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1 Introduction

The Danish composer Per Ngrgard (1932-) invented a procedure for generating rhythms
which was described by Erling Kullberg [5]. Reworded in mathematical notation, this pro-

cedure is as follows:

Let the Fibonacci numbers (F),),>0 be defined as usual by Fy = 0, F; = 1, and F, =
Fo_1+ F,_y. Starting with the pair (co,¢1) = (Fan, Fant1), perform the following operation
n — 2 times:

e If a number F; appears in an even-indexed position, replace it with (F,_3, F;_1)

e If a number F; appears in an odd-indexed position, replace it with (F,_1, F;_s)

Kullberg illustrates this procedure in the case n = 5, as follows:

21/ 55\ 34 55/89\34
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Figure 1: Generating the rhythmic infinity series
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Here, starting with the pair (55,89), we replace 55 by (21, 34) and 89 by (55, 34) to get

the quadruple (21,34, 55,34), and so forth.

After n — 2 iterations, the resulting sequence is of length 277!,

limiting sequence (a;);>o:

As n — oo we get a
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In this paper I obtain an explicit formula for the sequence (a;);>0 and show how it is

related to binary Gray code.

We can see the structure of the sequence (a;);>o more easily if we replace each number

in Figure 1 by the corresponding Fibonacci number, as follows:
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Figure 2: Generating the rhythmic infinity system
This gives us a sequence (b;)i>o defined by a; = Fy;:
|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
b4 5 6 5 6 7 6 56 7 & 7T 6 7T 6 5 6 7
Finally, if we define ¢; = b; — 4, we get the following sequence:
1|0 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17
¢ |0 21232123 4 3 2 3 2 1 2 3

We now find another way to generate the sequence (¢;)i»o: through iterated morphisms.
Let ¥ be a finite set of symbols, called an alphabet. Then ¥* denotes the set of all finite

strings with symbols chosen from . For example,
{0,1}" = {¢,0,1,00,01, 10, 11,000, . .

Here € is the symbol for the empty string.

Ay

A morphism is a map h : ¥* — ¥* that satisfies the identity h(zy) = h(x)h(y) for all
strings z,y € ¥*. A morphism may be iterated by defining 2° to be the identity map (i.e.,

hO(z) = z for all z € ¥*) and h'(x) = h*"L(h(z)) for ¢ > 1.
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Iterated morphisms have been used by the composer Tom Johnson in some of his work;
for more details see [1, 2].
To generate (¢;)i>o we may model Ngrgard’s transformation as follows: we define a map

wla, b = [a—2,a—1][b—1,b—2].

This map can be extended to a morphism on sequences of pairs using the rule p(zy) =
p(x)p(y). Then the first 2"~ terms of the sequence (b;);>0 are given by p"~?([2n,2n + 1]),
and the first 2! terms of the sequence (¢;);>0 are given by p"([2n,2n + 1]).

For example:

=
I
)
I
=
I
)
s
)
I
)
I
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This generates the sequence (¢;)i>o in a “top-down” fashion.
To generate (¢;)i>o in a “bottom-up” fashion we introduce a morphism ¢ defined by

o(la,a+1]) = la,a+1][a+2,a+ 1]
e(la+1,a]) = Ja+1l,a+2][a+1,d]

Theorem 1 For n > 0 we have

" ([2n, 20 4 1]) = ¢"([0,1]). (1)

Proof. It turns out to be useful to prove something more general. Namely, we prove the
following two equations simultaneously by mathematical induction on n:

ar(( k1) = ([ — 20,k +1— 2n)); 2)
Pk +1E) = @k +1—=2n,k —2n]); (3)
for all integers k.

It is easy to see (2) and (3) hold for n = 0. Now assume (2) and (3) hold for n; we prove
them for n + 1.

BT = (kb 1))
= (k- 2.k — Uk — 1))
= (k- 2.k~ 1) (k- 1))

O"([k —2=2n,k—1—2n]) ¢"([k —2n,k — 1 —2n])
= ¢"([k—2—-2n,k—1—=2n][k —2n,k —1 —2n])
(k-2 2 k1 2n])
= " [k—2n+1),k+1-2(n+1)]).
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Similarly

pr R+ LE) = " (u((k + 1K)
= (k- LKk Lk 2))
= (k= 1K) p*([k = 1,k = 2])
= " ([k—1-2n,k—2n]) ¢"([k —1—2n,k—2—2n])
= " ([k—=1-2nk—=2n]k—1—-2n,k —2—2n])
= ¢"(p([k—1—=2n,k—2—2n])
= "Nk +1-2(n+1),k—2(n+1))).

Finally, the desired result (1) follows by setting & = 2n in (2). ®

It now follows that we can generate the sequence ¢; by iterating the morphism ¢ starting
with [0,1]. For example

As a consequence we get

Corollary 2

99( [sz'7 02i+1]) = [C4i7 C4i-|—1] [C4i+2, C4i-|—3] .

We now introduce the so-called “pattern functions” ep(n). Let P be a string of 0’s and
I’s. Then ep(n) counts the number of (possibly overlapping) occurrences of P in the base-2
expansion of n. For example, e19(12) = 1, since the base-2 representation of 12 is 1100, and
this contains one occurrence of 10.

In the case where P starts with a 0, some additional elaboration is necessary. In this
case we assume that the base-2 representation of n starts with |P| — 1 zeroes. For example,
€01(12) = 1.

We define d,, = ep1(n) + e10(n). It is easy to see that, for n > 0, the quantity d, counts
the number of distinct blocks of adjacent identical symbols in the binary expansion of n. For
example, the binary expansion of 399 is 110001111, which has 3 blocks (namely 11, 000, and
1111). We have dsg9 = €01(399) 4 €10(399) =2+ 1 = 3.

Here 1s a table:

? 012 3 45 6 7 8 9 10 11 12 13 14 15 16 17
€1(¢)f00 111121112 2 2 1 2 1 1 1 2
€p(¢)(00 01011 1011 2 1 1 1 1 0 1 1

d; 6121232123 4 3 2 3 2 1 2 3




Theorem 3 We have ¢, = d,, for n > 0.

Proof. By comparing the binary expansions of 2n, 2n 4+ 1 with those of 4n, 4n 4+ 1, 4n + 2,
4dn + 3, we easily see that

din = day,
ding1 = dayn +1
dinyz = dapy1 +1
dinys = danga
for n > 0. Since ¢g = dg = 0, the equality ¢, = d,, for all n > 0 will follow if we can show
that (¢, )n>0 satisfies the same relations as those for d given above.

To see this, we consider the case n even and n odd separately.
If n is even, then c¢g,11 = €2, + 1. Using this fact and Corollary 2, we find

[¢an, canti1][Cant2, cants] = @([can, c2nt1])

= ¢([can, c2n +1])

= [eon, con + 1[c2n + 2, c2n + 1]
[¢an, C2n + 1[cans1 + 1, cons1],

from which the desired relations follow.
If n is odd, then ¢y,11 = ¢9,, — 1. Using this fact and Corollary 2 again, we find

[C4n, c4n—|—1][c4n+27 C4n+3] = @([Czn, Czn+1])
@([e2n, can — 1])
- [CZTU Cop + 1][02717 Con — 1]

= [can, on + 1][c2nt1 + 1, cany1],

from which the desired relations follow. ®

The sequence (dy,)n>0 defined by d,, = epi(n) + e10(n) is well-known: in addition to its
characterization as the number of distinct blocks of adjacent identical symbols in the binary
expansion of n, it is also the sum of the bits in the Gray code representation of n [4, 3]. From
this, the identity |d, — d,,—1| = 1 for n > 1 easily follows. This explains its attractiveness
as a basis for music composition: the sequence (d,),>1 makes no large jumps, and hence
when used as an index into the Fibonacci numbers it “alternately expands and contracts in
a gently undulating form” [5].

We can now prove our closed-form for Ngrgard’s rhythmic infinity sequence:

Theorem 4 We have a; = Fyi)1a = Fep, (i)ero(i)44 for i > 0.
Proof. We have ¢; = d; = €g1(i) + €10(¢) by Theorem 3. On the other hand, by definition

we have ¢; = b; — 4 and «; = Fp,. Putting this all together gives the desired relation for a;.
|



Next we give an additional method of generating the sequence (¢;)i>o. Define
Xn = (pC1Cgy - Can_1
Yn = Czn02n+1 e Czn+1_1

for n > 0; thus X,, and Y,, are blocks of 2" symbols. Let X be a block of symbols. By X +«a
we mean the block that results by adding a to each symbol in X.

Theorem 5 We have

Xn—l—l = XnYru
Yo = (X, +2)Y,.

Proof. The result for X,, follows immediately from the definition. Thus it suffices to show
that

Contl iy = Cq + 2
and
Contlponiga = C2nggq
for 0 < a < 2". These identities follow immediately from Theorem 3 and consideration of

the binary expansion. B

Finally, we observe that the sequences (b;)i>0 and (¢;);>0 are members of a much more
general class of sequences, the so-called 2-regular sequences [3]. In fact, even the sequence
(@;)i>0 1s 2-regular, as our last theorem shows:

Theorem 6 We have

gy = A2
Qait2 = —a; + 2a2; + 20241 — Q4541
(g;43 = G241
agi+1 = QG441
agits = —a; + 2ag; + 3a2i41 — Q4541

for all v > 0.

Proof. These relations follow easily from Theorem 4. For example, let us prove the identity
for ay4;19. There are two cases to consider: when 7 is even and when ¢ is odd.
If ¢ is even, say © = 2k, then

—aok + 2a4k + 204541 — askr1 = —Faypa + 2F4, 00 + 2Fa, 4 — Fagy, 44
= _Fd2k+4 + 2Fd2k+4 + 2Fd2k+5 - Fd2k+5
Fd2k+4 + Fd2k+5
- Fd2k+6
= Fd8k+2+4

= dagk42-



Here we have used the identities dsyo = dox + 2, dag = dok, dagy1 = dox + 1, dspy1 = dop + 1,
which are easily verified by considering the binary expansion of k.

If ¢ is odd, say + = 2k + 1, then

—Qgky1 + 204542 + 20443 — aspys = —Fay 4+ 2Fa, 04+ 2F4,, 14 — Fagg1a
= _Fd2k+1 +4 T+ 2Fd2k+1 +5 T 2Fd2k+1 +4 — Fd2k+1 +6
= Fd2k+1 +4 t Fd2k+1 +3

Fd2k+1 +5

Fd8k+6+4

= d4gk+6-

Verification of the remaining identities is left to the reader. ™
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