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ABSTRACT 

In this article, we show how to generate 
approximations to fractals and fractal-like patterns 
using operations on boolean matrices. The pictures 
may be displayed on a bitmapped device like t he  
Apple Macintosh. 

The methods illustrate the beauty and power 
of APL, as well as the suggestiveness of the nota- 
tion. 

1. The Sierpirfski carpet. 

The Sierpiffski carpet is a fractal in the plane which is 
the limit of the sequence of pictures in Figure 1. 

In the limit, this carpet covers zero area. The "remo- 
val of middle thirds" used to generate it is reminiscent of the 
method for constructing the Cantor set [Man, p. 144]. 

We can represent the sets in Figure i in APL as square 
boolean matrices, where 1 represents a black square, or pixel, 
and 0 represents a white pixel. For example, the first three 
pictures in Figure 1 could be represented by the three arrays 

111 
1 , 1 0 1  , 

111 

1 1 1 1 1 1 1 1 1  
1 0 1 1 0 1 1 0 1  
1 1 1 1 1 1 1 1 1  
1 1 1 0 0 0 1 1 1  
1 0 1 0 0 0 1 1 1  
1 1 1 0 0 0 1 1 1  
1 1 1 1 1 1 1 1 1  
1 0 1 1 0 1 1 0 1  
1 1 1 1 1 1 1 1 1  

Such matrices represent bitmap images which can be 
attractively displayed on a raster device like the Apple 
Macintosh. 1 STSC's APL*PLUS 2 on the Mac supports 
display of bitmaps with'their built-in system function laPUT- 
BITS. The left argument to [3PfITBITS is a boolean matrix 
representing an image; the fight argument is a vector of 
length 2 or 4. If the fight argument is of length 2, then it 
specifies the screen coordinates of the upper left-hand-comer 
of the image. If it is of length 4, then it specifies the coordi- 
nates of both the upper-left and lower-right-hand comer of a 
rectangle which is the target of the image. The image is 
automatically shrunk or expanded to fit this rectangle. 

! Macintosh is a trademark of Apple computers. 
2 APL*PLUS is a trademark of STSC. It may be ordered from 

them at 2115 E. Jefferson St., Roekville, MD 20852. Phone: (301) 
984-5000. 

How can we efficiently generate these boolean 
matrices in APL? In the case of the Sieg~inski carpet, we 
could use the following r~2ursive solution, due to David Sabz- 
man: 

CABPE20: ( 2 , z , f ) , E o 3 ( 2 , < ( p 2 ) p o ) , 2 ) , [ o ]  
T~T,T+CARPETO ~-I : e:O : 1 1P! 

(Note: this function, like all others in this article, 
assumes origin-O.) 

This direct definition 3 function takes as its right argu- 
ment a non-negative integer N indicating the "generation 
number" of the result. The result is a matrix of dimension 
2pa*tV giving the bitmap image of the N-th generation of the 
carpet. We can generate a 243x243 matrix in only 14 seconds 
on a Macintosh Plus! (See Figure 2.) 

We can obtain a different solution to the carpet- 
generation problem by noting that subsequent generations are 
a sort of "Kronecker prodgct" of matrices: 

III] 111 111 
1 0 1 ]  101 101 
1 1 1 1  1 1 1  !1~ 
I l l /  [i"l [i"] ,°°° 1 1  ® 0 1  = 1 0 1  0 0 0  1 0 1  

11 11 ! 1 1  l 9 0 0  ! 1 1  
111 / 111 111 
1 0 1 |  101 101 
J. 11J  .111 ! 1 1  

We can easily perform the Kronecker product in APL 
using outer product, as in the following function: 

K ~ D :  ( ( p a ) x p ~ ) p  0 2 1 3 ~ c~ , . ^ a ,  

Now we can define a function for the iterated 
Kronecker product: 

I K A N D :  ¢x I ~ I D  a IKAND ~ - 1 :  ~a=O: 1 101 

The left argument to IKAND is a "generator matrix" 
M. The result is the iterated Kronecker product performed N 
times, where N is the right argument. Now we can easily 
write a new carpet function: 

CARPET1: (3 3P tl.='t9) IKAND ~o 

CARPETI exhibits several advantages over CARPETO. 4 
For one thing, it suggests using matrices other than 3 
3pt~z~.9 as generators. Further, it suggests replacing the ^ 
function with one of the other logical functions. Let us take 
a moment to pursue the first of these ideas, postponing the 

3 In this article we freely use the "direct definition" form of 
functions. For an interpreter that converts these definitions to ordi- 
nary APL functions, see [May] or live]. 

4 Speed, unfortunately, does not seem to be one of them. 
CARPETO executes faster than CARPET1 on all of the systems 
tried. 
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~ond~mfi l la te ro  i g w e u s e  (2 2p 1 1 I O ) a s t h e t e f t  
argument to IK~ND, then we get a repeating triangle pattern 
which is essentially Pascal's triangle considered modulo 2 (see 
[Goe]). ~fS_is image appears in Ngare 3. 

The reader is encouraged to do some experimenting at 
this pgint. Many ,~her interesting patterns can be generated. 
For example, using the 7×7 matrices 

1 1 1 1 1 1 1  1 1 1 1 1 1 1  
1 1 1 1 1 1 1  1 0 1 0 1 0 1  
1 1 0 0 0 1 1  1 1 1 1 1 1 1  
1 1 0 0 0 1 1  or 1 0 1 0 1 0 1  
1 1 0 0 0 1 1  1 1 1 1 1 1 1  
1 1 1 1 1 1 1  1 0 1 0 1 0 1  
1 1 1 1 1 1 1  1 1 1 1 1 1 1  

we can generate the pictures which appear on page 318 of 
[Man]. 

Let us return to the function IKAND. Notice that in 
IOlND we reshape and transpose, and this function is called 
repeatedly by ilOIND. This seems inefficient--could we 
somehow group all the dyadic transposes together and per- 
form them once, at the end? 

The answer is yes. We use the function IOPAND to 
perform an "iterated outer product" which results in a (2xN) 
dimensional array. This array is then transposed using the 
"perfect shuffle" permutation ~tuI~{e×N}P 0 1. 

IOPAND: (a IOPAND w-1)o.^a : m=O: I 

IK2AND: 

CARPET2: 

( (pa) 'A '= )p($$(2x=)p  0 1)  
~a IOPIND w 

(3 3pq.z~9 )IK2AND 

We could dispense entirely with the recursion in 
IOPAND at this point by (a) using an APL interpreter that 
has a "power operator" or (b) using an APL interpreter that 
allows reduction with the outer product operator or (c) 
"kludging" the iterated outer product using I .  

For example, Roger Hui has provided the following 
function using option (a): 

CARPET3: ((pT),ku)p(/~,$(2xu)p 0 1) 
81LT"(*.^).¢o T÷3 3pq.=%9 

Unfortunately, the versions of APL currently available 
on the Mac do not allow such pyrotechnics.., but we can 
hope! 

Another non-recursive, non-iterative version of CAR- 
PET can be defined using the strong relationship between the 
Sierpiffski carpet and expansion in base-3. Using this hint, 
can the reader come up with such a function? (One solution 
is given at the end of this article.) 

2. Iterated Kronecker products with other functions. 

Let us return to the function IK2AND and CARPE2'2. 
Their definitions strongly suggest replacing the ^ function 
with one of the other boolean functions. Using this idea, 

many delightful patterns can be obtained. 

(What we really want, of course, is a user-defined 
operator that performs this iterated Kronecker product, given 
a function as an argument. But such facilities are not 
presently available on the Macintosh.) 

For example, we could define the following functions: 

IOPXOR: (~ IOPXOH ~-l)o.za: ~=0:0 

IKXOR: ( ( P a ) * ~ ) p  ( $ $ ( 2 × ~ ) p 0  I) 
~a IOPXOR w 

The left argument to IKXOR is a generator matrix. 
The right argument is a generation number. 

For example, see Figure 4. 

The matrices 

(2 2P 0 0 0 I) IKXOR N 

are interesting because of their relationship to combinatorial 
objects called Hadamard matrices (see [Rys]). Define 

HAD: -I * (2 2p 0 0 0 i) IKXOR 

Then HID N is a matrix of dimension 2p2*N such 
that 

(HAD N)+.x~BAD N ~. (2*N)xID 2*N 

where 

ID: (%w)o.=%w 

is the identity matrix function. 

Figure 5 shows the result of IKXOR with a different 
generator. 

Still wilder patterns can be obtained by using the 
boolean functions t/AND and NOR. Since these functions, 
unlike ^ and z, are not associative, we must define an order 
for their associated Kronecker products: either fight-to-left, 
or left-to-fight. For example: 

IOPNORLR: (a IOPNORLR w-l)o.~: ~:1: a 
IKNORLR: ( (pa ) *cn )p ($$ (2x~)p  0 I )  

a IOPNORLR = 

IOPNORRL: ao.~ IOPRORRL ~-1: w=l: a 
IKNORdIL: ( (pa) .= )pC$$(2xca)p  0 1) 

a IOPNORRL to 

Many other patterns can be obtained using different 
generators and the relational functions <, ~, >, and ~. The 
author has explored only a small subset of this space of pat- 
terns. 
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3. Iterated morphisn~° 

There is still another way to generate the S~erpi6~ki 
carpet, and it generalizes in a different direction. We define 
a map, ~, which takes 0 to the 3×3 matrix of symbols 

00 
00 

and 1 to the matrix 

11 

Then by iterating ¢ we get the successive generations of the 
carpet. 5 

More generally, we could take an alphabet of a sym- 
bols; say 0,1,2,...,A -1.  We define ~ by providing an array R 
of dimension (a ,M ,M ) such that R [ 0 ; ; ] gives the value of 
6(0); R[I; ; ] gives the value of ~(1), etc. This idea leads to 
the following functions: 

APPLY:  ((pm)x-2÷p~)P 0 2 I 3 ~[w;;] 
IM: ¢~ APPL~ a IM ~-1: ~=0:1 I P 1 

The left argument to APPLI  is an array of dimension 
(A ,M ,M ) of integers in tA that specifies the map ~. 
(Remember: 0-origin.) The right argument is a matrix of 
values n ,  and the result is #(B). 

The left argument to IM (iterated map) is an array 
defining ~. The right argument is a generation number N. 
The result is ~(~(...~(1)))=~ N (1). 

This gives us still another carpet function: 

CARPETkt: (0,[-0.5] 3 3p tt=~9) IM co 

Many pleasant examples can be constructed with the 
function MORPIIISM. See Figures 8 and 9. 

It is perhaps somewhat surprising that we can even 
generate some space-filling curves using this scheme. In this 
article we give just one such example. The curious reader 
can find two more in [Sha]. 

The function PC~ below is an encoding of a particular 
map ¢. SFC (space-filling curve) applies this map repeat- 
edly and then applies a certain coding given by the function 
CODE. The  argument to SFC is a generation number N .  
The result is a (3 , /¢)x  (3 , /¢)  matrix giving an image of the 
N-th generation of the space-filling curve of Peano [Pea]. 

s Iterations of one-dimensional maps (as opposed to the two- 
dimensional ones we consider here) have well-known relationships 
to fractals and fractal-like patterns. See the beautiful article of 
Dekking, Mendes France, and van der Poorten for many examples 
[DMP], 

Iterations of two-dimensional maps (and, more generally, N dimen- 
sions) are less well understood. See the recent article of Salon [SaIl. 

To understand "ttis function it may be useful to reatize 
that PCM has been defined to map small sections of the curve 
to larger sections of the curve~ For example, 

CODE [PCM APPLY I IP53 
000 
110 
010 

CODE [PCM APPLY PCM APPLY I IP5] 
0 0 0 0 0 0 0 0 0  
I I 001111 O 
0 1 0 0 1 0 0 1 0  
0 1 0 0 1 0 0 1 0  
0 1 0 0 1 0 0 • 0  
0 1 0 0 1 0 0 1 0  
0 1 0 0 1 0 0 1 0  
0 1 1 1 1 0 0 1 0  
0 0 0 0 0 0 0 I 0 

PCM: 15 3 3@~(9P15)T 393331468 
393331~6 5842325861 58~2325861 
106W56533~3 I06~5853343 33881768996 
6070134986 607013W986 33881772324 
3388177232W 60708952~6 60708952W6 
33881768968 33881768968 

CODE: 0 1 0 1 0 1 0 0 1 0 1 0 I 0 I 

SFC: CODE [PCM IM ~] 

4. Parting words. 

We have only touched the surface in this article. We 
hope the reader will be encouraged and enthusiastic enough 
to explore 

(a) morphisms on bigger alphabets; 

(b) morphisms on higher-dimensional results; 

(c) pictures on color bitmap displays (see (a) above); 

(d) the Menger sponge (3-dimensional generalization of 
the Sierpinski carpet), etc. 
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6. Solution W the problem p o s e d ~  theend ~sect ion 1. 

CA}LPET5: (~T)A . VT÷I=(~P3)Tx3*~  

Summary ofFuncfions. 

CARPETO: ( T , T , T ) , [ 0 3 ( T , ( ( p T ) P 0 ) T , T , T ÷  
CARPETO ~-1: ~=0: I IPl 

KAND: ( ( p = ) x p ~ ) p  0 2 1 3 ~ a . .^~ 
n KSONECKER PRODUCT WITH ^ FUNCTION 

IF, AND: a KAND a IKAND m-l: ~=0: I lPl 
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CARPET1; 

iOPAND: 

IK2AND: 

CARPET2: 

IOPXOR: 

ITERATED OUTER PBODUCT WITH a 

ITEIL~TED OUTER PRODUCT WITH ^ 

((~)~)~($$(~.×~)~ 0 i) 
~a IOP~ID 

(3 3 p 4 ~ 1 9  )IERAND 

(c~ IOPXOR ta -1)~  , = a :  ~ = 0 : 0  
ITERATED OUTER PRODUCT WITH 

IKXOR: ( (Pa)*~)P ($$(2×~)p0 1) 
~¢t IOPXOR w 

HAD: -I ~ (2 2P 0 0 0 I) IKXOR w 
n 8ADAMARD MATRIX OF SIZE 2~ 

ID: (%~)0.=i.~ 

IOPHOHLR: (eL IOPNORLR w-1)o.~: ~=I: a 

IFJIORLR: ((pa)~a~)p(~(2x~)p 0 1) 
a IOPNORLR w 

IOPNORRL: a * , ~  IOPNORRL w-l: w=1: = 

IKNORRL: ((ps),w)p(~(2xw)p 0 I) 
u IOPNORRL w 

APPLY: ( (p~)x-2+poQp 0 2 1 3 ~o~[w;;] 
R APPLY MAP TO MATRIX RIGET ARG 

IM: a ~IPPLI a I~I ~-1: w=0:1 1 p 1 
n ITERATED HAP APPLIC]~TION 

CARPET~: (0,[-0.5] 3 3P ~z19) IH w 

PCM: 15 3 3 P ~ ( 9 P 1 5 ) T  393331u,68 
393331u,  u,6 58q .2325861  5 8 ~ 2 3 2 5 8 6 1  

1 0 6 9 5 6 5 3 3 ~ 3  338817689u ,6  607013u ,986  
338817723211- 3 3 8 8 1 7 7 2 3 2 ~  60708952u ,6  
3 3 8 8 1 7 6 8 9 6 8  3 3 8 8 1 7 6 8 9 6 8  

CODE: 0 I 0 1 0 1 0 0 1 0 1 0 1 0 1 

SFC: CODE [PCH I~I ~] 

CARPET5: (~T)^. vT÷l~ (~p3)T~3*~ 
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(Figures 1 to 10 appear 
on the next 5 pages) 

1 0 6 ~ 5 6 5 3 3 ~ 3  
6 0 7 0 1 3 q 9 8 6  
6 0 7 0 8 9 5 2 ~ 6  
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Figure I 

Figure 2: C~RPETO 5 
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Figure3: (2  2P 1 I 1 0)  IKAND 7 

Figure4: (2  2p 0 0 0 1)IKXOR 7 
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Figure 5 : (2  2p 1 0 0 1) IKXOR 7 
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Figure6: (2  2P 0 0 I O)IKNORLR N 
for N = l , 2 , 3 , t l . , 5 , 6  
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E 
E E 

Figure7:(2 2p 0 0 I O) IFJIORRL N 
for Jr=l ,2,3 ,q-, 5,6 
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Figureg: (2 2 2p 0 o 1 1 0 1 o 1) TM 7 

Figure 10: SFC n4 
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