-
suages — a finite expression using the symbols in ¥ together with + (to
denote union), * (to denote Kleene closure), ¢ (to denote the empty string),
! (to denote the empty set), and parentheses for grouping. For example,
the regular expression (¢ + 1)(0 + 01)* denotes the set of all strings over
{0,1} containing no two consecutive 1’s. If a language can be represented
by a regular expression, it is said to be regular.

3. Number representations. In order to talk about numbers in
formal language theory terms, we need a way to represent numbers as
strings of symbols over a finite alphabet. Let us begin with the integers.
A classical way to do this is the canonical representation in base k:

THEOREM 3.1. Let k be an integer > 2. Then every positive integer
n can be represented uniquely in the form n = Yo<icr Qikt, where the a;
are integers with 0 < a; < k, and a, # 0. T

By associating n with the string a,a,_; - - - aiag, this theorem gives a
bijection between the positive integers and the set of strings given by the
regular expression (X, — {0})X}, where £ = {0,1,2,...,k—1}. We define
n)i to be the string a,a,_; - - - arag representing n in base k. We also define
the inverse map [w];, to be the value of the string w when interpreted as a
base-k number. We define (0); = ¢ and [¢];, = 0.

There are many relationships between base-k representation and ele-
mentary number theory. Here is just one example. Given an integer n,
we may form si(n), the sum of its base-k digits. For a prime p, let vp(n)
denote the exponent of the highest power of p dividing n. Then we have
the following classical theorem of Legendre [61, Vol. I, p. 10]:

THEOREM 3.2. Let p be a prime number. Then for all n > 0 we have

n— sp(n
vp(n!) = %p'

One annoyance is that the canonical representation in base & suffers
Tom the “leading zeros” problem — that is, the map w — [w]x is not
one-one if w € X, For example, [101], = [0101], = [00101]; = 5. One way
around this difficulty is the following simple “folk theorem”, whose precise
origins are unknown to me (but see [87, Note 9.1, pp. 90-91], [101, p. 24],
znd [40]):

THEOREM 3.3. Let k be an integer > 2. Then every non-negative
mteger can be represented uniquely in the form n = Y o<i<cy @ik®, where
“he a; are integers with 1 < a; < k.
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For example, 13 =2-4+2 -2+ 1-1. This theorem gives a bijection F
between N, the non-negative integers, and the regular language (1 + 2 + L
st k)*. mtege

There are many other ways to represent the non-negative integers. = The
For example, let the Fibonacci numbers be defined by Fy =0, F; = 1, and ‘ takes ;
F, = Fy,_1 + F,,_5. The following theorem gives the so-called Zeckendor™ where
or Fibonacci representation [65, 107]: f121.1

THEOREM 3.4. Every non-negative integer can be represented uniquely
in the form Y ..., a;F;, where a; € {0,1}, and a;a;+1 # 1.

This theorem gives a bijection between N and the regular language M e
€+ 1(0 + 01)*. Notice that in all three cases we have examined, the set of
“valid” representations is a regular language. This observation raises the
question, for what numeration systems is the set of valid representations
regular? See, for example, [91, 48, 67].

As above, if m and n are integers, then we can uniquely write m =
291 4...42% andn = 21 +...42% wherea; < --- < acand by < --- < b
We clearly have

st (12

mn = Z Z 9aitb; s to

1<i<c1<j<d k

That |

Knuth [57] found a surprising generalization of this identity: if the Zeck- the rea
endorf representation of m is F,, + F,, + --- + F,_, and the Zeckendor S
representation of n is Fy, + Fy, + - -+ + F},, define T
Some ¢

mon = Z Z Fai+bj' o of

1<i<ec1<j<d

Then the o multiplication is associative! Also see [7, 43].
We now turn to the representation of rational numbers. Let [ag,... 0.
be an abbreviation for the continued fraction

1

(31) ag +

1
at+——
as + cee + s
an

THEOREM 3.5. FEwery rational number in (0,1) can be express=
uniquely in the form

[0,(11,&2,...,(1"]

where the a; are positive integers and a, > 2.
As an application of this theorem, we prove the following theore:
inspired by [77]:
THEOREM 3.6. There is a bijection r : N — Q such that both r o
r~! are computable in polynomial time.
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Proof. 1t suffices to give such a bijection between N and Qn(0,1).

Let fo : N = (1+2+--- + k)* be the map that takes a non-negative
integer to its representation in base k& using digits {1,2..., k}, as discussed
m Theorem 3.3, and let fr ! be the inverse map. Let g be the map which
takes a string over (1+2+3)* as an argument and returns a list of strings,
where the 3’s are treated as delimiters. For example, ¢(121313322) =
1121,1,¢,22). Let h be the map such that

h(a].)aZ;' E '7a'k) = (O,CL]_ O 17- <y Qp—1 + 17a'k + 2)
Then we define the bijection r as follows:

r(n) = [a(£5 7 (9(f3(n))))],

where the function fa ! is extended in the obvious way to operate on lists
~of strings.
‘ For example, consider the case n = 12590. Then its representation in
base 3 using digits {1, 2,3} is 121313322. This is transformed by g into the
Sst (121, 1,¢,22), which is mapped by f; into (9, 1,0,6). Then h maps

this to (0,10,2,1,8). Hence 7(12590) = [0, 10, 2, 1,8] = 26/269.

It remains to see that » and »~! can be computed in polynomial time.

- That f; and fa ! can be computed in polynomial time is easy, and is left to
the reader. For the polynomial time computability of continued fractions,

see, for example, [8, Chapter 4]. 0
There are many other formal language aspects of continued fractions.
Some of these deal with the so-called “LR” or “Stern-Brocot” representa-
tion of rational numbers [44]. If

0= [a())a'lw az, .. ']7
then the LR-representation of 6 is the string
RLMR*2[% ...,

Let a,b,c,d be integers with ad — be # 0. Raney [83] gave a finite-state
fransducer to compute the LR-expansion of 7 — (a@ +b)/(ch + d) from
that of . Using Raney’s theorem, one can give a purely formal-language-
theoretic proof of the fact that  has bounded partial quotients iff 7 does

90].

4. The Thue-Morse sequence. Recall from the previous section
that sz(n) denotes the sum of the bits in the base-2 representation of n.

Now define an infinite word t — totitz -+ over {0,1}, as follows:
» = s2(n) mod 2. This infinite word is sometimes called the Thue-Morse
sequence, because both Thue [99] and Morse [75] examined its properties
near the beginning of this century. But Prouhet implicitly used the defini-
tion of t in an 1851 paper ([82]; also see [104]) that gave a solution to the
multigrade problem.
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The multigrade problem (or Tarry-Escott problem; see [62]) is to find
disjoint sets U,V that . ., u' = ., vifori=0,1,...,k— 1. Prouhet
observed that one could take U = {0 < n < 2% :¢, =0} and V = {0 <
n < 2% : t, = 1}. For example, we have

0 +3 +5 +6/=1"+21 +4'+ 7

fori =0,1,2.
Another result of number-theoretic interest related to the Thue-Morse
sequence is the following. Woods [103] and Robbins [85] observed that

(4.1) I (2”+ I)HW _ V2

i 2n+ 2 2

Here is a simple proof, due to Jean-Paul Allouche: Let P =

(=) (~1)tn
ano (%) and let @ = HnZl (ﬁ%) . Clearly

p 1 n \V7
Q_§H <n+ 1) '

n>1

Now break this infinite product into separate products over odd and even
indices; we find

o= 1T (Zt! (m1yemss I (-2 (-
T2 2n + 2 2n +1

n>0 n>1

_ 1 —1
=5P7Q.

It follows that P? = 1. (Convergence and correctness of the rearrangements
are left to the reader.)

But in fact, even more is true. Suppose one tries to express ‘/75 as
an infinite product of terms of the form (324£1)*!, where the sign for n =
0 is chosen to be +1, and then iteratively chosen according to a greedy

algorithm: if the product constructed so far is greater than g, choose the

sign +1, and if the product constructed so far is smaller than ‘/75, choose the

sign —1. Then the sequence of signs chosen is exactly (—1)*=. T conjectured

this in 1983 [89], and it was proved by Allouche and Cohen in 1985 [5].
Notice that the technique used above does not let us conclude anythinz

about the number Q. In analogy with (4.1), one may ask the following
OPEN QUESTION 4.1. Is the number

(-1t
2n
= =1 |
Q };[1 ( Tt 1) 6281601297189
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see [62]) is to find No simple formula for the number Q is known, although it appears in a

...k — 1. Prouhet somewhat disguised form in a paper of Flajolet and Martin [39, Theorem
0}and V = {0 < 3.A], where (using their notation) ¢ = 271/2e7Q-1,

5. Automatic sequences. The Thue-Morse sequence is a member
of a much larger class of sequences called k-automatic sequences; more
precisely, the Thue-Morse sequence is 2-automatic.

| Let us recall the basics of finite automata, A deterministic finite au-
© the Thue-Morse | fomaton, or DFA, is a simple model of a com

puter. Formally it is a quin-
observed that tuple, M = (Q, %, 6, qo, F), where
e () is a finite set of states;
e X is a finite set of symbols, called the input alphabet,
® qo € @ is the initial state;
, e F' C Q is the set of final states;
he: Let P S ® §:Q %X — Q is the transition function.
arly : The transition function § is extended in the obvious way to a map
from Q x T* into Q.
The language accepted by M is denoted by L(M) and is given by
{we o | 0(go,w) € F}. As an example, consider the automaton in
Figure 1, which accepts exactly the strings over {0,1} that are the base-2
per odd and ol ' representations of the primes between 2 and 11.
| = o

FiG. 1.

Automaton accepting the base-2 representations of the primes P where
2<p <1l

Note that the start state is at the lower left, and is indicated, as is

customary, by an unlabeled arrow with no source. Also, final states are
denoted by double circles.

We may also provide our automaton with output. In this case we
discard the set of final states from the definition of the DFA and add back
A (the output alphabet) and 7: Q — A is the output mapping.
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DEFINITION 5.1. We say a sequence (s;);>0 over a finite alphabet A
is k-automatic if there exists q deterministic finite automaton with output
(DFAO) M = (Q,%y, A, s, 7,q90) (where T is q mapping taking Q to A)
such that 7(8(qo, (n)x)) = s,, for all n > 0.

These sequences are sometimes called uniform tag sequences [27] or
k-recognizable sequences [37, p. 106] in the literature.

Another characterization of automatic sequences is the following. Sup-

pose (s5(n))n>o is a sequence over a finite alphabet. Define K (s), the
k-kernel of s, to be the set of subsequences

Ki(s) ={(s(k'n+a))nso : i >0, 0 <a<k).

Then (s(n)),>0 is k-automatic iff the set Ky (s) is finite.

Many sequences that occur in number theory turn out to be k-automatic
for some small integer k. For example, let B be an integer > 3, and
consider the real number f(B) = >es0 B2, This is a transcendental

number? ([53, 15, 71, 68, 56]; [76, Thm. 1.1.2]) whose continued fractios
has bounded partial quotients [88, 34]:

f(B):[a'O,al,az,...]
=[0,B-1,B+2, B, B, B-2, B, B+2, B, ...

In fact, its continued fraction can be generated by the simple finite aw
tomaton with ten states in Figure 2.

For example, to compute @12, we compute (12); = 1100, and then fees
the digits into the automaton, starting at the top. The output is the lahe
of the last state reached, which is B — 2.

Probably the most interesting and useful number-theoretic aspect o
automatic sequences is the following theorem of Christol [23, 24]:

over A, and p be q prime number. Then (an)nZO is
exists an integer m > 1 and an mjection B : A — GF(p™) such that
formal power series 2ons0B8(an)X™ is algebraic over GF(p™)(X).

As an example, consider the Thue-Morse sequence (tn)n>0, Which &
2-automatic. Let T(X) = 2 usg bnk ™

T(X)=X+X>+ X4+ X"+ X84 x11 ...

Now e
w = th
T(X)= t, X"
n>0
== Z tan2n 4 Z t2n+1X2’n+1
n>0 n>0

2Sometimes called the ‘Fredholm number’

, although Fredholm apparently
worked on it.
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Fi1G. 2. Automaton generating the continued fraction ezpansion of f(B).

= X"+ X D (ta +1)Xx20

n>0 n>0

=T(X?) + XT(X?) + X !

1-Xx2

Hence we have, over GF(2),

(I+X)*T(X)+ (1 + X)PT(X)+X =o0.

The theorem of Christol is remarkable because it
number-theoretic fact (algebraicity in finite characteris
machine-theoretic fact (generation by a finite automato
quence, one may obtain transcendence results in finite characteristic by
proving that no finite automaton can generate the sequence of coefficients
of an appropriate formal power series. For example, Allouche [2] used this
technique to give a new proof of the transcendence
7 in the field of formal Laurent series over GF(qg).

Other results along this line include those of Berthé [11, 12], who
proved that C‘;r(,? ) is transcendental for 1 < n < ¢ — 2, a result previ-

ously proved b; Yu [105] for every n such that (¢ — 1)/n. Here (q is the
Carlitz zeta-function, the formal power series analogue of the ordinary zeta-
function. Recher [84] obtained transcendence results for periods of general-
zed Carlitz exponentials, L.e., of generalizations of 7q. Berthé [13]

relates a purely
tic) to a purely
n). As a conse-

of 7y, the analogue of

proved




556 JEFFREY SHALLIT

transcendence results for the Carlitz logarithm and gave results on linear
expressions in % for 1 <n < ¢—2[14]. Allouche [3] proved the tran-

scendence of the values of the Carlitz-Goss gamma function for all p-adic
rational arguments that are not natural numbers, and Mendés France and
Yao [73] extended the result to all the values of the Carlitz-Goss gamma
function at p-adic arguments that are not natural numbers. Thakur proved
[98] that the period of the Tate elliptic curve is transcendental.

6. Automatic real numbers. Given a k-automatic sequence (8i)i>a
over the alphabet ¥ = {0,1,2,...,b — 1}, we may consider the sequence
to represent the base-b representation of a real number. The number
D s b=2" is an example of such a number, discussed in the previous sec-
tion.

Or consider the Thue-Morse real number Zi>1 t;_127%, whose base-2
representation is

7 =.0110100110010110- - -.

It follows from a general result of Mahler [71] that 7 is transcenden-
tal. Mahler’s proof technique was later rediscovered by Cobham [26] and
Dekking [30].3

It may be amusing to note that the number 7 appears “naturally” as
a certain probability in formal language theory. Let P be the probability
that a randomly-chosen language over {0, 1} contains at least one word of
every possible length. (Our model is to decide the membership of eack
word in L uniformly at random, with probability %) Then

P=l[a-2)=% (_21j)tj =3 L —2].2” =92 _4T.

>0 i>0 >0

This result suggests the following

CONJECTURE 6.1. Let k,b be integers > 2. If (si)i>0 1s a nom-
ultimately-periodic k-automatic sequence over the alphabet ¥ = {0,1,2,...
b— 1}, then the number Yo 5;b7% is transcendental.

For some time it was believed that Loxton and van der Poorten had
completely resolved this problem [69, 70], but gaps in the proof have been
pointed out by Paul-Georg Becker.

CONJECTURE 6.2. No number of the form Y. s;b™*, where (51)i>e
15 a k-automatic sequence, and b is an integer > 2, is a Liouville number.

Becker conjectures (personal communication, 1993) that in fact these
numbers, when transcendental, are S-numbers in Mahler’s classification
([72], [58, p- 63)).

Recently there have been some other interesting results on real num-
bers whose base-b expansions are k-automatic. Denoting the set of such
numbers as L(k, b), we have the following theorem of Lehr [63]:

3Michel Dekking has kindly pointed out a minor, easily-repairable flaw in his proc?
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THEOREM 6.1. The set L(k,b) forms a Q-vector space.

However, it can be shown that the set L(k,b) is not closed under
product; that is, L(k,b) is not a ring [64]. The structure of L(k,b) is
still somewhat mysterious, although it is known that L(k,b) is infinite
dimensional over Q. In fact, for each B > 2, we have Q[f(B)] C L(2, B),
where f is the function defined in Section 5. Since f(B) is transcendental
over Q, we have Q[f(B)] is infinite dimensional over Q. See [64].

It would be nice to prove that some classical real numbers are not
automatic numbers. For example, we have

CONJECTURE 6.3. The numbers 7, e, and In2 are not in L(k,b) for
any k,b > 2.

This conjecture would follow, for example, if it were proved that these
mumbers were normal.

7. Fixed points of homomorphisms. As Cobham observed [27],
the k-automatic sequences discussed in the previous section can also be
characterized as images (under a length-preserving homomorphism, or cod-
mg) of fixed points of uniform homomorphisms (i.e., homomorphisms ¢
with |p(a)| = & for all a € ¥). For example, the Thue-Morse word is the
mique fixed point, starting with 0, of the map which sends 0 to 01 and 1
to 10.

One can also study the fixed points of homomorphisms that are not
necessarily uniform. The depth of a homomorphism ¢ : ¥ — 2* is defined
0 be |X|, and the width is max,ex |p(a)].

Suppose that ¢ : ¥ — £* is a homomorphism with the property that
2(a) = az for some letter a € ¥. (We call such a homomorphism ezxtendable
on a.) Then

azp(z)¢” (z)¢° (z) - -

s a fixed point of ¢, and if = contains at least one letter which is not
altimately sent to € by repeated applications of ¢, then this fixed point is
nfinite.

OPEN QUESTION 7.1. Given a homomorphism ¢ extendable on a,
of depth m and width n, can one compute the ith letter of the fized point
starting with a in time polynomial in m, n, and logi?

Note that this question is easily answerable in the affirmative when
the homomorphism is uniform.

A particular fixed point that has been studied extensively is the so-
called infinite Fibonacci word

f = fifafs--- = 0100101001001 -,

which is the fixed point of the map ¢(0) = 01 and ¢(1) =0 [9, 10]. It can
e shown that

fa=1—=[(n+1)a] + [na,
where a = (v/5 —1)/2.
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One may generalize the concept of fixed points of homomorphisms
by considering fixed points of finite-state transducers. The most famous
example of this type is the Kolakoski word [59]

k =122112122122112112212112122- - -

which is a fixed point of the transducer in Figure 3.

171
2/11

172
21272

Fi1G. 3. The Kolakoski transducer.

Despite much work on this sequence (e.g., [54, 31, 32, 102, 52, 29, 28]
and [79, 20, 66, 25, 21, 33, 96]), the following conjecture is still open:

CONJECTURE 7.2. The limiting frequencies of 1 and 2 in k ezist, and
are equal to %

8. Automaticity. In Section 5 we discussed languages that are ac-
cepted by finite automata and sequences that are generated by finite au-
tomata. However, “most” languages and sequences are not of this type
For the rest of these languages and sequences, can we somehow evaluate
how “close” these objects are to being regular or automatic?

In this section, we introduce a measure of descriptional complexity
called automaticity. Our complexity measure is a function, and is designed
so that regular languages have O(1) automaticity, and languages “close™
to regular have “small” automaticity.

Let

e TIPS R ST - )

the set of all strings in X* of length < n. We say a language I C ¥* is an
nth order approzimation to a language L' if L N <" = [/ N US". Les
DFA be the class of all deterministic finite automata over a finite alphabes
Y. We can now informally define the automaticity of a language L to be
the function which counts the number of states in the smallest DFA thas
accepts some nth order approximation to L. Formally, if [M| is defined 1o
be the number of states in the DFA M, we define the automaticity A r(n

of a language L as follows:

Ap(n) =min{|M| : M € DFA and L(M) N Z=" =L n £}

The folla

1. AL (ﬂ

2. Lisa

3: AL (ﬂ

4. AL (1’1
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The following basic properties of the function Ay, (n) are easy to prove:
1. Ap(n) < Ap(n+1).
2. Lisregular iff Az(n) = O(1).
3. Ap(n) = Az(n).
4. Ap(n) <24 Zyep o e Jul-
We now make the following
DEFINITION 8.1. Tuwo strings w,w' are called n—dissimilar for L if
there exists a string v with |wv|, |w'v| < n and either
(i) wv € L, w'v & L; or
(11) wv &€ L, w'v € L.
Then we have [36, 50, 94]:
THEOREM 8.1. Ap(n) = the mazimum number of distinct pairwise
n-dissimilar strings for L.
As an example, consider the language

L={0"1" : n>0}.

This language is clearly not regular. What is its automaticity?

It can be shown that the automaticity of L is Az (n) = 2|n/2] +1
for n > 2. To see the upper bound, note that we can accept an nth order
approximation to L (for n = 9) with DFA in Figure 4.

Fic. 4. Automaton acccepting 9th order approzimation to L.
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To get the lower bound for n = 9, note that we may take
{¢, 0, 00, 000, 0000, 1, 01, 001, 0001}

as our set of n-dissimilar strings. This easily generalizes to larger n.
Now, let’s turn to another example. Consider the set

P ={10,11,101,111,1011,1101, 10001, 10011, .. .},

the set of primes expressed in base 2. A classical (1966) theorem due to
Minsky and Papert [74] shows that P is not a regular language. However,
this raises the question, how “far” from regular is P? We have the following
theorem [92]:

THEOREM 8.2. The automaticity of PR is Q(27/43).

(Here P® denotes the reversal of the set P, i.e., the primes expressed
with least significant digit first.)

The basic idea is to prove the following

LEMMA 8.1. Given integers r,a,b with r > 2, 1 < a,b < r with
ged(r,a) = ged(r,b) = 1, and a # b, there exists m = O(r'%5/%) such that
rm + a 1s prime and rm + b is composite.

The proof of this lemma is an easy consequence of a deep theorem of
Heath-Brown [47] on the distribution of primes in arithmetic progressions
(“Linnik’s Theorem”).

Taking r = 2", the lemma implies that there are at least 27/43 n-
dissimilar strings for the language P%.

Automaticity has been examined by Trakhtenbrot [100]; Grinberg &
Korshunov [45]; Karp [51]; Breitbart [16, 17, 18]; Dwork and Stockmeyer
[36]; Kaneps & Freivalds [50]; Shallit & Breitbart [93, 94], Pomerance,
Robson, & Shallit [80], Glaister & Shallit [42], and Shallit [92]. Koskas and
de Mathan (work in progress, 1996) show how to apply automaticity to
obtain irrationality measures in finite characteristic.

One of the nicest results in the area is Karp’s theorem [51]:

THEOREM 8.3. Let L C ¥* be a nonregular language. Then

Ap(n) > (n+3)/2

for infinitely many n.

It can be shown that the constants 3 and 2 in Karp’s theorem are best
possible, in the sense that the theorem would be false if 2 were replaced
with any smaller number, or if 3 were replaced with any larger number [94].

The case of unary alphabets has only recently begun to be studied. In
this case, we have Ap(n) < n + 1, for all L and for all n. The following
theorems can be proved [80]:

THEOREM 8.4. Let L C 0*. Then

Ar(n) <n+1- |log,n|

for infinitely many n.
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b= THEOREM 8.5. Let L C 0*. Then for “almost all” L we have
Ar(n) > n —2logyn — 2log, log, n
arger m For all sufficiently large n.

Recall that Karp proved that if L is not regular, then Ay, (n) > (n+3)/2
mfinitely often. This implies that

lim su ) > L
im =
heorem dme W n_,oop n 2
egl i m‘ for all nonregular L. However, it seems that one can do better in the unary

~case. In 1994, I made the following conjecture [93, 80]:
CONJECTURE 8.1. There exists a real number v > 1/2 such that if

.
| 2 L C 0* is not regular, then

; ‘ lim sup
ab<r ‘_ e

In fact, I had conjectured that v = (v/5 — 1)/2 = .61803. However,
e 4 recently J. Cassaigne has shown that the proper constant is

ic progressumms v = (60 — 2v/10) /89 = .60309

least 2=/S o= and this constant is best possible [22]. (Partial results had previously been
1 obtained by Allouche and Bousquet-Mélou [4].)

): Grinberg i Finally, it is known that the maximum possible automaticity for a

ad Stocks ‘ language L C (0+ 1)* is O(2"/n). An example of a context-free language

= s

AL('I’L) o

., Pome : (CFL) with automaticity ©(2"/n) is not known, although there are ex-
2]. Koskas amil amples with automaticity Q(27(1=9)) for all € > 0 [42]. This suggests the
mtomaticity I following open problem:

OPEN PROBLEM 8.2. Develop an efficient algorithm for computing the
B automaticity of a CFL, given its representation as a context-free grammar. \
8.1. Nondeterministic Automaticity. Let NFA be the class of all
nondeterministic finite automata.
A nondeterministic finite automaton (NFA) is like a deterministic one,

except now there can be 0,1, 2, or more arrows with the same label leaving

sorem are bes any state. A string w is accepted by an NFA if there exists some path
were replacsll labeled w from the initial state to some final state.

sr number [ The function Np(n) is the nondeterministic automaticity of the lan-
be studied In guage L, where

Ni(n) =min{|M| : M € NFA and L(M) N =" =L n 25"}

Then by the classical subset construction, we have i }
THEOREM 8.6. Suppose L C ¥*. If L is not regular, then Nr(n) > : |
log,((n + 3)/2) for infinitely many n. ‘
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This lower bound is best possible, up to a constant, since the Stearns-
Hartmanis-Lewis language

2MF2@72@)72@5 2 27 :n>1}

has nondeterministic automaticity O(logn). Here, as in Section 3, (k) is
the representation of k in base 2, and w® denotes the reversal of the string
w.
We can use some classical estimates from number theory to produce
an example of a language with low nondeterministic automatlmty [94]:
THEOREM 8.7. Define

L={we(0+1) : |wlo # |wh}
Then L is nonregular and

N (n) = O((logn)?/(loglog n)).

Proof. We need the following fact from number theory:
LEMMA 8.2. Let n > 2 and suppose 0 < 1i,5 <n. Theni # ] zfj‘ there
exists a prime p < 4.4logn such that i Z j (mod p).

Thus, to nondeterministically accept some nth order approximation to
L, we can

e guess the correct prime p < 4.4logn;
o verify that |w|o Z |w|; (mod p).
This construction uses at most

1+ Y p=0((logn)?/(loglogn))

p<4.4logn

states. The construction is illustrated in Figure 5.

We now turn to the question of lower bounds for nondeterministic
automaticity in the unary case [80]:

THEOREM 8.8. There exists a constant ¢ (which does not depend on
L) such that if L C 0* is not regular, then

Nz (n) > c(logn)?/(loglogn)

infinitely often.
Pomerance has shown [80] that for all monotonically increasing func-
tions f, there exists a language L = L(f) such that

Ny (n) = O(f(n)(logn)*/(loglogn)),

thus showing the lower bound is essentially tight. To give the flavor of his
construction, we prove the following weaker result:

THE(
not dividi

Proof. Th
Lem
kE>1, p*
25 < p* <
An N
structed a
¢ gu

° ve

This const;

OPEN
terministic
primes in |

9. k-
survey is k
sequences r

While:
ory, their e
that they t
ized? As we
k-kernel is i



11 £ j off thew

i mot depend %

the flavor of s

NUMBER THEORY AND FORMAL LANGUAGES

Fi1G. 5. 30th order approzimation to L.

THEOREM 8.9. Define L = {0™ : n > 1 and the least positive integer
not dividing n is not a power of 2}. Then L is nonregular and

Ni(n) = O((logn)?/(loglogn)).

Proof. The construction depends on the following two facts:

LEMMA 8.3. If 0" € L, then there exists a prime power p*, p > 3,
k> 1, p* <5logn, such that n Z 0 (mod p*), and n = 0 (mod 2°), with
25 < pk < 2571 Further, if such a prime power p* exists, then 0™ € L.

An NFA accepting an n-th order approximation to L can now be con-
structed as follows:

e guess the correct odd prime power p* < 5logn;
e verify that, on input 0", we have
x v 20 (mod p*);
* r =0 (mod 2°), with 2° < p*F < 25+1,
This construction uses at most O((logn)?/(loglogn)) states.

OPEN QUESTION 8.3. What is a good lower bound on the nonde-
terministic automaticity of the set PR the (reversed) representations of
primes in base 2¢

9. k-regular sequences. The last topic I wish to consider in this
survey is k-regular sequences. These are generalizations of the automatic
sequences mentioned above in Section 5.

While there are many examples of automatic sequences in number the-
ory, their expressive power is somewhat limited because of the requirement
that they take only a finite number of values. How can this be general-
ized? As we have seen above in Section 5, a sequence is k-automatic iff its
k-kernel is finite. This suggests studying the class of sequences where the
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Z-module generated by the k-kernel is finitely generated. We call such a
sequence k-regular. The properties of such sequences and many examples
were given in [6].

Here are some examples of k-regular sequences in number theory.

Ezample 1. The 3-adic valuation of a sum of binomial coefficients. Let

7(n) = Y gcicn (¥). Then vs(r(n)) is 3-regular, as it can be shown that

9.1) ol =g (nz (?)) :

see [97]. In fact, Eq. (9.1) was first conjectured by applying a program
which attempts to deduce the k-regularity of a given sequence. Zagier
[106] found a beautiful proof based on 3-adic analysis.

Ezample 2. Propp’s sequence. Jim Propp [81] introduced the sequence
(s(n))n>0, defined to be the unique monotone sequence such that s(s(n)) =
3n. The table below gives the first few terms:

| n JJOJ1[2]3[4]5]6] 7] 8] 9J10[11]12]13]
[sm) JO]2[3]6[7[8]9]12]15]18[19[20]21]22]

It is sequence M0747 in the book of Sloane and Plouffe [95]. Patruno
[78] showed that

s(n) = n + 3%, if 8% < m < 9 - B
T 1 3(n—3F), if2-3F <n <3k

This sequence is 3-regular, and satisfies the recurrence

s(3n) = 3s(n);
s(9n + 1) = 6s(n) + s(3n + 1);
s(9n + 2) = 6s(n) + s(3n + 2);
s(In+4) =2s(3n+ 1) + s(3n + 2);
s(9n+5) =s(3n+ 1)+ s(3n + 2);
s(9n+7) = —6s(n) +3s(3n + 1) + 2s(3n + 2);
s(9n 4+ 8) = —12s(n) + 6s(3n + 1) + s(3n + 2).

Example 3. A greedy partition of the natural numbers into sets avoiding
arithmetic progressions. Suppose we consider the integers 0,1, 2, ... in turn,
and place each new integer ¢ into the set of lowest index Sy (k > 0) so that
S never contains three integers in arithmetic progression. For example,
we put 0 and 1 in Sp, but placing 2 in Sy would create an arithmetic
progression of size 3 (namely, {0,1,2}), so we put 2 in Sy, etc.

Now defi
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We call sucha

Now define the sequence (ax)r>o as follows: aj = n if k is placed into

many examples set Sp,. Here are the first few terms of this sequence:
iber theory. Lk J0[1]2]3]4[5[6]7[8[9[10[11[12]13]
: | [ax JOJofrJOoJo[T]TT2]2[0] 0] 1] 0] 0]
vefficients. Le &
be shown that This is Sloane and Plouffe’s sequence M0185.
Gerver, Propp, and Simpson [41] showed that agj,, = l_(3ak +7)/2]
for k>0, 0 <r < 3. It follows that (ax)k>o is 3-regular.
We now give some open problems on k-regular sequences.
- f CONJECTURE 9.1. Suppose (A(n))n>0 and (B(n))n>o are k-regular
ying a programm = >
eence. Zal sequences with B(n) # 0 for alln. If A(n)/B(n) is always an integer, then
: (A(n)/B(n))n>o ts also k-regular.
OPEN QUESTION 9.2. Show that (|5 + logy n))n>0 is not a 2-regular
«d the sequemes sequence.
2 that s(s(n)) = We may also consider an extension of k-regular sequences to other
: types of representation; e.g., Fibonacci representation. Let us consider,
for example, the problem of determining the number of partitions &, of a
njiz|i3 M number n as a sum of distinct Fibonacci numbers [55, 19, 86]. In other
wWlail 21 words, we are interested in the coefficient &, of X™ in the infinite product

fe [95]. Patrems 1+ X)(1+X2) 1+ X1+ X531+ X831+ X3). ..

Here are the first few terms of this sequence:

[n [O[T[2[3[4[5][6]7[8][9[ 1011 [12]13]
(ko [1]1]1]2]12]2]1]3]2] 2] 3] 1] 3]

Then it is not hard to see that

1
: (9.2) kn=[10 0] - My=-|1],
1
where w is the Fibonacci expansion of n, and
n-
% | 0 10 100
)- , (9.3) Mo=| 0 0 1|; Mi=|1 0 0].
; =i 4 1 110
t‘; s)ets am In particular, this allows computation of &, in time polynomial in
2, ...intam . :
19 logn, and gives a simple proof of Theorem 1 of [86].
'@ > 0) ol g g ple p (86]
.. For 10. Conclusions. Both number theory and formal language theory
exampile.
e an arithmetie have a large body of research associated with them. At their intersection,

etc. | however, is a new and growing area which promises to enrich them both.
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