
R e c r e a t i o n

Frac ta l s , Bitrnaps, a n d A P L

Jeffrey Shatlit

ABSTRACT

In this article, we show how to generate
approximations to fractals and fractal-like patterns
using operations on boolean matrices. The pictures
may be displayed on a bitmapped device like t he
Apple Macintosh.

The methods illustrate the beauty and power
of APL, as well as the suggestiveness of the nota-
tion.

1. The Sierpirfski carpet.

The Sierpiffski carpet is a fractal in the plane which is
the limit of the sequence of pictures in Figure 1.

In the limit, this carpet covers zero area. The "remo-
val of middle thirds" used to generate it is reminiscent of the
method for constructing the Cantor set [Man, p. 144].

We can represent the sets in Figure i in APL as square
boolean matrices, where 1 represents a black square, or pixel,
and 0 represents a white pixel. For example, the first three
pictures in Figure 1 could be represented by the three arrays

111
1 , 1 0 1 ,

111

1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1

Such matrices represent bitmap images which can be
attractively displayed on a raster device like the Apple
Macintosh. 1 STSC's APL*PLUS 2 on the Mac supports
display of bitmaps with'their built-in system function laPUT-
BITS. The left argument to [3PfITBITS is a boolean matrix
representing an image; the fight argument is a vector of
length 2 or 4. If the fight argument is of length 2, then it
specifies the screen coordinates of the upper left-hand-comer
of the image. If it is of length 4, then it specifies the coordi-
nates of both the upper-left and lower-right-hand comer of a
rectangle which is the target of the image. The image is
automatically shrunk or expanded to fit this rectangle.

! Macintosh is a trademark of Apple computers.
2 APL*PLUS is a trademark of STSC. It may be ordered from

them at 2115 E. Jefferson St., Roekville, MD 20852. Phone: (301)
984-5000.

How can we efficiently generate these boolean
matrices in APL? In the case of the Sieg~inski carpet, we
could use the following r~2ursive solution, due to David Sabz-
man:

CABPE20: (2 , z , f) , E o 3 (2 , < (p 2) p o) , 2) , [o]
T~T,T+CARPETO ~-I : e:O : 1 1P!

(Note: this function, like all others in this article,
assumes origin-O.)

This direct definition 3 function takes as its right argu-
ment a non-negative integer N indicating the "generation
number" of the result. The result is a matrix of dimension
2pa*tV giving the bitmap image of the N-th generation of the
carpet. We can generate a 243x243 matrix in only 14 seconds
on a Macintosh Plus! (See Figure 2.)

We can obtain a different solution to the carpet-
generation problem by noting that subsequent generations are
a sort of "Kronecker prodgct" of matrices:

III] 111 111
1 0 1] 101 101
1 1 1 1 1 1 1 !1~
I l l / [i"l [i"] ,°°° 1 1 ® 0 1 = 1 0 1 0 0 0 1 0 1

11 11 ! 1 1 l 9 0 0 ! 1 1
111 / 111 111
1 0 1 | 101 101
J. 11J .111 ! 1 1

We can easily perform the Kronecker product in APL
using outer product, as in the following function:

K ~ D : ((p a) x p ~) p 0 2 1 3 ~ c~ , . ^ a ,

Now we can define a function for the iterated
Kronecker product:

I K A N D : ¢x I ~ I D a IKAND ~ - 1 : ~a=O: 1 101

The left argument to IKAND is a "generator matrix"
M. The result is the iterated Kronecker product performed N
times, where N is the right argument. Now we can easily
write a new carpet function:

CARPET1: (3 3P tl.='t9) IKAND ~o

CARPETI exhibits several advantages over CARPETO. 4
For one thing, it suggests using matrices other than 3
3pt~z~.9 as generators. Further, it suggests replacing the ^
function with one of the other logical functions. Let us take
a moment to pursue the first of these ideas, postponing the

3 In this article we freely use the "direct definition" form of
functions. For an interpreter that converts these definitions to ordi-
nary APL functions, see [May] or live].

4 Speed, unfortunately, does not seem to be one of them.
CARPETO executes faster than CARPET1 on all of the systems
tried.

APL Quote Quad 18 3 24 March 1988

http://crossmark.crossref.org/dialog/?doi=10.1145%2F44164.44169&domain=pdf&date_stamp=1988-03-01

~ond~mfi l la te ro i g w e u s e (2 2p 1 1 I O) a s t h e t e f t
argument to IK~ND, then we get a repeating triangle pattern
which is essentially Pascal's triangle considered modulo 2 (see
[Goe]). ~fS_is image appears in Ngare 3.

The reader is encouraged to do some experimenting at
this pgint. Many ,~her interesting patterns can be generated.
For example, using the 7×7 matrices

1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1
1 1 0 0 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 or 1 0 1 0 1 0 1
1 1 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

we can generate the pictures which appear on page 318 of
[Man].

Let us return to the function IKAND. Notice that in
IOlND we reshape and transpose, and this function is called
repeatedly by ilOIND. This seems inefficient--could we
somehow group all the dyadic transposes together and per-
form them once, at the end?

The answer is yes. We use the function IOPAND to
perform an "iterated outer product" which results in a (2xN)
dimensional array. This array is then transposed using the
"perfect shuffle" permutation ~tuI~{e×N}P 0 1.

IOPAND: (a IOPAND w-1)o.^a : m=O: I

IK2AND:

CARPET2:

((pa) 'A '=)p($$(2x=)p 0 1)
~a IOPIND w

(3 3pq.z~9)IK2AND

We could dispense entirely with the recursion in
IOPAND at this point by (a) using an APL interpreter that
has a "power operator" or (b) using an APL interpreter that
allows reduction with the outer product operator or (c)
"kludging" the iterated outer product using I .

For example, Roger Hui has provided the following
function using option (a):

CARPET3: ((pT),ku)p(/~,$(2xu)p 0 1)
81LT"(*.^).¢o T÷3 3pq.=%9

Unfortunately, the versions of APL currently available
on the Mac do not allow such pyrotechnics.., but we can
hope!

Another non-recursive, non-iterative version of CAR-
PET can be defined using the strong relationship between the
Sierpiffski carpet and expansion in base-3. Using this hint,
can the reader come up with such a function? (One solution
is given at the end of this article.)

2. Iterated Kronecker products with other functions.

Let us return to the function IK2AND and CARPE2'2.
Their definitions strongly suggest replacing the ^ function
with one of the other boolean functions. Using this idea,

many delightful patterns can be obtained.

(What we really want, of course, is a user-defined
operator that performs this iterated Kronecker product, given
a function as an argument. But such facilities are not
presently available on the Macintosh.)

For example, we could define the following functions:

IOPXOR: (~ IOPXOH ~-l)o.za: ~=0:0

IKXOR: ((P a) * ~) p ($ $ (2 × ~) p 0 I)
~a IOPXOR w

The left argument to IKXOR is a generator matrix.
The right argument is a generation number.

For example, see Figure 4.

The matrices

(2 2P 0 0 0 I) IKXOR N

are interesting because of their relationship to combinatorial
objects called Hadamard matrices (see [Rys]). Define

HAD: -I * (2 2p 0 0 0 i) IKXOR

Then HID N is a matrix of dimension 2p2*N such
that

(HAD N)+.x~BAD N ~. (2*N)xID 2*N

where

ID: (%w)o.=%w

is the identity matrix function.

Figure 5 shows the result of IKXOR with a different
generator.

Still wilder patterns can be obtained by using the
boolean functions t/AND and NOR. Since these functions,
unlike ^ and z, are not associative, we must define an order
for their associated Kronecker products: either fight-to-left,
or left-to-fight. For example:

IOPNORLR: (a IOPNORLR w-l)o.~: ~:1: a
IKNORLR: ((pa) *cn)p ($$ (2x~)p 0 I)

a IOPNORLR =

IOPNORRL: ao.~ IOPRORRL ~-1: w=l: a
IKNORdIL: ((pa) .=)pC$$(2xca)p 0 1)

a IOPNORRL to

Many other patterns can be obtained using different
generators and the relational functions <, ~, >, and ~. The
author has explored only a small subset of this space of pat-
terns.

APL Quote Quad 18 3 25 March 1988

3. Iterated morphisn~°

There is still another way to generate the S~erpi6~ki
carpet, and it generalizes in a different direction. We define
a map, ~, which takes 0 to the 3×3 matrix of symbols

00
00

and 1 to the matrix

11

Then by iterating ¢ we get the successive generations of the
carpet. 5

More generally, we could take an alphabet of a sym-
bols; say 0,1,2,...,A -1. We define ~ by providing an array R
of dimension (a ,M ,M) such that R [0 ; ;] gives the value of
6(0); R[I; ;] gives the value of ~(1), etc. This idea leads to
the following functions:

APPLY: ((pm)x-2÷p~)P 0 2 I 3 ~[w;;]
IM: ¢~ APPL~ a IM ~-1: ~=0:1 I P 1

The left argument to APPLI is an array of dimension
(A ,M ,M) of integers in tA that specifies the map ~.
(Remember: 0-origin.) The right argument is a matrix of
values n , and the result is #(B).

The left argument to IM (iterated map) is an array
defining ~. The right argument is a generation number N.
The result is ~(~(...~(1)))=~ N (1).

This gives us still another carpet function:

CARPETkt: (0,[-0.5] 3 3p tt=~9) IM co

Many pleasant examples can be constructed with the
function MORPIIISM. See Figures 8 and 9.

It is perhaps somewhat surprising that we can even
generate some space-filling curves using this scheme. In this
article we give just one such example. The curious reader
can find two more in [Sha].

The function PC~ below is an encoding of a particular
map ¢. SFC (space-filling curve) applies this map repeat-
edly and then applies a certain coding given by the function
CODE. The argument to SFC is a generation number N .
The result is a (3 , /¢)x (3 , /¢) matrix giving an image of the
N-th generation of the space-filling curve of Peano [Pea].

s Iterations of one-dimensional maps (as opposed to the two-
dimensional ones we consider here) have well-known relationships
to fractals and fractal-like patterns. See the beautiful article of
Dekking, Mendes France, and van der Poorten for many examples
[DMP],

Iterations of two-dimensional maps (and, more generally, N dimen-
sions) are less well understood. See the recent article of Salon [SaIl.

To understand "ttis function it may be useful to reatize
that PCM has been defined to map small sections of the curve
to larger sections of the curve~ For example,

CODE [PCM APPLY I IP53
000
110
010

CODE [PCM APPLY PCM APPLY I IP5]
0 0 0 0 0 0 0 0 0
I I 001111 O
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 • 0
0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 1 1 1 1 0 0 1 0
0 0 0 0 0 0 0 I 0

PCM: 15 3 3@~(9P15)T 393331468
393331~6 5842325861 58~2325861
106W56533~3 I06~5853343 33881768996
6070134986 607013W986 33881772324
3388177232W 60708952~6 60708952W6
33881768968 33881768968

CODE: 0 1 0 1 0 1 0 0 1 0 1 0 I 0 I

SFC: CODE [PCM IM ~]

4. Parting words.

We have only touched the surface in this article. We
hope the reader will be encouraged and enthusiastic enough
to explore

(a) morphisms on bigger alphabets;

(b) morphisms on higher-dimensional results;

(c) pictures on color bitmap displays (see (a) above);

(d) the Menger sponge (3-dimensional generalization of
the Sierpinski carpet), etc.

5. Acknowledgments.

Roger Hui and Norman Thomson read a prefiminary
version of this manuscript and made many useful suggestions.

Thanks to Howard Karloff for pointing out the con-
nection with Hadamard matrices.

6. Solution W the problem p o s e d ~ theend ~sect ion 1.

CA}LPET5: (~T)A . VT÷I=(~P3)Tx3*~

Summary ofFuncfions.

CARPETO: (T , T , T) , [0 3 (T , ((p T) P 0) T , T , T ÷
CARPETO ~-1: ~=0: I IPl

KAND: ((p =) x p ~) p 0 2 1 3 ~ a . .^~
n KSONECKER PRODUCT WITH ^ FUNCTION

IF, AND: a KAND a IKAND m-l: ~=0: I lPl

APL Quote Quad 18 3 26 March 1988

CARPET1;

iOPAND:

IK2AND:

CARPET2:

IOPXOR:

ITERATED OUTER PBODUCT WITH a

ITEIL~TED OUTER PRODUCT WITH ^

((~)~)~($$(~.×~)~ 0 i)
~a IOP~ID

(3 3 p 4 ~ 1 9)IERAND

(c~ IOPXOR ta -1)~ , = a : ~ = 0 : 0
ITERATED OUTER PRODUCT WITH

IKXOR: ((Pa)*~)P ($$(2×~)p0 1)
~¢t IOPXOR w

HAD: -I ~ (2 2P 0 0 0 I) IKXOR w
n 8ADAMARD MATRIX OF SIZE 2~

ID: (%~)0.=i.~

IOPHOHLR: (eL IOPNORLR w-1)o.~: ~=I: a

IFJIORLR: ((pa)~a~)p(~(2x~)p 0 1)
a IOPNORLR w

IOPNORRL: a * , ~ IOPNORRL w-l: w=1: =

IKNORRL: ((ps),w)p(~(2xw)p 0 I)
u IOPNORRL w

APPLY: ((p~)x-2+poQp 0 2 1 3 ~o~[w;;]
R APPLY MAP TO MATRIX RIGET ARG

IM: a ~IPPLI a I~I ~-1: w=0:1 1 p 1
n ITERATED HAP APPLIC]~TION

CARPET~: (0,[-0.5] 3 3P ~z19) IH w

PCM: 15 3 3 P ~ (9 P 1 5) T 393331u,68
393331u, u,6 58q .2325861 5 8 ~ 2 3 2 5 8 6 1

1 0 6 9 5 6 5 3 3 ~ 3 338817689u ,6 607013u ,986
338817723211- 3 3 8 8 1 7 7 2 3 2 ~ 60708952u ,6
3 3 8 8 1 7 6 8 9 6 8 3 3 8 8 1 7 6 8 9 6 8

CODE: 0 I 0 1 0 1 0 0 1 0 1 0 1 0 1

SFC: CODE [PCH I~I ~]

CARPET5: (~T)^. vT÷l~ (~p3)T~3*~

7. References.

[DMP]
Dekking, M., Mendes France, M. and van der Poor-
ten, A. , FoldM, Mathematical Intelligencer 4 (1982)
130-138; 173-195.

[Goe]Goetgheluek, P., Computing binomial coefficients,
Amer. Math. Monthly 94 (1987/) 360-365.

[Rys]

[sail

[Shal

[tve] tveF~oa, K.E., Programming style in APL, in An APL
User's Meeting, I. P. Sharp Associates, 1978, pp. 200-
224.

[Man] Mmldelbrot, B., The fractal geometry of ~ature, Wo H.
Freeman, 1983.

[May] Mayforth, R., An alpha-omega compiler, APL News
#3 (1977).

[Pea] Peano, G., Sur une co~rbe, qui remplit toute une aire
plane, Math. Annalen 36 (1890) 157-160.

Ryser, H., Combinatorial mathematics, Math. Associa-
tion of America, 1%3.

Salon, O., Suites automatiques a multi-indices,
Seminaire de theofie des hombres de Bordeaux,
Expose #4, 1986-7.

Shallit, J., Two m~thods for the generation of fractal
images, University of Chicago Department of Com-
puter Science Technical Report 87-010 (June, 1987).

Department of Computer Science
University of Chicago
1100 E. 58th St.
Chicago, IL 60637
USA

(Figures 1 to 10 appear
on the next 5 pages)

1 0 6 ~ 5 6 5 3 3 ~ 3
6 0 7 0 1 3 q 9 8 6
6 0 7 0 8 9 5 2 ~ 6

APL Quote Quad 18 3 27 March 1988

Figure I

Figure 2: C~RPETO 5

APL Quote Quad 18 3 28 March 1988

Figure3: (2 2P 1 I 1 0) IKAND 7

Figure4: (2 2p 0 0 0 1)IKXOR 7

APL Quote Quad 18 3 29 March 1988

m t

H-g

m m,
u - l

m~

Figure 5 : (2 2p 1 0 0 1) IKXOR 7

It
] q I I I I I I "g

'1

'qi

' l

q

' I

Figure6: (2 2P 0 0 I O)IKNORLR N
for N = l , 2 , 3 , t l . , 5 , 6

APL Quote Quad 18 3 30 March 1988

E
E E

Figure7:(2 2p 0 0 I O) IFJIORRL N
for Jr=l ,2,3 ,q-, 5,6

,m
i

m J m m n m u m m m i r a m u m m • m i n i • • m m •

- w l r l l T i l - m ' n - T - n - i u u u r ~ . . . = . • . m u m u m u u m u m i M

• • u • • • • • u • • u • • • • ~ • w ! • ~ u • • u • u • ! •

m l l u i m g u i w w l u u u u i z u m u u m u u m l l l u l R m n m i w m m u m i l u ~ l ~ n u u x u u w m ~ m w m ~ ~ n ~ u

. . . m n . . . = = = . . ~ . . m = = . n . . . = . . . n . m . ~ = = . . = . . ~ = . . . m w w u . .

w u u ~ u w u w m ~ m m ~ m m u u u u w m u ~ u u u u m u u m ~ m ~ m u m m u ~ m u u m m m u m ~ m u ~ u U m m m ~ m ~ U

B E B E B B B E m E m E m m E E E m I B B m

m m | m u m m m m m m m m n U m u m m m m m I m m | | uau I I ma I I alll | I IN m I roll II num I I m l

i
m mml mm m m mlmm lm m lmm munamm i mlmlm Ill m malll mlmOllll m m m m m l m m m m l m m m m m m m mmm J

n u m B i i
m m m m m m m m m m m m imm unlm mal m NO i lmalal mml gin un lale mm mme fin m i

i i

~lmam mu lm II mum i ulalmlommllo lmmillae mmmm i m l m m m m m m m l m m l m m mmmm mm no m m m m m m m m m
i

i m m n i m m m m i m m i m m i m m m m i m m m m m m m m m m m m I e m I I m I I m m m I n l m I

• z * i * m m m i i m n m i m m i m m i g m # I m m m I m B I I I m I i l m I I I ¢ 1 ¢ IU I I m I Io I I | , w w m z w m u u z z • m s m

m

m l a l m m m

• m . l u u l . m s m m m m u m m . . = n . .

l l l m m l . . m m . . m . . m m . . . m m m m | m m u - m m - - m m - - - m m - m m m m m m m m m m m m m n m m M i m

i l m i l

q
. m i ~ m ~

m mB m | | l i i i i l n | | B i N i i m m

m w g l m m E i ~ m g l g g l m m E m o l g m • i m l m l i i • B • i i • j E i i m E m l i • m l j l m m m m E m m g l

i
i l m m m m E m m m m m m m m m E m m i m m m B m H l m i m l m

m m E m l m m ~ m m i m m m E M m m m u m m m E m H m m m m m m m m m i m m m m m E m E m m m m m m l m l m m m m B m B m E m m

• m n m m m | m i m m m m u n u g B m m i m m m m m m m m m | m m l m | m l m m m m ~ m m m

u m u m n w n m m m u n m m m m a m m m m m u a m J m l m u m m m m w m m m m m l a m m m m w m u m l m m m u m u m J m l m l J u

m m m m m m m m l m m m m m m m m m m m m m m m w m m m m m m m m m m m m m

a = • = = = = = l u l i m m . = = = = = = =

F i g u r e 8 : (2 2 2p 0 1 1 1 0 0 2 1) .Z,~ 7

APL Quote Quad 18 3 31 March 1988

Figureg: (2 2 2p 0 o 1 1 0 1 o 1) TM 7

Figure 10: SFC n4

APL Quote Quad 18 3 32 March 1988

