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Abstract

We examine words w satisfying the following property: if = is a
subword of w and |z| is at least k for some fixed %, then the reversal
of z is not a subword of w.

1 Introduction

Let ¥ be a finite, nonempty set called an alphabet. We denote the set of all
finite words over the alphabet ¥ by £*. The empty word is represented by
¢. Let ) denote the alphabet {0,1,...,k —1}.

Let N denote the set {0,1,2,...}. An infinite word is a map from N to
. The set of all infinite words over the alphabet X is denoted X¥.

A‘map h : Z* — A* is called a morphism if h satisfies h(zy) == h(z)h(y)
for all z,y € £*. A morphism may be defined by specifying its action on
¥.. Morphisms may also be applied to infinite words in the natural way.

If we UF is written w = wiwsy -+ -w,, where each w; € X, then the
reversal of w, denoted w%, is the word wpw,_1 - - ws.

If y is a nonempty word, then the word yyy -+ is written as y*. If an
infinite word w can be written in the form y* for some nonempty y, then
w is said to be periodic. If w can be written in the form y'y* for some
nonempty y, then w is said to be ultimately periodic.

A square is a word of the form zz, where & € * is nonempty. A word
w’ is called a subword (resp. a prefiz or a suffiz) of w if w can be written
in the form uw’v (resp. w'v or uw’) for some u,v € £*. We say a word w
is squarefree (or avoids squares) if no subword of w is a square.
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2 Avoiding reversed subwords

Szilard [6] asked the following question:

Does there exist an infinite word w such that if z is a sub-
word of w, then z% is not a subword of w?

Clearly there must be some restriction on the length of z: if |z| = 1,
then all nonempty words fail to have the desired property. For |z| > 2,
however, we have the following result.

Theorem 1. There exists an infinite word w over L3 such that if z is a
subword of w and |z| > 2, then 't is not a subword of w. Furthermore, w
is unique up to permutation of the alphabet symbols.

Proof. Note that if |z| > 3 and both z and z® are subwords of w, then
there is a prefix z’ of z such that |2/| = 2 and (2')% is a suffix of 7. Hence
it suffices to show the theorem for {z| = 2. We show that the infinite word

w = (012)* = 012012012012 - -

has the desired property. To see this, consider the set A consisting of all
subwords of w of length two. We have A = {01, 12,20}. Noting that if
z € A, then z® ¢ A, we conclude that if z is a subword of w and |z| > 2,
then £ is not a subword of w.

To see that w is unique up to permutation of the alphabet symbols,
consider another word w' satisfying the conditions of the theorem, and
suppose that w’ begins with 01. Then 01 must be followed by 2, 12 must
be followed by 0, and 20 must be followed by 1. Hence,

w' = (012)¥ = 012012012012+ - = w.
m

Note that the solution given in the proof of Theorem 1 is periodic. In
the following theorem, we give a nonperiodic solution to this problem for
|z| > 3.

Theorem 2. There exists an infinite nonperiodic word w over Xs such
that if ¢ is a subword of w and |z| > 3, then &% is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for |z| = 3. Let w’ be an infinite nonpe-
riodic word over Ty. For example, if w/ = 11010010001 -+, then w’ is
nonperiodic. Define the morphism h : £§ — Z¥% by

0 — 0012

1 — 0112
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Then w = h(w') has the desired property. Consider the set .4 consisting
of all subwords of w of length three. We have

A =1{001,011,012,112,120,200,201}.

Noting that if z € A, then 2f ¢ A, we conclude that if z is a subword of
w and |z| > 3, then z® is not a subword of w.

To see that w is not periodic, suppose the contrary; i.e., suppose that
w = y* for some y € Xj. Clearly, |y| > 4. Suppose then that y begins with
h(0). Noting that the only way to obtain 00 from h(ab), where a,b € X,
is as a prefix of h(0), we see that y = h(y’) for some 3’ € ¥5. Hence,
w=(h(¥)* =h((¥)"), and so w = (') is periodic, contrary to our
choice of w'. O

Over a two-letter alphabet we have the following negative result.

Theorem 3. Let k < 4 and let w be a word over Xy such that if z is a
subword of w and |¢| > k, then &® is not a subword of w. Then |w| < 8.

Proof. As mentioned previously, if £ = 1 the result holds trivially. If k¥ = 2,
note that all binary words of length at least three must contain one of the
following words: 00, 11, 010, or 101. Similarly, if ¥ = 3, note that all binary
words of length at least five must contain one of the following words: 000,
010, 101, 111, 0110, or 1001; and if k¥ = 4, note that all binary words of
length at least nine must contain one of the following words: 0000, 0110,
1001, 1111, 00100, 01010, 01110, 10001, 10101, or 11011. Hence, |w| < 8,
as required. |

For |z| > 5, however, we find that there are infinite words with the
desired property.

Theorem 4. There ezxists an infinite word w over Ly such that if z is a
subword of w and |z| > 5, then zf is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for |z| = 5. We show that the infinite word

w = (001011)¥ = 001011001011001011 -

has the desired property. To see this, consider the set A consisting of all
subwords of w of length five. We have

A={00101,01011,01100, 10010, 10110, 11001}.

Noting that if z € A, then zF ¢ A, we conclude that if z is a subword of
w and |z| > 5, then 2 is not a subword of w. O
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Let z be the word 001011. We denote the complement of z by z, i.e.,
the word obtained by substituting 0 for 1 and 1 for 0 in z. Let B be the set
defined as follows:

B ={z |z is a cyclic shift of z or z}.

We have the following characterization of the words satisfying the condi-
tions of Theorem 4.

Theorem 5. Let w be an infinite word over Ty such that if © is a subword
of w and |z| > 5, then @® is not a subword of w. Then w is ultimately
periodic. Specifically, w is of the form y'y*, where y € {¢,0,1,00, 11} and
y € B.

Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for |z| = 5. We call a word w € X3 valid if w
satisfies the property that if z is a subword of w and |z| = 5, then zf is
not a subword of w. We have the following two facts, which may be verified
computationally.

1. All 32 valid words of length 9 are of the form y'yy”, where
v €{¢0,1,00,11},y € B, and ¥y’ € T5.

o

Let w be one of the 20 valid words of the form yy'’, where y € B,
y" € ¥}, and |y’| = 9. Then y is a prefix of y".

We will prove by induction on n that for all n > 1, y'y™ is a prefix of
w, where ¥ € {¢,0,1,00,11} and y € B.

If n = 1, then by applying the first fact to the prefix of w of length 9,
we have that 1’y is a prefix of w, as required.

Assume then that y'y™ is a prefix of w. We can thus write w =
y'y"~lyw’, for some w' € £¥. By applying the second fact to the pre-
fix of yw’ of length 15, we have that y is a prefix of w/. Hence w =
Yy lyyw” = 'y tlw", for some w” € TY, as required.

We therefore conclude that if w satisfies the conditions of the theorem,
then w is of the form y'y*, where ¢’ € {¢,0,1,00,11} and y € 5. |

Next we give a nonperiodic solution to this problem for |z| > 6.

Theorem 6. There exists an infinite nonperiodic word w over Yo such
that if  is a subword of w and |z| > 6, then =% is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for |z| = 6. Let w’ be an infinite nonperiodic
word over Xy. Define the morphism h : 2§ — X% by

0 — 0001011
1 — 0010111
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We show that the infinite word w = h(w’) has the desired property. To see
this, consider the set A consisting of all subwords of w of length six. We
have

A = {000101,001011,010110,010111,011000,011001,011100,
100010, 100101, 101100, 101110, 110001, 110010, 111000, 111001}.

Noting that if z € A, then zf & A, we conclude that if z is a subword of
w and |z| > 6, then =% is not a subword of w.

To see that w is not periodic, suppose the contrary; i.e., suppose that
w =y for some y € 3. Clearly, |y| > 7. Suppose then that y begins with
h(0). Noting that the only way to obtain 000 from h(ab), where a,b € Xy,
is as a prefix of h(0), we see that y = h(y') for some y' € £3j. Hence,
w = (h(¥)* = h((¥)"), and so w’ = (y')* is periodic, contrary to our
choice of w'. O

Finally we consider words avoiding squares as well as reversed subwords.
It is easy to check that no binary word of length > 4 avoids squares. How-
ever, Thue [7] gave an example of a infinite squarefree ternary word. Over
a four-letter alphabet we have the following negative result, which may be
verified computationally.

Theorem 7. Let w be a squarefree word over X4 such that if x is a subword
of w and |z| > 2, then = is not a subword of w. Then |w| < 20.

In contrast with the result of Theorem 7, Alon et al. [1] have noted
that over a four-letter alphabet there exists an infinite squarefree word
that avoids palindromes z where |z| > 2. (A palindrome is a word z such
that £ = z*.) However, over a five-letter alphabet there are infinite words
with an even stronger avoidance property.

Theorem 8. There exists an infinite squarefree word w over Ls such that
if x is a subword of w and |z| > 2, then z® is not a subword of w.

Proof. By reasoning similar to that given in the proof of Theorem 1, it
suffices to show the theorem for |z| = 2. Let w’ be an infinite squarefree
word over Y3. Define the morphism h : &% — 3§ by

0 — 012
1 — 013
2 — 014.

We show that the infinite word w = h(w’) has the desired property.

First we note that to verify that w is squarefree, it suffices by a theorem
of Thue [8] (see also [2, 3, 4]) to verify that h(w) is squarefree for all 12
squarefree words w € 3 such that Jw| = 3. This is left to the reader.
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To see that if z is a subword of w and |z| = 2, then z¥ is not a subword
of w, consider the set A consisting of all subwords of w of length 2. We
have

A={01,12,13, 14, 20, 30, 40}.

Noting that if z € A, then % ¢ A, we conclude that if z is a subword of
w and |z| > 2, then 2% is not a subword of w. O

Finally, we consider a slight variation of the original problem; that i,
we examine words w that have the property that if z and z® are both
subwords of w, then = zF. Over a two letter alphabet, all such words
w are of the form 0---0,1---1,0---01---1,0r 1---10---0. Over a three
letter alphabet, we have the following characterization.

Theorem 9. There are 2" — 1 words w € T} of length n that begin with 0
and have the property that if z and =¥ are both subwords of w, then z = =&,

Proof. Any word w satisfying the conditions of the theorem is either of the
form 0---0, or begins with 0---01 or 0---02. Supose that w begins with
0---01 (the case where w begins with 0---02 is similar). Then 0---01
cannot be followed by a 0, as then 01 and 10 would both be subwords of w.
Extending this reasoning, we find that w must be a prefix of a word of the
form

(0-+-01-++12.++2)(0++-01++-12---2)---

(here the parentheses are not part of the word but just serve to group
repeating blocks). ,

We see then that the language £ of all words satisfying the conditions
of the theorem can be described by the following regular expression (see [5)
for more on regular expressions): '

£ = (00*11%22%)* (0* + 00*1*) + (00*22* 11)* (0" + 00*2").

The minimal (incomplete) deterministic finite automaton (again, see [5]
for more on finite automata) M that accepts £ has eight states and is given
by

M = ({ql, . .,qg}, 23, 5, qi1, {(h; ey 98}) ¥
Note that all states are final. We omit the precise specification of the
transition function ¢ and instead consider the adjacency matrix A = (a;;),
where the entries a;; give the number of transitions from state g; to state
g;. We have
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01000000
01110000
00101000

4|00 0 10100
00001010
000001 01
00100010

(0001000 1|

The (¢, 7) entry of A” gives the number of paths of length n from state
¢; to state g;. The number of words of length n accepted by M is thus
given by the sum of the values of the first row of A" (since all states are
final). An easy induction shows that

(1] [ 2°-1 ]
antl g
2n
n
= gn forn > 1,
2n
271
. &

ATL

fod et b fed e peed ped

from which we see that £ contains 2" — 1 words of length n. |
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