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NEW PROBLEMS OF PATTERN AVOIDANCE
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Let Ty := {0,1,... 1k — 1} for an integer k 2 2. Define o(a) = (a + 1) mod &
fora € ;. In this paper we consider several new pattern avoidance problems, of
which the following is a typical example: what is the smallest & for which one can
simultaneously avoid the patterns zz and zo(z) over Ze?

1 Introduction and definitions

Pattern avoidance problems have long been studied in formal language theory, and
have interesting applications to group theory, universa] algebra, and other areas,
For example, Axe] Thyet:? constructed an infinite squarefree word over {0,1,2};
i.e., a word that contains 10 subword of the form zz, where z is a nonempty word.

Eventually, generalizations of Thue’s problem were considered. Erdés, for ex-
ample, suggested trying to find infinite words containing no subword of the form
Ty, where y is a permutation of the letters of z. Such words are now sometimes
called “abelian squarefree”?. For other papers on pattern avoidance, the reader can
fruitfully consult, for example, 1:5.4,

In this paper, we consider some new generalizations of Thue's problem. We
start with some notation. Let I, T be finite alphabets. A morphism is a map
h:T* - T* such that A(zy) = h(z)h(y) for all T,y € I". We let £ denote the
set of all one-sided infinite words over %, and we let ="y v If2 €L+,
then by z* we mean the one-sided infinite word zzz - - - .

If there exist words T,y € Z%, w,z € T® gyuch that w = zyz, then we say Y
is a finite subword of 1. Suppose we are given a finite or infinite subset P C £,
Then we say a word w € D avoids P if we cannot write w = Zyz such that y € P.
We say P is avoidable over ¥ if it is possible to construct an infinite word w € £v
which avoids P.

Sometimes we employ a common abuyge of notation. For example, instead of
saying that the infinite word w avoids {zz : z ¢ £+}, we will instead simply say
that w avoids the battern zz. When we use this formulation, we always assume
the strings in the pattern are nonempty.

We define Ty = {0,1,2, ... vk =1} for some integer £ > 2, and we define the

think of the elements of £, as residue class representatives so that, for example,
—1 and 2 denote the same element of T;. Second, since we allow negative numbers
in words, we sometimes use the notation (a1,as,a3,. .. :@n) to denote the word
@1aza3 - -a,. Thus, for example. 012 and (0, —2,~1) denote the same element of
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Some of the infinite words we construct arise from iterated morphisms. Call a
morphism 4 : ['* — T* non-erasing if A(a) #eforalla € T. Let h: 5 — Z* be
a non-erasing morphism, and let ¢ € ¥ be 2 letter such that h{a) = az. Then we
define h“(a) = a z h(z) h3(z) h3(z)---. Note that h*(a) is a fixed point of the map
h extended to Tv.

2 Avoiding zo(z)

It is clear that over £, = {0,1}, there are only two infinite words avoiding the
pattern zo(z), namely 0 and 1¢. However, we have the following result:

Tt;et))rem 1 OverZy fork 2> 3, there are uncountably many infinite words avoiding
zo(z).
Proof. Define q; = 1, and set a;y; =a; + 1 or a;: + 2, according to choice. Then

w = J]((~) mod 3)% = 201 102 gos au 125 Q...
i>1

avoids the pattern zo(z), and there are uncountably many such words. M

3  Avoiding zz, zo(z), ..., zoi(z) simultaneously

Ihe following theorem constitutes our main result. It characterizes, for each integer
720, che smallest integer k for which we can avoid the j + 1 patterns zz, zo(z),
-, T/ (z) simultaneously over T, = {0,1,... k- 1}.

Theorem 2
(a) One can avoid the pattern zx over Tj, and 3 is best possible.

(b) One can avoid the patterns zz and zo(z) simultaneously over X5, and 5 is best
possible.

(c) Qne can avoid the patterns zz, zo(z), zo¥(z) simultaneously over Ts, and 5
15 best possible.

(d) One can avoid the patterns zz, zo(z), zo*(z), zod (z) simultaneously over T,
and 6 is best possible.

fe) For 2> 4, one can avoid the J+1 patterns zz, zo(z), ..., zo? (z) simultane-
ously over £, ,, and J + 4 15 best possible.

Remark. .Ol:u' proofs of these facts are of two different types. First, in order to
show that it is possible to avoid a certain set of patterns over Zk, we explicitly
construct an infinite word over T, having the desired property. Second, to show

187

that £ is optimal for a certain set of patterns, we use a classical breadth-first tree
traversal technique, as follows:

Suppose we wish to avoid a given set of words P over Zk. We maintain a queue,
Q. and initialize it with the empty word e. If the queue is empty, we are done.
Otherwise, we take the next element w from the queue, and form k new words by

appending 0,1,... ,k — 1 to it. For each new word wa, we check to see whether
some suffix of wa occurs in P. If it does, we discard it; otherwise we add it to the
queue.

If this algorithm terminates, we have proved that it is not possible to avoid P
over Z¢. The resulting proof may be represented in the form of a tree, with the
leaves representing minimal length prefixes that contain an occurrence of one of the
patterns as a suffix.

In the particular case of the patterns we discuss in this section, two additional
efficiencies are possible. First, since a word w simultaneously avoids the patterns
zz, zo(x), ..., £ (z) iff o(w) does, we may without loss of generality consider
only the words that begin with the letter Q. Second, if the last letter was a, then
the next letter must be contained in the set {a+7+1,... Ja+k- 1}, for otherwise
our word would contain a length-2 subword of the form zoi(zx) for 0 < i < j. This
observation significantly cuts down on the branching factor of the trees we generate.

Proof of Theorem 2. Let us start with assertion (a). As already noted, a classical
result due to Thue ®? shows that one can avoid the pattern zz over T3 =1{0,1,2}.
Furthermore, it is an old and easy observation that any word of length > 4 over
T2 = {0,1} contains an occurrence of the pattern zz. More generally, we have

Proposition 3 Let k > 2 be an integer, and let r be an integer with 1 < r < k.
Then any word of length > 4 over S, contains an occurrence of the pattern zo°(r)

for some a Zr (mod k).

Proof. We use the tree traversal algorithm. Assume the first letter is 0; then if
the next letter is a # r. we are done. Hence assume the next letter is r. Then,
by a similar argument, the next letter must be 2r, and the next 3r. However, the
word (0,7, 2r, 3r) contains the pattern zo?"(z) for z = (0, 7). Since r # 0, we have
2rZr (mod k). W

Now let us prove assertion (b) of Theorem 2. By Proposition 3 with 7 = 2, one
cannot avoid the patterns zz and zo(z) simultaneously over 3. We also have

Proposition 4 Every word of length > 24 over T, contains an occurrence of either
zz or ro(z).

Proof. We use the tree traversal algorithm. The resulting tree has depth 24 and
contains 233 leaves. Figure 1 below lists these leaves in breadth-first order. MW
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Figure 1: Leaves of the tree giving a proof of Proposition 4.

9202 0203210202 031321310310 13 [ 031321310313210313;
0213 0210203203 031321031320 1 0313213103132103132
0310 0210313210 031321031321 021020320210321 02103132131031320 0320210203202103203
02031 0210320213 032021032020 021031321310310 02103132131032132 0321310313213103202
o3t 0313213102 032021032021 031321310321313
03203 0313210202 032131031320 031321310321310 02 Y 13103210
021071 0313210203 032131032131 [ 3 32
031320 0313210310 032131032132 321021 02032102032021032020
032070 0320210202 032102032020 032131031321313 031321
032132 0320210313 032102032102 032131031321020 03132131031321021 02103132131031321020
osz103 0320210310 032102032103 032131031321021 03132131031321032 02103132131031321021
0203203 0320210321 0203202102031 032131031321032 03213103132131031 02103132131031321032
0210202 0321310310 0321 03131
0210210 0321310320 03213103132103132 032021020320210320321
0210371
0320213 920: 3 032
0321313 02102032020 0216313213102
0321021 203
02032020 02102032132 0313213103131 021031321310313210310
02032132 02102032103 0313213103202 0208 3 3
02032103 02103132132 0313213103203
02102031 03132103131 0313213103210 0210313213103131
02103131 0210313213103202 021031321310313213 032131031321310321313
[ 3 0210313213103203 021031321310321313 032131031321310321310
03132132 03213103131 92032021032020 0210313253103210 021031321310321310 032102032021020321021
03213102 93213103210 o 3 a
0313213103132131 32
020320213 13 1 0313213103132132 031221310313210310 0203210203202102032103
020321813 1 3 131
020321021 020320210313 03132131031320 0210313213103132103132
021031320 031 32 02
[ 0321310313213102
031321313 [ 31 0321310313210310 0321020:
031321021 a 132 0. 1020:
031321032 021 3 102031
032021021 021031321313 03213103132132 0321020320210310 0203210203202103203 02103202102032021032021
1 o 102 020321
0203213102 02, [ 13 02
0203213103 021032021032 0210320210203210203

Thus we cannot avoid the patterns zz and zo(z) simultaneously over £4. How-
ever, we can avoid the patterns zz and zo(z) simultaneously over Ys. This will
follow from Theorem 5 below.

Next, let us prove assertion {c). As we have seen in Proposition 3 above, every
word of length > 4 over £, contains an occurrence of one of the patterns zz, zo(z),
or zo%(z). We now show

Theorem 5 It is possible to simultaneously avoid the patterns zz, zo(z), and
zo?(z) over Ts.
Before starting the proof, we introduce some notation. If w = ai1@2a3--- is a
word over I;, then
A(W) = (0.2 = a,az — as, a4 — as, .. ')7
where the differences are, of course, taken mod k. Similarly, we write
S(w) =(0,a;,0a1 + as,q +az +as,...),

where the sums are, of course, taken mod k. Note that A(S (w)) = w, and if
a1 = 0, then S(A(w)) = w. Finally, f £ = a;---q,, € Zi, we define si(z) =
(Els,'smai) mod k.

The following lemma relates occurrences of patterns of the form zo%(z) in w to
other, easier-to-study patterns in A(w).
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Lemma 6 let w € £¢°, and let a € T,. Then w avoids the pattern zo%(z) iff
A(w) avoids {ycy : y € T}, c € Zk, and sk(yc) = a}.

Proof. Suppose w contains an occurrence of the pattern zo®(z). Write z =
b1bz - - - b;. Then
w=whby big®(by)--0%(b;)-- .
Thus
Aw) = A@w'by), (ba = by, ... by = bimy,0%(by) — bi, by — by, by = biy,...),

and hence contains ycy with

y={ba~by,... by —bi_1), c=0%0by) - b
Also
se(ye) = (b = by) + - + (bi — bizy) + 0%(b1) — by
=(bi—b)+(a+b —b)
=a.
Now suppose A(w) contains a subword yey with y € £, ¢ € £, and sk (ye) = a.

Then A(w) = zycyz for some z = byby ---b; and y = dydy - - - d;. Then
A(w) =blbg"~b]‘d1d2"'dicd1d2~'~di"' .

Then if e is the first letter of w, we have

w=(e,e+be+by+by...,.e+by+bo+ - +bje+f+d,e+f+d +dy,....
e+ f+d+dp+---+die+f+gtce+f+g+c+d,
e+f+g+c+di+dr,...,e+frg+c+di+do+--+di,...)

where f:=by +by+---+b;and g :=d; +ds +--- +d;. It follows that w contains

an occurrence of zo®(z), where z = (e+ foe+ f+di,... ,e+ f+dy +do+ - +d;)
and @ =g+c But g+ c=sk(dida---dic) = si{yc). W

Now to prove Theorem 5, it suffices to construct an infinite word v where
v avoids

Py := {ycy L ye Eg, c€ Ls, and S5(yC) € {0,12}}

For then we could set w = S(v), and by Lemma 6, w avoids the patterns zz, zo(z),
and zo?(z) over £5. We construct such a v using the following theorem.

Theorem 7 Let h be the morphism over {3,4} defined by h(4_;) = 4433 and h(3) =
44433. Let w be a finite word. If w avoids Py, then h(w) avoids P.
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Proof. We prove the contrapositive.

dSuppose h(w) contairis- an occurrence of the pattern ycy with YE€EII cex
and ss (ylcl) € {0, .1,2}. Write A(w) = 21ycyz2. Without loss of generality, we rna'.j
assume that [21., 1s as sm‘all as possible, or, in other words, that the occurrence df

ycyAvlzse are deal}ing with lies as far to the left as possible within A(w)

O note that s5(7) = s5(h(z)) for i € {3.4 and so it foll . =
ss(h(w)) for all finjte strings w € {3, 4} B4 o eTons that saw) =
We claim that if Ycy is a subword of h{

. im w) for some w such that y, ¢ obey the
given condmons,' then Jy| > 5. Table 1 below suffices to prove this. ’

. 1'I‘he explanation of Chg table is as follows, We examine a] possible subwords ye
:h enf‘;h < .5 that occur in {4433, 44433}*. For each such subword, it suffices to
a.now at exthfr 83 (yc)g {0,1,2}, or Ycy cannot occur as a subword of h(w) for

; {hw € {3,4}". For this last check, it suffices to observe that if ycy contains anv
Of the subwords 434,343, 333, or 4444, then it cannot occur as a subword of h(w)j

Table 1: Proof that lyl > 5.

Yycy contains
forbidden
subword
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Case 1: y starts with 33. Then yey =33--- ¢33---. Since h(w) € {4433,44433}',
we must have ¢ = 4. Also, ¥ must end with 4, and furthermore the letter im-
mediately preceding the occurrence of ycy in h(w) must be 4. We can therefore
write y = 33t4 for some string t, and observe that 4 33¢4 4 33t4 = 4ydy is a sub-
word of h(w). Now let y' = 433t, and note that ¥'4y’ is a subword of h(w). But
s5(y'4) = 55(433t4) = 85(33t44) = s5(y4) € {0, 1,2}, so y'd4y' € Py, contradicting
our assumption that ycy was the leftmost such occurrence in A(w).

Case 2: y starts with 34. Then yey = 34--- ¢ 34---, 50 ¢ = 3. Thus yoy =
34--- 334---, 50 y must end in 4, and further the letter immediately preceding

the occurrence of ycy in h(w) must be 3. We can therefore write y = 34t3 for some
string ¢, and observe that 3 34¢3 3 343 = 3y3y is a subword of A(w). Now let
y' = 334t and note that ¥'3y’ is a subword of h{w). But s5(y'3) = ss (334t3) =
55(34t33) = s5(y3) € {0,1,2}, s0 '3y’ € P, contradicting our assumption that
yey was the leftmost such occurrence in h{w).

Case 3: y starts with 43. Then yey = 43--- ¢ 43---, s0 ¢ = 4, and further
the letter immediately preceding the occurrence of yey in A(w) must be 4. Thus
y = 43t. Write t = #'b, where {5l = 1. Then y = 43¢'b. Then dycy = 4 43t'b 4 43t
is a subword of h(w). Let y' = 443¢. Then y'by’ is a subword of h(w), and
s5(y'b) = 55(443t'b) = s5(43t'b4) = s5(y4) € {0, 1,2}, s0 y'by’ € Py, contradicting
our assumption that ycy was the leftmost such occurrence in h(w).

Case 4: y starts with 444. Then yey =444--- c444---, 50 ¢ = 3, and further, y
ends with 3. Since |y| > 5, we can write ¥ = 444¢3 for some string ¢. It follows that
¥3y3 = 4443 3 444t3 3 is a subword of h(w). Hence there exists a string u such
that A(3u) = y3, and 3udu is a subword of w. We have s5(u3) = 55(3u) = s5(y3) €
{0,1,2}, so w3« is an occurrence of a string of P, in w, as desired.

Case 5: y starts with 443. There are two subcases to consider:

Case 5a: ¢ = 3. Then the last two characters of y must be 43. We have
yey = 443---43 3 443--.43. Then ¥3y3 is a subword of h(w), and there
must exist u such that h(4u) = ¥3 and udu is a subword of w. Then
ss(ud) = ss(4u) = s5(y3) € {0,1,2}, so udu is an occurrence of a string

of P; in w, as desired.

Case 5b: ¢ = 4. Then ycy = 443--- 4443 - .-, 50 the last three characters
of ¥ must be 433. Since lyl > 5, we must have y = 4433...433. Write
y = 4433y’ Then ycy = 4433 y' 44433 ¥’ is a subword of A(w) and
there exists u such that h(u) = y'. Then h(u3u) = y' 44433 y'. Now
35(u3) = s5(h(u3)) = 55(y'44433) = s55(4433y'4) = s; (v4), so w3u is an
occurrence of a string of P; in w, as desired.

This completes the proof of Theorem 7. B
Proof of Theorem 5. Define
v = h*(4) = 443344334443344433 . .. .
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We claim v avoids Ps.
if w avoids P, then so
From Lemma 6, it foll

This follows becayse the word 4 avoids

P, and by Theorem 7,

does A{w). Now consider S(v) = 0431432032103104314 - . .

ows that S(v) avoids the pat
heorem 35, and he

terns zz, zo(z), and zo?(z).
nce assertion (c) of Theorem 2.

We now turn to assertion (d) of Theorem 2. From Proposition 4 with r = 4
wettknow any W(or)d of 2l((angth 2 4 over T5 contains an occurrence of one of the
patterns zz, zo(z), z0(z), or zo3 (z). The methods of Theorem 7
patte R rem 7 and Lemma 6

Theox em 8 It 15 posslble to Simultaneousl tZUOZd tlle tt ™ms Tolz ot (x
( ) Y Dpatie III ( )! ( )7

Prgof. We construct an infinite word w over Z¢ such that w simulta.neously
avoids the patterns zz, zo(z), zo?(z), and z3(z). Let g be the morphism over
{4, 5} defined by 9(5) = 55544 and 9(4) = 555544. We claim that w = S(g“(5))
simultaneously avoids the patterns zz, zo(z), zo?(z), and zo3(z). The proof
follows exactly the same plan as that of Theorem 7. We omit it here. W

fzr J=4, we woulci’have h(6) = 666655 and h(5) = 6666655, By inspection, we see
that A(6) = 6666655 contains yecy where ¥ =66 and ¢ = 6. Hence s7(ye) = 4=37
and so S(A(6)) does not avoid the pattern zot (z).

Finally, we turn to assertion (e). First, we show it is not possible to avoid the
patterns zz, zo(z), -+, za*(z) on 7 letters. Here the corresponding tree has 215
leaves, and the longest leaf has length 36. See F igure 2 below.

Figure 2: Leaves of the tree giving the proof of assertion (e)
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Using the tree traversal algorithm, we can prove

Theorem 9 One cannot avoid the patterns zz, zo(z), ..., 207 (z) on j+3 letters,

forj > 5.

Proof. Consider trying to generate an infinite word w over Z starting with 0,
subject to two conditions: (1) avoiding the pattern zo*(z) for all i, where lz| > 2,
and (2) avoiding all subwords of length 2 that are not of the form (n,n=1) or
(n,n—2)forn € Z.

Let us now apply the tree traversal algorithm to this avoidance problem. The
tree T so produced has 71 leaves and the longest leaf has length 12. All the
occurrences of zoi(z) found at the leaves of T, for |z| > 2, satisfy i € X =
{-3,-4,-6,-7,-8).

Now consider the labels of this tree reduced modulo j + 3. The patterns at the
leaves are still of the form zo'(z), except now i is reduced modulo j + 3. In order
for T to correctly represent a proof that the pattern zo(z) cannot be avoided for
0 <1 < j we must check that i mod (J+3)€{0.1,...,5} forall i € X. But this

is clearly true for j > 5.
Figure 3 lists the leaves of T in coded form. We use the letters A, B.C,D,E F,G

to represent 10,11, 12,13, 14,15, 16 respectively, and the word a;a, - - - a; represents
the leaf (-a;,—a,,... ,—aj). W

Figure 3: Leaves of the tree giving the proof of Theorem 9.

0246 024568AC 013567894 0234568ABCE
0235 024568AB 012357898 01356789BDF
0134 02456794 012346898 01246789ACD
02457 02456789 0245679BCE 01235789ABC
01357 02346898 0245679BCD 012346894ABD
01245 02346894 0245678ACE 0245678ACDEG
023467 02345798 0234579ABD 0245678ACDEF
013568 02345689 0234579ABC 0234568ABCDF
012468 01356798 0234568ABD 0234568ABCDE
012356 01356794 0135678ACE 01356789BDEG
012345 01246784 0135678ACD 01356789BDEF
0245689 01235784 01356789BC 01246789ACEG
0234684 01234684 01246789BD 01246789ACEF
0234578 0245679BD 01246789BC 01235789ABDF
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0234567 0245678AB 012467894B 01235789ABDE
0124679 02345794C 01235789AC 01234689ABCE
0123579 0234568AC 01234689AC 01234689ABCD
0123467 013567848 0245678ACDF

‘We now show it is possible to simultaneously avoid the patterns zz, zo(z), ...,
zo’(z) on T;44 for j 2 4. Actually, we prove a more general result from which this
result will follow.

Theorem 10 Let 2 4 be an integer, and let A C Zk such that Card A <k-3.
Then it is possible to simultaneously avoid the patterns {zo®(z) : a € A} over .

Proof. Once again, the idea is to consider the first differences of words, modulo
k. Suppose we can construct a word w over I such that w avoids both (i) the
pattern ycy, where |y| > 1 and lel =1, and (ii) the letters q € A. Then it follows
from Lemma 6 that S(w) avoids the pattern zo%(z).

Lemma 11 Let w = @18203 -~ be any squarefree word over 3. Then the word
210102020303 - -+ avoids the pattern yey fory € Z;’ endc € T;.

Proof.  Suppose Y = biby---b;, and the pattern ycy occurs in z =
910102020303 - - -. There are three cases to consider, depending on lyl and where y
starts in z.

Case 1: ly| is even and y starts with 2:a;. Let £ = 25. Then we have
byby oo by ¢ b b ... b;

Qi Q4 - Qg Qivj Qitj Qigjqq - -- Qit-25

and 50 @;u; = b = a; = by = Qit1jv1. It follows that w contains the square
@i+;8i+j+1, a contradiction.

Case 2: |y| is even and Y starts with a;a;.;. Let k = 2j. Then we have
bl b2 sz [ b1 b'_) bgj
Gi Qig1 " 0 Qivj @iy Gitj+tl Qitjal **° Qiyg;

and s0 q; = b; = Gitj+1 = by = a;y. It follows that w contains the square a;a;..;,
a contradiction.

Case 3: |y| is odd. Let £ = 2j + 1. Then either
by - by, baje1 ¢ by by oo by, b2j41

8i Qi - Qg @i Gitj Gitjuwl Gitjpy - - Qit25 Qig2j4

r;;;,ﬁ.‘f@ fol

195

or
by by --- baj baji1  C by by e by baj1

@i Git1 0 Qivj Gigj Ginjel Qidjil Ginjt2 *° Gig2gl Qisajag
In either case we find
: ai = b =aipju

bs = Girjen

Qi+1

Qitj = bojuy = Giajug
It follows that a;a;y, T Gidj T Gidjt1Gitjer - Givoj4; and so W contains th.e
5quare @iGi+; - - - Gi+2541, & contradiction. The proof of the Lemma is complete.
Remark. One cannot avoid the pattern yey, with Jy| > 1 and [¢| = 1, over an
alphabet of 2 letters. As the tree traversal algorithm shows, any word of length >7

over {0,1} contains an occurrence of ycy.
Now we can complete the proof of Theorem 10. Let x be any squa.refree? vnford
over {0,1,2}. Since Card A = k — 3, we have T, — A4 = {d,e, f} for some distinct

integers 0 < d,e, f < k. ’
Consider the morphism ¢ : Lirs = Zj,, defined as follows:

0—dd
1 - ee

2o ff

We claim S(p(x)) avoids the patterns zz, zo(z), ..., zol(z). .
Let v = S(p(x)). Then A(v) = ¢(x) clearly avoids ycy by Lemma 11,.a.nd it
also avoids all the letters in A by construction. Then by Lemma 6, v avoids the

patterns zo%(z) forac 4. W

As a consequence we get
Corollary 12 It is possible to simultaneously avoid the patterns zz, zo(z), ...,
207 (z) on T;.q for j > 4.

The proof of Theorem 2 is now complete. W

4 Even more results

One may also consider the problem of avoiding other sets of patterns of the f.orm
zo?(z). In this section, we let j > 1 be an integer, and consider avoiding the 27 +1

patterns zo~7(z), ..., zo~(z), zz, zo(z), ..., zo?(z) simultaneously over the

alphabet X,

Theorem 13 For j > 1, one can stmultaneously avoid the patterjls zo7(z), ...,
zo~z), zz, 20(2), ..., 207 (z) over L2j+4, and this is best possible.
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Proof.

‘ By Theorem 10 with 4 = =51 =j...,~1,0, L,2,...7}, we see that we can
simultaneously avoid the patterns zo 7 (z), ..., zo~(z), zz, zo(z), ..., zo? (z)
over Zg;y.

It follows from Proposition 3 that one cannot avoid zo~(z), ..., zo~Y(z), zz,
zo(z), ..., zo’ (z) over Z2j42 or smaller alphabet.

’Il‘o prove that one cannot simultaneously avoid the patterns zo~/(r), e,
z07(z), zz, z0(z), -+, Tol(z) over Z2j+3, we use the tree traversal algorithm.

Then every w01‘-d of length > 8 over L2j+3 contains an occurrence of za'(z) for
sorne.l with —5 < { < J. Figure 4 below gives the output of the tree traversal
algorithm, showing that there are 24 leaves. Heret=j+1. m

Figure 4: Leaves of the tree giving a proof of Theorem 13.

(0, -t, -2t, -3¢) (0, -t, -2t, -t, 0, ¢) 0, -t, -2¢, -, 0, -¢, -2t, -3t)
0, ~t, 0, -t) 0, -t, 0, ¢, 0, v (0, ~r, -2t, -¢, 0, -t, -2t, ~t)
©, t, 0, v) 0, ¢, 0, -t, o, -t) 0, -t, 0, ¢, o, =t, 0, -t) -
0, &, 2¢, 30) 0, t, 2t, t, 0, -t) 0, -t, 0, ¢, 0, -z, 0, 1)

0, -t, -2¢, -g, ~2t) 0, ~-t, -2t, ~t, 0, =-t, 0) (0, ¢, 0, -t, o, t, 0, -t)

0, ~t, 0, t, 2¢) 0, -, 0, ¢, 0, -z, -21) (0, ©, 0, -¢t, 0, ¢, 0, t)

(0, t, 0, -t, -21) 0, ¢, 0, -t, 0, ¢, 2t) 0, t, 2t, ¢, 0, ¢, 2¢, 1)

0, t, 2t, ¢, 2v) 0, t, 2t,t,0, ¢, 0 O, £, 2t, ¢, o, ¢, 2t, 3t)

5  Avoiding zoi(z) for all ;

Generalizing the results of the previous section, we may ask if it is possible to avoid
the patterns zo*(z) for all ;. Unfortunately, this is clearly impossible, for if a word
z begins with 1 7, then it contains a subword of the form ¢ o7 ~i(9).

However, we can relax our conditions for avoidance, as follows: we say an infinite
word weakly avoids the patterns zo*(z) if it contains no subwords of the form zo'(z)
with fz] > 2. (In contrast, our previous notion of avoidability we wil] call strong.)

Prpposition 14 Over T, every word of length > 8 contains g subword of the form
Zo(z) for some ; 20, with |z| > 2.

Proof. OQur simple tree traversa] algorithm proves this. The tree generated has
24 leaves, and the leaves are given in F igure 5. W

Figure 5: Leaves of the tree giving a proof of Proposition 14.

0000 000101 00010000
0011 001001 00010001
0101 010000 00100010

0110 011100 00100011
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00011 0001001 01000100
00101 0010000 01000101
01001 0100011 01110110
01111 0111010 01110111

However, it is possible to weakly avoid the patterns zot(z) for all ¢ > 0 over &;.
Let w be any squarefree word over {0,1,2}, and consider the morphism f which

maps
0- 00

110

2 = 20.

Theorem 15 The infinite word F(w) weakly avoids the patterns zai(z) for all
i >0.

Proof. Letw = ¢i1¢2¢3- -+, and f(w) contains a subword of the form z = zo'(z)

for some ¢ and |z] > 2. There are two cases, depending on |z| mod 2.
Case I: |z| = 0 (mod 2). In this case, there are two possibilities, depending

where z starts in f(w):
z oi(z)
rm———— pm— e

z =d10d20"'dj0 [ dj+10"'d2j0

z = Od10d2 s Od] , Odj.H T Odzj
where d; = ¢, for some integer k > 0. Comparing the second symbol in the first
case, or the first symbol in the second case, we see that if 2 = zo#(z), then i = 0.
Hence d; = i+t for 1 < ¢t < j, and so Chtt = Ciyje for 1 <t < 7, contradicting
the assumption that w was squarefree.

Case 2: |z| =1 (mod 2).
z o(z)
z=d;0dy--- | 0d;0---
2=0d,0--- |d;0d;y, ---
If z = zo'(z), then, in the first case, we must have d; = d,, and in the second

d; = d;41. Both correspond to a square in w, a contradiction. W

We might also try weakly avoiding zo(z) for 0 < 4 < k over S, while simulta-
neously (strongly) avoiding zz.

Theorem 16 Ifk = 4, one can, over T, stmultaneously weakly avoid zo'(z) for
0 <i <k and strongly avoid zz. Here k 15 best possible.
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pProof. We can weakly avoid zo*(z) for 0 < i < k and strongly avoid zz over DI
as follows: let w be any squarefree word over {1,2,3}, and consider the morphism
f which maps

1—-10

220

3 — 30.

Then it follows from the same method of the proof of Theorem 15 that f (w) weakly
avuids zo*(z) for all i. However, it is clear from the construction that f(w) has no
subword of the form cc for ¢ € T4, so f(w) also strongly avoids zz.

On the other hand, the tree traversal algorithm shows that over T3, any word of
jength > 8 has a (weak) occurrence of zo*(z) with0 < i < 3, 0ora strong occurrence
of zz. The tree generated has 24 leaves, and the leaves are given in F igure 6. W

Figure 6: Leaves of the tree giving a proof of Theorem 16.

0101 010202 01020101
0120 012102 01020102
0202 020101 01210120
0210 021201 01210121
01021 0102012 02010201
01212 0121010 02010202
02012 0201021 02120210
02121 0212020 02120212
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