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Formal Languages and Number Theory

Jeffrey Shallit

ABSTRACT. I illustrate the connection between formal language theory and
number theory. I give three examples (dealing with unary regular languages,
unary context-free languages, and primitive words) where number theory may
be applied to solve problems in formal language theory. I also give one example
(transcendence in finite characteristic) where formal language theory may be
applied to solve a problem in number theory.

1. Introduction.

An alphabet is a (usually) finite set of symbols ¥. A word or string — the
terms are synonymous — is a (usually) finite sequence of symbols chosen from X.
By ¥* we mean the free monoid over X (the set of all finite strings with symbols
chosen from ¥). A language is a (finite or infinite) subset of ©*. For example, if -
zf denotes the reversal of the string z, then the language PAL of palindromes over
{a, b} can be defined as follows:

PAL = {z¢€{a,b} : z=2z}
= {ea,b,aa,bb,aaa, aba, bab, bbb, . . .}.

Note that € denotes the empty string.

The basic operations on languages include union, intersection, complementa-
tion, concatenation (defined by L1Ly := {zy : z € L1, y € Lo}) and Kleene closure
(defined by L* :=J,5, L")

Formal language theory is the study of the properties of languages. By contrast,
number theory is the study of the properties of integers. Nevertheless, these two
areas have many interesting intersections. For a survey, see a previous paper of
mine [23] and the new book [7].

In this paper, I illustrate the connections between formal language theory and
number theory by discussing four examples. In the first three examples, given in
sections 2, 3, and 4, I show how number theory may be used to solve problems
in formal language theory. These examples are surely in the spirit of the theme
of the conference, entitled “Unusual Applications of Number Theory”. In the last
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example, given in section 5, I show how formal language theory may be applied
to solve a problem in number theory. (This example would be suitable for a “co-
conference”.) I do not make any attempt to be comprehensive or provide all details.
Further, while the sections 2 and 3 discuss original results, sections 4 and 5 are based
on results of Jean-Paul Allouche.

2. State complexity of the intersection of unary languages

A deterministic finite automaton (DFA) is a simple model of a computer. It
consists of a finite nonzero number of states. One state, called the start state, is
drawn with a single arrow entering. Other states, called accepting or final states,
are drawn with two concentric circles. A string is said to be accepted if it is the
label of a path beginning with the start state and ending at some final state. The
language accepted by a finite automaton M, written L(M), is the set of all strings
accepted by M. For example, in Figure 1 below, the given automaton accepts the
base-2 representations of the prime numbers < 11.

F1Gure 1. Transition diagram for automaton accepting the base-2
representations of the primes p < 11

More formally, a DFA is a quintuple: M = (Q, X, 8, g0, F') where
e () is a finite set of states;
the size of M is |[M| :=|@|, the number of states;
3 is the input alphabet;
qo € @ is the start state;
F C @ is the set of final states;
0 : @ x3 — @ 1is the transition function, which is extended to § : Q x T* —
Q in the obvious way.

The language accepted by M is denoted by L{M) and is given by {w € T*
d(qo,w) € F}. A language L is said to be regular if it is accepted by some DFA M.

The state complexity of a regular language L, sc(L), is the minimum number
of states required by any DFA which accepts it; see, for example, [28].

The state complexity problem is the following: given regular languages L, L’
with state complexity n, n’ respectively, what are good bounds on the state com-
plexity of L N L', L U L', LL', L*, etc.?
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For the state complexity of intersection, we have the following upper bound,
which is well-known.

ProprosiTiON 1. We have
sc(L N L') <sc(L)sc(L).

ProOOF. Let L be accepted by the DFA (Q,X,6, g, F) and L’ be accepted by
the DFA (Q', %, ¢, g, F'). Then L N L' can be accepted by a DFA (Q”, %, 6", g/, F")
where
Q"= QxQ;
qg = [g0, 90);
F":=F x F'; and
5”([?, qL a) = [5(]9, a), 5((1’ a)}

O

As Yu and Zhuang observed [27], the upper bound of sc(L)sc(L) can be
achieved if L, L' are over an alphabet of size at least 2:

PROPOSITION 2. Define
L:={z e {a,b}* : |z|o =0 (mod n)};
L' :={y € {a,b}* : |ylp =0 (mod n')}.
Then
se(L N L')=nn'.

But what if L, L’ are unary, that is, defined over an alphabet of one symbol?
Clearly if ged(n,n') = 1 then the bound nn’ can again be achieved, by taking
L= (a™)* and L' = (a™)*. But what if ged(n,n’) > 17 This problem was stated
as an unsolved problem by Yu [26].

"To obtain a lower bound on the state complexity of intersection of unary regular
languages, we examine the topology of unary DFA’s. A connected unary DFA has
the property that its transition diagram consists of

e a tail of t > 0 states and
e a cycle of ¢ > 1 states.

It is then not hard to prove the following:

THEOREM 3. Let M, M’ be unary DFA’s with tails of size t,t' and cycles of
size ¢, c', respectively. If L, L' are the corresponding languages, we have

(1) se(L N L) <max(t,t') + lem(c, ).

Furthermore, for allt,t’ > 0 and c,c’ > 1 there exist unary languages for which
the bound (1) is achieved.

(This theorem was obtained independently by the author [24] and G. Pighizzini
[20]; also see [22].)

Thus, to estimate the worst-case behavior for the state complexity of intersec-
tion of unary languages with n and n’ states, respectively, we must estimate the
function

F(n,n') = max (max(n—c,n —c)+lem(c,c)).
<o/ <!
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This in turn suggests studying the somewhat simpler and more natural function
no_ /
G(n,n') = max lem(c, ¢').
1</ <n’

Although the asymptotic behavior of F and G is still not known precisely, there
is a relation to Jacobsthal’s function g(n), which is defined to be the least integer r
such that every set of r consecutive integers contains at least one integer relatively
prime to n [14].

Iwaniec [13] proved using the linear sieve that g(n) = O((logn)?). The follow-
ing lower bound for our problem then follows:

THEOREM 4. If n < n', we have F(n,n') > G(n,n’) > nn’ — c1(logn)?n for
some constant c1.

Note: results on the average state complexity of operations on unary DFA’s
were obtained by Nicaud [18].

3. Grammatical complexity of unary context-free grammars

Context-free grammars are a method for generating languages. The modern
mathematical formulation is due to Chomsky [8], although the basic idea goes back
to Indian philologist Panini, ¢. 400 B.C.E.

A context-free grammar consists of a start symbol and rewriting or production
rules, e.g.:

S — aSa
S — bSh
S — a
S — b
S — €

which generates the palindromes over {a,b}. Often multiple productions are ab-
breviated using |, e.g.,
S — aSa|bSb|a|b]e
To derive a word, one starts with the start symbol § and then successively replaces
an occurrence of a variable with a right-hand-side of a production, until a string of
symbols (without variables) is obtained.
More formally, a context-free grammar (CFG) is a 4-tuple G = (V,%, P, S)
where
e V is a finite set of variables;
e 3 is a finite alphabet;
e P is a set of production rules of the form A — -+, where A € V and
v e (V U X)* and
e S is the start symbol.
We write & = J if 8 can be obtained from a by the use of one production
rule. We write =* for the reflexive, transitive closure of =. Then L(G), the
language generated by G is formally defined as

LG)y={zeX" : S="z}.

Context-free grammars generate a class of languages, the context-free languages,
which are a strict superset of the class of regular languages.
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A leftmost derivation in a grammar is a series of steps deriving a terminal
string, in which the leftmost variable is replaced at each step. A grammar G is said
to be ambiguous if there exists at least one word in L(G) possessing at least two
distinct leftmost derivations.

We can measure the size of a context-free grammar as the number of sym-
bols needed to write down its description. Suppose a CFG G generates a regular
language. How big can the corresponding DFA be, in terms of the size of G?

If the CFG is over an alphabet with at least 2 symbols, the answer is, there is
no recursive bound. More precisely, Meyer and Fischer [17] proved that given any
recursive function f, for arbitrarily large integers n there exists a CFG of size n
describing a regular language L such that any DFA accepting L has at least f(n)
states.

But how about the unary case? As Ginsburg and Rice [12] proved, any unary
CFG generates a regular language. Further, the author together with M.-w. Wang
(and independently, G. Pighizzini [21]) have shown there exists a constant such
that any unary CFG of size n describing a regular language can be accepted by a
DFA with at most O(2°"") states.

But is this bound achievable? We give an example based on number theory
that achieves this bound. Consider the following productions:

Ay — a
Ay — A4 (i>0)
B, — aA;
Co — a
Civi — al|CC; (1>0)
D, — DB, |C; (:>0)
Si — €|Do|Di| Dy - |D; (1>0)

It follows that, for ¢ > 0,
A, =* {d®}
B, =+ {a¥*}
C; =* {a,d*d?, ..., azi}
D; =* {a,a?d?.. .,a2i}{a21‘+1}* ={a’ : j#0 (mod 2" + 1)}.
S; =>* {e} U {a® : k#0 (mod lem(2° +1,2' +1,...,2 + 1))}
Now let G,, = (Vy,,{a}, Pn, Sn), where
Vo ={4:,B;,Ci,D;,S; : 0<i<n}
and P, is the set of O(n) productions given above involving these variables. It is
clear that L(G),) is regular. The shortest string not generated by G,, is of length
lem(2° + 1,21 +1,...,2" +1)

and so any DFA accepting L(G,,) must have at least this many states.
It remains to estimate

lem(20 + 1,2 + 1,...,2" +1).
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We use the following theorem of Bézivin [1989}:

THEOREM 5. Let a,b be integers with b # 0 and ged(a,b) = 1. Let o, 8 be
zeroes of the polynomial X? — aX —b. For m > 2 define

a™mn — an

un(n) = S
Then
f 108 (D) um(m) (= DL(m)n?
n=oo log lem(um (1), um(2), .. ., um(n)) 6H (m) ’
where
1
s =TT (1 53)
pim
and
p(d)p(m/d)d
d|m m
oo
Now take ¢ = 3,b = —2,m = 2 in Bézivin’s theorem. Then o = 2 and 3 =1,

and we obtain
; log(2°+ 2"+ 1)---(2"+1)) _=°
n—oo loglem(20 4+ 1,21 +1,...,27 +1)) 8"
On the other hand, it is easy to see that

2%+ D2+ 1) (27 4+ 1)
i 20 21 gn =

where ¢y = 4.768, so it follows that

1
log((2° + 1)(2' +1)--- (2" + 1)) ~ logcy + ﬂ@—;_—) log 2.

Putting this together with the Bézivin result, we get

4log?
o8 n2.

loglem(2° + 1,28 +1,...,2" +1) ~ —

We remark that other constructions are possible which achieve the 2¢7* bound.
For example, instead of lem(2°+ 1,21 +1,...,2" + 1), we could instead use a result
of Szymiczek [25] and consider lem(2 — 1,22 — 1,...,2" — 1). Or we could use a
result of Matiyasevich and Guy [16] and consider lem(Fy, Fs, ..., F},), where F; is
the ith Fibonacci number. For related results, see [15, 1, 2].

4. The primitive words problem

Let X be a finite alphabet with at least two letters. A word w € £* is said
to be primitive if it cannot be expressed in the form z* with k > 2. For example,
abaab is primitive, but abaaba = (aba)? is not. A major open problem in formal
languages is the following: is the language P of primitive words over {a, b} context-
free? The answer is almost certainly no, but nobody currently knows how to prove
this. Petersen [19] proved the following weaker result:

THEOREM 6. P is not unambiguously context-free (i.e., if P is a CFL, then
any grammar for it is ambiguous).
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Petersen used the Chomsky-Schiitzenberger theorem [9], which states that if L
is a context-free language having an unambiguous grammar, and a,, := |IL Nx™,
then ) -, a, X" is a formal power series in Z[[X]] which is algebraic over Q(X).

Recently a remarkably simple proof of Petersen’s result was found by Allouche
[5, 6] using the theory of automatic sequences. In this section we explain Allouche’s
proof.

First, we give an example of Chomsky-Schiitzenberger theorem. Consider the
unambiguous grammar

S — M|U

M — OMIM |e
U — 0S|0M1U

which represents strings of “if-then-else” clauses. Then this grammar has the fol-
lowing commutative image:

S = M+U
M = 22M?*+1
U = Sz+z2MU

This system of equations has the following power series solutions:

M = 1+az2+2x4+5m6+14x8+42x10+~-
U = :c+x2+3a:3+4:c4+10x5+15x6+35m7+56x8+---
S = 14z+22%+ 323 +62% + 1025 + 202° + 3527 + - --

By the Chomsky-Schiitzenberger theorem, cach variable satisfies an algebraic
equation over Q(z). For example, we have

z(2z-1)S*4+ (22 -1)S+1=0

Now we digress a moment to discuss automata as computers of sequences.

We can generalize our notion of automaton to provide an output, not simply
accept/reject. Formally, we define a deterministic finite automaton with output
(DFAO) as a sextuple: (Q,%,6,qo, A, 7), where A is the finite output alphabet and
T : @ — A is the output mapping.

Next, we decide on a integer base k > 2 and represent n as a string of symbols
over the alphabet ¥ = {0,1,2,...,k —1}. To compute f,, given an automaton M,
express n in base-k, say, a,a,_1 - - - a1ao, and compute f,, = 7(8(q0, arar—1 -+ - aiag)).
Any sequence that can be computed in this way is said to be k-automatic [11].

The Thue-Morse sequence (t,)n>o is defined as follows: t, is the parity of the
number of 1’s in the binary expansion of n. We have

(tn)n>0 =01101001 ---

Note that tg = 0; to, = t,, and to,41 =1 — ¢, for n > 0.
Axel Thue (c. 1906) studied this sequence because it is cubefree: it contains no

subword of the form www, where w is a nonempty word. It is computed by the
following DFAQ:
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FIGURe 2. Automaton computing the Thue-Morse sequence

We observe that the notion of automatic sequence is robust: it does not change
under small changes to the computational model. For example, the order in which
the base-k digits are fed into the automaton in does not matter (provided it is fixed
for all n); other representations also work (such as expansion in base-(—k)); auto-
matic sequences are closed under many operations, such as shift, periodic deletion,
g-block compression, and g¢-block substitution; and if a symbol in an automatic
sequence occurs with well-defined frequency r, then r is rational [11].

The theorem of Christol [10] is the most important in the area:

THEOREM 7 (Christol, 1979). Let (uy)n>0 be a sequence over
£={0,1,...,p—1},

where p is a prime. Then the formal power series U(X) = u,X™ is algebraic
over GF(p)[X] if and only if (up)n>0 is p-automatic.

Let us consider an example. Let, as before, (t,),>0 denote the Thue-Morse
sequence, i.e., t, = sum of the bits in the binary expansion of n, mod 2. Then
ton = tn and toni1 =6, + 1. If weset A(X) =3 ., X", then

AX) = D tanXP 4 tpp X2

n>0 n=0
= Y X7 HXY XML XY X
n=>0 n=>0 n>0

= AX?H+XAXH+X/1-X?)

= AX)Z(1+X)+ X/1+X)2
Hence (14+ X)34%2+ (1+ X)2A4+ X =0.

We can now return to Allouche’s proof of Petersen’s result.

ProOF. Let 1, (n) be the number of primitive words of length n over a k-letter
alphabet. Then it is easy to see (using M6bius inversion) that

dn(n) = 3 (ke
d|n

If P were unambiguously context-free then by the Chomsky-Schiitzenberger theo-
rem

R(X) = 3 v(m) X"

n>1
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would be algebraic over Q(X). Then

R(x) = 32 2l

k
n>1

would also be algebraic over Q(X).
Let p be a prime dividing k. Then it is not hard to see that

Bp(X) = Y02 moq gy xm

n=1

would also be algebraic over GF(p)(X). But

eln) D DRV = p(n) + > (k™ = p(n)  (mod p).

k
dln d | nd#n
It follows that

Fy(X) = 3 plm) X"

n>1

and so the sequence (y(n) mod p)n>o must be p-automatic. But then (u(n)? mod
P)n>0 would be p-automatic.

However, u(n)® = 1 (mod p) if and only if n is squarefree. By a classical
theorem, the density of the squarefree numbers exists and is equal to 6/72, an
irrational number. But, as remarked earlier, the density of symbols in automatic
sequences (if it exists) must be rational, a contradiction. It follows that R(X) is not
algebraic over Q(X) and so P} is not unambiguously context-free. This completes
the proof. O

5. Transcendence in Finite Characteristic

In this section, we turn the tables and illustrate an application of formal lan-
guage theory to number theory.

Define for n > 1
1
Ca(n) = Z Pr

I deiztoing
Thus, for example,
1 1 1 1 1 1
Ch=1txtx At ety T

=14+ X P4 X XA X P X0 x4
e GF2)[[X Y.

This function (;, now called the Carlitz zeta function, has many properties similar
to those of the Riemann zeta function. For example, it admits the following Euler

product:
1
CQ(n) = H 1_ 1 -

P irreducible Pr
PeGF(g)[X]
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Carlitz also showed that if ¢—1|n, then (,(n) = 7y’ -7 where 7 is a rational function
and

Wade proved the following theorem:

THEOREM 8. m, is transcendental.

Here is another proof of Wade’s result, due to Allouche [4], using automatic
sequences and Christol’s theorem (also see [3].

Proor. Taking the logarithmic derivative, we get

o 1 (X7 - X)) - (X7 - X)
Ty (X - X)?

Now suppose that 74 is algebraic over GF(¢)(X). Then so is the formal derivative
m,- Hence so is 7, /m,. But then so is

> 1
o T = T3
kZIXq - X k>1

,___,

the so-called “bracket series” introduced by Wade, who defined [k]:=X7" — X.
Thus to prove m, transcendental, it suffices to show that

1
> xF %

k>1
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is transcendental. We now have

1 1
Do =)

k>1 i1 X (1 - (%)Qk_l)

1 1 n(qk*‘l)
-T2 (x)

E>1 n>0

1 1 1 n(qk_‘l)
N INEY
k>1

n>0

Hence

where

Now, by Christol’s theorem, in order to show that »_, <, Yq—,;lj is transcendental

over GF(q)(X), it suffices to prove that (c(m) mod p),,>1 is not g-automatic, where
g = p°® for some e.

If the sequence (¢(m) mod p),,>1 were g-automatic, then the subsequence (c(g"—
1) mod p),,>o would be ultimately periodic. But

" -1= > 1 =11 =dn),

k>1 E>1
a*-1]g"~1 kln
where d(n) is the number of positive integral divisors of n.
It now suffices to show that (d(n) mod p),>1 is not ultimately periodic. This
can be done by a simple argument using Dirichlet’s theorem. This contradiction
completes the proof. O
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