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1 Introdu
tion

The Danish 
omposer Per N�rg�ard (1932{) invented a pro
edure for generating rhythms

whi
h was des
ribed by Erling Kullberg [5℄. Reworded in mathemati
al notation, this pro-


edure is as follows:

Let the Fibona

i numbers (F

n

)

n�0

be de�ned as usual by F

0

= 0, F

1

= 1, and F

n

=

F

n�1

+ F

n�2

. Starting with the pair (


0

; 


1

) = (F

2n

; F

2n+1

), perform the following operation

n� 2 times:

� If a number F

i

appears in an even-indexed position, repla
e it with (F

i�2

; F

i�1

)

� If a number F

i

appears in an odd-indexed position, repla
e it with (F

i�1

; F

i�2

)

Kullberg illustrates this pro
edure in the 
ase n = 5, as follows:

3 5 8 5 8 813 5 8 13 21 13 8 13 8 5

8 13 21 13 21 34 21 13

21 34 55 34

55 89

Figure 1: Generating the rhythmi
 in�nity series

�
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Here, starting with the pair (55; 89), we repla
e 55 by (21; 34) and 89 by (55; 34) to get

the quadruple (21; 34; 55; 34), and so forth.

After n � 2 iterations, the resulting sequen
e is of length 2

n�1

. As n ! 1 we get a

limiting sequen
e (a

i

)

i�0

:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

a

i

3 5 8 5 8 13 8 5 8 13 21 13 8 13 8 5 8 13 � � �

In this paper I obtain an expli
it formula for the sequen
e (a

i

)

i�0

and show how it is

related to binary Gray 
ode.

We 
an see the stru
ture of the sequen
e (a

i

)

i�0

more easily if we repla
e ea
h number

in Figure 1 by the 
orresponding Fibona

i number, as follows:
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Figure 2: Generating the rhythmi
 in�nity system

This gives us a sequen
e (b

i

)

i�0

de�ned by a

i

= F

b

i

:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

b

i

4 5 6 5 6 7 6 5 6 7 8 7 6 7 6 5 6 7 � � �

Finally, if we de�ne 


i

= b

i

� 4, we get the following sequen
e:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �




i

0 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1 2 3 � � �

We now �nd another way to generate the sequen
e (


i

)

i�0

: through iterated morphisms.

Let � be a �nite set of symbols, 
alled an alphabet. Then �

�

denotes the set of all �nite

strings with symbols 
hosen from �. For example,

f0; 1g

�

= f�; 0; 1; 00; 01; 10; 11; 000; : : :g:

Here � is the symbol for the empty string.

A morphism is a map h : �

�

! �

�

that satis�es the identity h(xy) = h(x)h(y) for all

strings x; y 2 �

�

. A morphism may be iterated by de�ning h

0

to be the identity map (i.e.,

h

0

(x) = x for all x 2 �

�

) and h

i

(x) = h

i�1

(h(x)) for i � 1.
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Iterated morphisms have been used by the 
omposer Tom Johnson in some of his work;

for more details see [1, 2℄.

To generate (


i

)

i�0

we may model N�rg�ard's transformation as follows: we de�ne a map

� : [a; b℄! [a� 2; a� 1℄[b� 1; b� 2℄:

This map 
an be extended to a morphism on sequen
es of pairs using the rule �(xy) =

�(x)�(y). Then the �rst 2

n�1

terms of the sequen
e (b

i

)

i�0

are given by �

n�2

([2n; 2n + 1℄),

and the �rst 2

n+1

terms of the sequen
e (


i

)

i�0

are given by �

n

([2n; 2n+ 1℄).

For example:

�

0

([6; 7℄) = [6; 7℄

�

1

([6; 7℄) = [4; 5℄[6; 5℄

�

2

([6; 7℄) = [2; 3℄[4; 3℄[4; 5℄[4; 3℄

�

3

([6; 7℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄[2; 3℄[4; 3℄[2; 3℄[2; 1℄

This generates the sequen
e (


i

)

i�0

in a \top-down" fashion.

To generate (


i

)

i�0

in a \bottom-up" fashion we introdu
e a morphism ' de�ned by

'([a; a+ 1℄) = [a; a+ 1℄[a+ 2; a+ 1℄

'([a+ 1; a℄) = [a+ 1; a+ 2℄[a+ 1; a℄

Theorem 1 For n � 0 we have

�

n

([2n; 2n + 1℄) = '

n

([0; 1℄): (1)

Proof. It turns out to be useful to prove something more general. Namely, we prove the

following two equations simultaneously by mathemati
al indu
tion on n:

�

n

([k; k + 1℄) = '

n

([k � 2n; k + 1 � 2n℄); (2)

�

n

([k + 1; k℄) = '

n

([k + 1� 2n; k � 2n℄); (3)

for all integers k.

It is easy to see (2) and (3) hold for n = 0. Now assume (2) and (3) hold for n; we prove

them for n+ 1.

�

n+1

([k; k + 1℄) = �

n

(�([k; k + 1℄))

= �

n

([k � 2; k � 1℄[k; k � 1℄)

= �

n

([k � 2; k � 1℄) �

n

([k; k � 1℄)

= '

n

([k � 2� 2n; k � 1 � 2n℄) '

n

([k � 2n; k � 1 � 2n℄)

= '

n

([k � 2� 2n; k � 1 � 2n℄[k � 2n; k � 1 � 2n℄)

= '

n

('([k � 2� 2n; k � 1 � 2n℄))

= '

n+1

([k � 2(n+ 1); k + 1� 2(n + 1)℄):
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Similarly

�

n+1

([k + 1; k℄) = �

n

(�([k + 1; k℄))

= �

n

([k � 1; k℄[k � 1; k � 2℄)

= �

n

([k � 1; k℄) �

n

([k � 1; k � 2℄)

= '

n

([k � 1� 2n; k � 2n℄) '

n

([k � 1� 2n; k � 2 � 2n℄)

= '

n

([k � 1� 2n; k � 2n℄[k � 1� 2n; k � 2 � 2n℄)

= '

n

('([k � 1� 2n; k � 2 � 2n℄)

= '

n+1

([k + 1 � 2(n + 1); k � 2(n + 1)℄):

Finally, the desired result (1) follows by setting k = 2n in (2).

It now follows that we 
an generate the sequen
e 


i

by iterating the morphism ' starting

with [0; 1℄. For example

'

0

([0; 1℄) = [0; 1℄

'

1

([0; 1℄) = [0; 1℄[2; 1℄

'

2

([0; 1℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄

'

3

([0; 1℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄[2; 3℄[4; 3℄[2; 3℄[2; 1℄

.

.

.

As a 
onsequen
e we get

Corollary 2

'([


2i

; 


2i+1

℄) = [


4i

; 


4i+1

℄[


4i+2

; 


4i+3

℄:

We now introdu
e the so-
alled \pattern fun
tions" e

P

(n). Let P be a string of 0's and

1's. Then e

P

(n) 
ounts the number of (possibly overlapping) o

urren
es of P in the base-2

expansion of n. For example, e

10

(12) = 1, sin
e the base-2 representation of 12 is 1100, and

this 
ontains one o

urren
e of 10.

In the 
ase where P starts with a 0, some additional elaboration is ne
essary. In this


ase we assume that the base-2 representation of n starts with jP j � 1 zeroes. For example,

e

01

(12) = 1.

We de�ne d

n

= e

01

(n) + e

10

(n). It is easy to see that, for n > 0, the quantity d

n


ounts

the number of distin
t blo
ks of adja
ent identi
al symbols in the binary expansion of n. For

example, the binary expansion of 399 is 110001111, whi
h has 3 blo
ks (namely 11, 000, and

1111). We have d

399

= e

01

(399) + e

10

(399) = 2 + 1 = 3.

Here is a table:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

e

01

(i) 0 1 1 1 1 2 1 1 1 2 2 2 1 2 1 1 1 2 � � �

e

10

(i) 0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0 1 1 � � �

d

i

0 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1 2 3 � � �
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Theorem 3 We have 


n

= d

n

for n � 0.

Proof. By 
omparing the binary expansions of 2n, 2n+1 with those of 4n, 4n+1, 4n+2,

4n + 3, we easily see that

d

4n

= d

2n

d

4n+1

= d

2n

+ 1

d

4n+2

= d

2n+1

+ 1

d

4n+3

= d

2n+1

for n � 0. Sin
e 


0

= d

0

= 0, the equality 


n

= d

n

for all n � 0 will follow if we 
an show

that (


n

)

n�0

satis�es the same relations as those for d given above.

To see this, we 
onsider the 
ase n even and n odd separately.

If n is even, then 


2n+1

= 


2n

+ 1. Using this fa
t and Corollary 2, we �nd

[


4n

; 


4n+1

℄[


4n+2

; 


4n+3

℄ = '([


2n

; 


2n+1

℄)

= '([


2n

; 


2n

+ 1℄)

= [


2n

; 


2n

+ 1℄[


2n

+ 2; 


2n

+ 1℄

= [


2n

; 


2n

+ 1℄[


2n+1

+ 1; 


2n+1

℄;

from whi
h the desired relations follow.

If n is odd, then 


2n+1

= 


2n

� 1. Using this fa
t and Corollary 2 again, we �nd

[


4n

; 


4n+1

℄[


4n+2

; 


4n+3

℄ = '([


2n

; 


2n+1

℄)

= '([


2n

; 


2n

� 1℄)

= [


2n

; 


2n

+ 1℄[


2n

; 


2n

� 1℄

= [


2n

; 


2n

+ 1℄[


2n+1

+ 1; 


2n+1

℄;

from whi
h the desired relations follow.

The sequen
e (d

n

)

n�0

de�ned by d

n

= e

01

(n) + e

10

(n) is well-known: in addition to its


hara
terization as the number of distin
t blo
ks of adja
ent identi
al symbols in the binary

expansion of n, it is also the sum of the bits in the Gray 
ode representation of n [4, 3℄. From

this, the identity jd

n

� d

n�1

j = 1 for n � 1 easily follows. This explains its attra
tiveness

as a basis for musi
 
omposition: the sequen
e (d

n

)

n�1

makes no large jumps, and hen
e

when used as an index into the Fibona

i numbers it \alternately expands and 
ontra
ts in

a gently undulating form" [5℄.

We 
an now prove our 
losed-form for N�rg�ard's rhythmi
 in�nity sequen
e:

Theorem 4 We have a

i

= F

d(i)+4

= F

e

01

(i)+e

10

(i)+4

for i � 0.

Proof. We have 


i

= d

i

= e

01

(i) + e

10

(i) by Theorem 3. On the other hand, by de�nition

we have 


i

= b

i

� 4 and a

i

= F

b

i

. Putting this all together gives the desired relation for a

i

.
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Next we give an additional method of generating the sequen
e (


i

)

i�0

. De�ne

X

n

= 


0




1




2

� � � 


2

n

�1

Y

n

= 


2

n




2

n

+1

� � � 


2

n+1

�1

for n � 0; thus X

n

and Y

n

are blo
ks of 2

n

symbols. Let X be a blo
k of symbols. By X + a

we mean the blo
k that results by adding a to ea
h symbol in X.

Theorem 5 We have

X

n+1

= X

n

Y

n

;

Y

n+1

= (X

n

+ 2)Y

n

:

Proof. The result for X

n

follows immediately from the de�nition. Thus it suÆ
es to show

that




2

n+1

+a

= 


a

+ 2

and




2

n+1

+2

n

+a

= 


2

n

+a

for 0 � a < 2

n

. These identities follow immediately from Theorem 3 and 
onsideration of

the binary expansion.

Finally, we observe that the sequen
es (b

i

)

i�0

and (


i

)

i�0

are members of a mu
h more

general 
lass of sequen
es, the so-
alled 2-regular sequen
es [3℄. In fa
t, even the sequen
e

(a

i

)

i�0

is 2-regular, as our last theorem shows:

Theorem 6 We have

a

4i

= a

2i

a

4i+2

= �a

i

+ 2a

2i

+ 2a

2i+1

� a

4i+1

a

4i+3

= a

2i+1

a

8i+1

= a

4i+1

a

8i+5

= �a

i

+ 2a

2i

+ 3a

2i+1

� a

4i+1

for all i � 0.

Proof. These relations follow easily from Theorem 4. For example, let us prove the identity

for a

4i+2

. There are two 
ases to 
onsider: when i is even and when i is odd.

If i is even, say i = 2k, then

�a

2k

+ 2a

4k

+ 2a

4k+1

� a

8k+1

= �F

d

2k

+4

+ 2F

d

4k

+4

+ 2F

d

4k+1

+4

� F

d

8k+1

+4

= �F

d

2k

+4

+ 2F

d

2k

+4

+ 2F

d

2k

+5

� F

d

2k

+5

= F

d

2k

+4

+ F

d

2k

+5

= F

d

2k

+6

= F

d

8k+2

+4

= a

8k+2

:
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Here we have used the identities d

8k+2

= d

2k

+2, d

4k

= d

2k

, d

4k+1

= d

2k

+1, d

8k+1

= d

2k

+1,

whi
h are easily veri�ed by 
onsidering the binary expansion of k.

If i is odd, say i = 2k + 1, then

�a

2k+1

+ 2a

4k+2

+ 2a

4k+3

� a

8k+5

= �F

d

2k+1

+4

+ 2F

d

4k+2

+4

+ 2F

d

4k+3

+4

� F

d

8k+5

+4

= �F

d

2k+1

+4

+ 2F

d

2k+1

+5

+ 2F

d

2k+1

+4

� F

d

2k+1

+6

= F

d

2k+1

+4

+ F

d

2k+1

+3

= F

d

2k+1

+5

= F

d

8k+6

+4

= a

8k+6

:

Veri�
ation of the remaining identities is left to the reader.
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