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Abstract

In this note, we prove a simple theorem that provides a lower bound on the size of

nondeterministic �nite automata which accept a given regular language.
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We measure the size of an automaton by counting the number of states it contains.

Given a regular language L, the well-known Myhill-Nerode theorem (e.g., [4, Theorem 3.9])

provides an e�cient way to determine the smallest deterministic �nite automaton (DFA)

that accepts L. The smallest DFA for a given language is unique, up to the naming of the

states.

Unfortunately, no such general method is known for the case of nondeterministic �nite

automata (NFA's). For one thing, the smallest NFA is not necessarily unique; for an example,

see [1] or [5, Figure 3, p. 167]. Furthermore, it is unlikely any such general method will be

tractably computable, since it is known [6, Theorem 3.2] that the following decision problem

is PSPACE-complete:
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Instance: a DFA M and an integer k.

Question: Is there an NFA with � k states accepting L(M)?

As Jiang, McDowell, and Ravikumar remark [5],

While the standard argument based on the Myhill-Nerode equivalence relation

R

L

yields good lower bounds on the size of DFA's, no such methods are known

for proving lower bounds on the size of NFA's.

In this note we prove a remarkably simple theorem, based on communication complexity,

that gives such a lower bound. Although the lower bound provided by our theorem is not

always tight, it gives good results in many cases. We emphasize that the goal of this note

is not to provide techniques for actually �nding a nondeterministic automaton of minimum

size; for this problem, see, for example, [7, 8, 1, 9].

We assume the reader is familiar with the standard notation for language theory, as

provided in [4].

Theorem 1 Let L � �

�

be a regular language, and suppose there exists a set of pairs

P = f(x

i

; w

i

) : 1 � i � ng such that

(a) x

i

w

i

2 L for 1 � i � n;

(b) x

j

w

i

62 L for 1 � i; j � n, and i 6= j.

Then any NFA accepting L has at least n states.

Proof. Let M = (Q;�; �; q

0

; F ) be any NFA accepting L, and consider the set of states

S = �(q

0

; x

i

). Since x

i

w

i

2 L, there must be a state p

i

2 S such that �(p

i

; w

i

)\F is nonempty.

In other words, there exists a state r

i

2 F with r

i

2 �(p

i

; w

i

). We claim p

i

62 �(q

0

; x

j

) for all

j 6= i. For if p

i

2 �(q

0

; x

j

), then r

i

2 �(p

i

; w

i

) � �(q

0

; x

j

w

i

), so x

j

w

i

2 L, a contradiction.

It follows that each set �(q

0

; x

i

) contains a state p

i

which is not contained in any other set

�(q

0

; x

j

) with j 6= i. Hence M has at least n states.

In applying this theorem to any particular language L, it is of course necessary to choose

the pairs (x

i

; w

i

) appropriately. We do not know an infallible algorithm for optimally making

these choices, but the following heuristic seems to work well. Construct an NFA accepting

L, and for each state q in this NFA let x

q

be the shortest string such that �(q

0

; x

q

) = q,

and let w

q

be the shortest string such that �(q; w

q

) 2 F . Then choose the set P to be some

appropriate subset of the pairs f(x

q

; w

q

) : q 2 Qg.

We now give three examples of the application of this theorem.

Example 1. Let L

k

= f0

i

1

i

2

i

: 0 � i < kg. In Theorem 1 we can take as our set of

pairs P = f(0

i

1

j

; 1

i�j

2

i

) : 0 � j � i < kg. Let (x;w) = (0

i

1

j

; 1

i�j

2

i

) and (x

0

; w

0

) =

(0

i

0

1

j

0

; 1

i

0

�j

0

2

i

0

) be two such distinct pairs. Then clearly xw 2 L, but xw

0

= 0

i

1

i

0

+j�j

0

2

i

0

cannot be in L unless i = i

0

and j = j

0

. It follows that there are at least jP j = k(k + 1)=2

states in any NFA that accepts L

k

. In fact, L

k

can be accepted by an NFA with k(k+1)=2+1
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states. Rather than give a formal proof, we illustrate the construction for k = 5 below in

Figure 1.
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Figure 1: An NFA accepting L
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Example 2. Let w

R

denote the reverse of the string w, and consider the language

A

k

= fw 2 (0 + 1)

k

: w = w

R

g

of palindromes of length k over a binary alphabet. In Theorem 1 we may take

P = f(x; 0

k�2jxj

x

R

) : jxj � k=2g [ f(x0

k�2jxj

; x

R

) : jxj � (k � 1)=2g:

It follows that the smallest NFA accepting A

k

has at least 2

bk=2c+1

+ 2

b(k+1)=2c

� 2 states. In

fact, this bound is tight, as can be easily proved by actually constructing an NFA with the

given number of states that accepts A

k

. Rather than give a formal proof, we illustrate the

construction for k = 4 below in Figure 2.
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Figure 2: An NFA accepting A
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While Theorem 1 is often useful for obtaining lower bounds (see [2, 3]), the lower bound

provided is not always tight. In fact, the lower bound provided by Theorem 1 may be

arbitrarily bad compared to the true bound. Consider the following example.

Example 3. De�ne

H

k

= (0

k

)

+

:

The reader can easily verify that the hypothesis of Theorem 1 cannot be ful�lled for this

language if n > 2. However, the smallest NFA for H

k

must have at least log

2

(k + 1) states.

To see this, observe that the smallest DFA accepting any regular language L 6= �

�

must

have at least one more state than the length of a shortest string not in L. Hence the smallest

DFA accepting H

k

must have at least k+1 states. By the standard subset construction, the

smallest NFA accepting H

k

must have at least log

2

(k + 1) states.
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