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1 Introdution

The Danish omposer Per N�rg�ard (1932{) invented a proedure for generating rhythms

whih was desribed by Erling Kullberg [5℄. Reworded in mathematial notation, this pro-

edure is as follows:

Let the Fibonai numbers (F

n

)

n�0

be de�ned as usual by F

0

= 0, F

1

= 1, and F

n

=

F

n�1

+ F

n�2

. Starting with the pair (

0

; 

1

) = (F

2n

; F

2n+1

), perform the following operation

n� 2 times:

� If a number F

i

appears in an even-indexed position, replae it with (F

i�2

; F

i�1

)

� If a number F

i

appears in an odd-indexed position, replae it with (F

i�1

; F

i�2

)

Kullberg illustrates this proedure in the ase n = 5, as follows:

3 5 8 5 8 813 5 8 13 21 13 8 13 8 5

8 13 21 13 21 34 21 13

21 34 55 34

55 89

Figure 1: Generating the rhythmi in�nity series

�
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Here, starting with the pair (55; 89), we replae 55 by (21; 34) and 89 by (55; 34) to get

the quadruple (21; 34; 55; 34), and so forth.

After n � 2 iterations, the resulting sequene is of length 2

n�1

. As n ! 1 we get a

limiting sequene (a

i

)

i�0

:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

a

i

3 5 8 5 8 13 8 5 8 13 21 13 8 13 8 5 8 13 � � �

In this paper I obtain an expliit formula for the sequene (a

i

)

i�0

and show how it is

related to binary Gray ode.

We an see the struture of the sequene (a

i

)

i�0

more easily if we replae eah number

in Figure 1 by the orresponding Fibonai number, as follows:
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Figure 2: Generating the rhythmi in�nity system

This gives us a sequene (b

i

)

i�0

de�ned by a

i

= F

b

i

:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

b

i

4 5 6 5 6 7 6 5 6 7 8 7 6 7 6 5 6 7 � � �

Finally, if we de�ne 

i

= b

i

� 4, we get the following sequene:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �



i

0 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1 2 3 � � �

We now �nd another way to generate the sequene (

i

)

i�0

: through iterated morphisms.

Let � be a �nite set of symbols, alled an alphabet. Then �

�

denotes the set of all �nite

strings with symbols hosen from �. For example,

f0; 1g

�

= f�; 0; 1; 00; 01; 10; 11; 000; : : :g:

Here � is the symbol for the empty string.

A morphism is a map h : �

�

! �

�

that satis�es the identity h(xy) = h(x)h(y) for all

strings x; y 2 �

�

. A morphism may be iterated by de�ning h

0

to be the identity map (i.e.,

h

0

(x) = x for all x 2 �

�

) and h

i

(x) = h

i�1

(h(x)) for i � 1.
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Iterated morphisms have been used by the omposer Tom Johnson in some of his work;

for more details see [1, 2℄.

To generate (

i

)

i�0

we may model N�rg�ard's transformation as follows: we de�ne a map

� : [a; b℄! [a� 2; a� 1℄[b� 1; b� 2℄:

This map an be extended to a morphism on sequenes of pairs using the rule �(xy) =

�(x)�(y). Then the �rst 2

n�1

terms of the sequene (b

i

)

i�0

are given by �

n�2

([2n; 2n + 1℄),

and the �rst 2

n+1

terms of the sequene (

i

)

i�0

are given by �

n

([2n; 2n+ 1℄).

For example:

�

0

([6; 7℄) = [6; 7℄

�

1

([6; 7℄) = [4; 5℄[6; 5℄

�

2

([6; 7℄) = [2; 3℄[4; 3℄[4; 5℄[4; 3℄

�

3

([6; 7℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄[2; 3℄[4; 3℄[2; 3℄[2; 1℄

This generates the sequene (

i

)

i�0

in a \top-down" fashion.

To generate (

i

)

i�0

in a \bottom-up" fashion we introdue a morphism ' de�ned by

'([a; a+ 1℄) = [a; a+ 1℄[a+ 2; a+ 1℄

'([a+ 1; a℄) = [a+ 1; a+ 2℄[a+ 1; a℄

Theorem 1 For n � 0 we have

�

n

([2n; 2n + 1℄) = '

n

([0; 1℄): (1)

Proof. It turns out to be useful to prove something more general. Namely, we prove the

following two equations simultaneously by mathematial indution on n:

�

n

([k; k + 1℄) = '

n

([k � 2n; k + 1 � 2n℄); (2)

�

n

([k + 1; k℄) = '

n

([k + 1� 2n; k � 2n℄); (3)

for all integers k.

It is easy to see (2) and (3) hold for n = 0. Now assume (2) and (3) hold for n; we prove

them for n+ 1.

�

n+1

([k; k + 1℄) = �

n

(�([k; k + 1℄))

= �

n

([k � 2; k � 1℄[k; k � 1℄)

= �

n

([k � 2; k � 1℄) �

n

([k; k � 1℄)

= '

n

([k � 2� 2n; k � 1 � 2n℄) '

n

([k � 2n; k � 1 � 2n℄)

= '

n

([k � 2� 2n; k � 1 � 2n℄[k � 2n; k � 1 � 2n℄)

= '

n

('([k � 2� 2n; k � 1 � 2n℄))

= '

n+1

([k � 2(n+ 1); k + 1� 2(n + 1)℄):
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Similarly

�

n+1

([k + 1; k℄) = �

n

(�([k + 1; k℄))

= �

n

([k � 1; k℄[k � 1; k � 2℄)

= �

n

([k � 1; k℄) �

n

([k � 1; k � 2℄)

= '

n

([k � 1� 2n; k � 2n℄) '

n

([k � 1� 2n; k � 2 � 2n℄)

= '

n

([k � 1� 2n; k � 2n℄[k � 1� 2n; k � 2 � 2n℄)

= '

n

('([k � 1� 2n; k � 2 � 2n℄)

= '

n+1

([k + 1 � 2(n + 1); k � 2(n + 1)℄):

Finally, the desired result (1) follows by setting k = 2n in (2).

It now follows that we an generate the sequene 

i

by iterating the morphism ' starting

with [0; 1℄. For example

'

0

([0; 1℄) = [0; 1℄

'

1

([0; 1℄) = [0; 1℄[2; 1℄

'

2

([0; 1℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄

'

3

([0; 1℄) = [0; 1℄[2; 1℄[2; 3℄[2; 1℄[2; 3℄[4; 3℄[2; 3℄[2; 1℄

.

.

.

As a onsequene we get

Corollary 2

'([

2i

; 

2i+1

℄) = [

4i

; 

4i+1

℄[

4i+2

; 

4i+3

℄:

We now introdue the so-alled \pattern funtions" e

P

(n). Let P be a string of 0's and

1's. Then e

P

(n) ounts the number of (possibly overlapping) ourrenes of P in the base-2

expansion of n. For example, e

10

(12) = 1, sine the base-2 representation of 12 is 1100, and

this ontains one ourrene of 10.

In the ase where P starts with a 0, some additional elaboration is neessary. In this

ase we assume that the base-2 representation of n starts with jP j � 1 zeroes. For example,

e

01

(12) = 1.

We de�ne d

n

= e

01

(n) + e

10

(n). It is easy to see that, for n > 0, the quantity d

n

ounts

the number of distint bloks of adjaent idential symbols in the binary expansion of n. For

example, the binary expansion of 399 is 110001111, whih has 3 bloks (namely 11, 000, and

1111). We have d

399

= e

01

(399) + e

10

(399) = 2 + 1 = 3.

Here is a table:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 � � �

e

01

(i) 0 1 1 1 1 2 1 1 1 2 2 2 1 2 1 1 1 2 � � �

e

10

(i) 0 0 1 0 1 1 1 0 1 1 2 1 1 1 1 0 1 1 � � �

d

i

0 1 2 1 2 3 2 1 2 3 4 3 2 3 2 1 2 3 � � �
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Theorem 3 We have 

n

= d

n

for n � 0.

Proof. By omparing the binary expansions of 2n, 2n+1 with those of 4n, 4n+1, 4n+2,

4n + 3, we easily see that

d

4n

= d

2n

d

4n+1

= d

2n

+ 1

d

4n+2

= d

2n+1

+ 1

d

4n+3

= d

2n+1

for n � 0. Sine 

0

= d

0

= 0, the equality 

n

= d

n

for all n � 0 will follow if we an show

that (

n

)

n�0

satis�es the same relations as those for d given above.

To see this, we onsider the ase n even and n odd separately.

If n is even, then 

2n+1

= 

2n

+ 1. Using this fat and Corollary 2, we �nd

[

4n

; 

4n+1

℄[

4n+2

; 

4n+3

℄ = '([

2n

; 

2n+1

℄)

= '([

2n

; 

2n

+ 1℄)

= [

2n

; 

2n

+ 1℄[

2n

+ 2; 

2n

+ 1℄

= [

2n

; 

2n

+ 1℄[

2n+1

+ 1; 

2n+1

℄;

from whih the desired relations follow.

If n is odd, then 

2n+1

= 

2n

� 1. Using this fat and Corollary 2 again, we �nd

[

4n

; 

4n+1

℄[

4n+2

; 

4n+3

℄ = '([

2n

; 

2n+1

℄)

= '([

2n

; 

2n

� 1℄)

= [

2n

; 

2n

+ 1℄[

2n

; 

2n

� 1℄

= [

2n

; 

2n

+ 1℄[

2n+1

+ 1; 

2n+1

℄;

from whih the desired relations follow.

The sequene (d

n

)

n�0

de�ned by d

n

= e

01

(n) + e

10

(n) is well-known: in addition to its

haraterization as the number of distint bloks of adjaent idential symbols in the binary

expansion of n, it is also the sum of the bits in the Gray ode representation of n [4, 3℄. From

this, the identity jd

n

� d

n�1

j = 1 for n � 1 easily follows. This explains its attrativeness

as a basis for musi omposition: the sequene (d

n

)

n�1

makes no large jumps, and hene

when used as an index into the Fibonai numbers it \alternately expands and ontrats in

a gently undulating form" [5℄.

We an now prove our losed-form for N�rg�ard's rhythmi in�nity sequene:

Theorem 4 We have a

i

= F

d(i)+4

= F

e

01

(i)+e

10

(i)+4

for i � 0.

Proof. We have 

i

= d

i

= e

01

(i) + e

10

(i) by Theorem 3. On the other hand, by de�nition

we have 

i

= b

i

� 4 and a

i

= F

b

i

. Putting this all together gives the desired relation for a

i

.
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Next we give an additional method of generating the sequene (

i

)

i�0

. De�ne

X

n

= 

0



1



2

� � � 

2

n

�1

Y

n

= 

2

n



2

n

+1

� � � 

2

n+1

�1

for n � 0; thus X

n

and Y

n

are bloks of 2

n

symbols. Let X be a blok of symbols. By X + a

we mean the blok that results by adding a to eah symbol in X.

Theorem 5 We have

X

n+1

= X

n

Y

n

;

Y

n+1

= (X

n

+ 2)Y

n

:

Proof. The result for X

n

follows immediately from the de�nition. Thus it suÆes to show

that



2

n+1

+a

= 

a

+ 2

and



2

n+1

+2

n

+a

= 

2

n

+a

for 0 � a < 2

n

. These identities follow immediately from Theorem 3 and onsideration of

the binary expansion.

Finally, we observe that the sequenes (b

i

)

i�0

and (

i

)

i�0

are members of a muh more

general lass of sequenes, the so-alled 2-regular sequenes [3℄. In fat, even the sequene

(a

i

)

i�0

is 2-regular, as our last theorem shows:

Theorem 6 We have

a

4i

= a

2i

a

4i+2

= �a

i

+ 2a

2i

+ 2a

2i+1

� a

4i+1

a

4i+3

= a

2i+1

a

8i+1

= a

4i+1

a

8i+5

= �a

i

+ 2a

2i

+ 3a

2i+1

� a

4i+1

for all i � 0.

Proof. These relations follow easily from Theorem 4. For example, let us prove the identity

for a

4i+2

. There are two ases to onsider: when i is even and when i is odd.

If i is even, say i = 2k, then

�a

2k

+ 2a

4k

+ 2a

4k+1

� a

8k+1

= �F

d

2k

+4

+ 2F

d

4k

+4

+ 2F

d

4k+1

+4

� F

d

8k+1

+4

= �F

d

2k

+4

+ 2F

d

2k

+4

+ 2F

d

2k

+5

� F

d

2k

+5

= F

d

2k

+4

+ F

d

2k

+5

= F

d

2k

+6

= F

d

8k+2

+4

= a

8k+2

:
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Here we have used the identities d

8k+2

= d

2k

+2, d

4k

= d

2k

, d

4k+1

= d

2k

+1, d

8k+1

= d

2k

+1,

whih are easily veri�ed by onsidering the binary expansion of k.

If i is odd, say i = 2k + 1, then

�a

2k+1

+ 2a

4k+2

+ 2a

4k+3

� a

8k+5

= �F

d

2k+1

+4

+ 2F

d

4k+2

+4

+ 2F

d

4k+3

+4

� F

d

8k+5

+4

= �F

d

2k+1

+4

+ 2F

d

2k+1

+5

+ 2F

d

2k+1

+4

� F

d

2k+1

+6

= F

d

2k+1

+4

+ F

d

2k+1

+3

= F

d

2k+1

+5

= F

d

8k+6

+4

= a

8k+6

:

Veri�ation of the remaining identities is left to the reader.
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