PN

APL 80, G.A. van der Linden (ed.)
North-Holland Publishing Company
© sI1C, 1980

EXTENDING APL

Eugene E. McDonnell

I.P. Sharp Associates
220 California Avenue

Palo Alto, CA 94306, USA

and

TO INFINITY

Jeffrey 0. Shallit

Department of Mathematics
University of California
Berkeley, CA 94720, USA

A recent proposal suggested that a positive and negative infinity be

added to APL.
infinities to APL.

This paper discusses the effect on APL of adding
There are two principal topics:
elements and arrays having infinitely long axes.

infinities as
The properties of

infinite elements and infinitely large arrays are exhibited by
describing the behavior of each primitive function with respect to

them.

1. INTRODUCTION

In a recent paper [Ivl] Iverson
proposed that the symbols _ and ~ be
used to denote infinity and negative
infinity, respectively. He shows the
use of these symbols to denote the limit
of a function or its inverse, to
separate ordinary numeric arguments of
the axis operator, and to denote an
alternative fill character for the
expand function. In this paper, we
explore further the consequences of
admitting symbols for infinities. There
are two main issues: infinite elements
and infinite axes. We discuss these in
terms of their effect on the behavior of
each of the primitive functions.

1.1 Why have an infinity?

Having a representation for infinity
would be advantageous in several ways.
For example, it would provide a result
for those cases involving division by
zero, directly or indirectly. This
would, among other things, simplify the
definition of the residue function.
Currently, in order to provide a
definition which is valid for all
numeric arguments, the residue function
must be defined by RES:w-oxlwta+a=0.
The phrase at the end ("+a=0") is
included in order to avoid the domain
error that would result in evaluating
0lA. Providing the result -~ or _ for
A+0 would permit the definition for
residue to be written more simply as
RES:w-axlwta.

123

1.2 Undefined versus indeterminate;

pole

An undefined expression is one for
which no numerical result is available.
In elementary school we learn that 330
is undefined. Later we learn that &0 is
also undefined. If we study analysis we
learn that an argument which would cause
the result of a function to be
infinitely large is said to be a pole of
the function; this is a more
sophisticated way of dealing with the
notion of "undefined".

On the other hand, an indeterminate
is an expression for which the rules of
mathematics are ambiguous or do not give
consistent guidance. Thus, in dealing
with the case 0%0, one could argue that
it should have the value 1, since 44
has the value 1 for non-zero 4, and as 4
approaches zero from any direction, the
expression maintains the value 1. But
one could also argue that 0:0 should
have the value 0, since 0%4 has the
value zero, and as 4 approaches zero
from any direction the expression
maintains the value 0. Lastly, from

A=Bx(C <+ B=A3iC

that, since 0=Bx0, any number B could be
used as the value of 0:0. The point is,
not what choice is made, but that a
choice can be made and defended.

To sum up: undefined means "no
choice", whereas "indeterminate" means
"many choices".



124 E.E. McDonnell, J.0. Shallit

2. ORTHOGRAPHY

The symbols chosen by Iverson for
infinities, the underbar _ and overbar
T, are different from the "lazy 8"
symbol used in conventional mathematics.
This is undoubtedly partly because of
the present limitations of the APL
character set, but there is also both
some justice to the choice, and some
opportune additional benefits resulting
from it. In a tabulation of results, a
dash is frequently used to indicate "not
available". With the orthography
proposed, we would have, for example:

32 14+2 1 0
T/5% 07y |
where the underline signifies, in a
sense, an "unavailable" result.

Since the proposed characters are
numeric in type, they would be added to
the list of characters available for
spelling names in APL, and would follow
the rules given for the use of the
numeric characters -- they could appear
within a name, but could not be used to
begin a name. Thus, names of the form
RATE_OF_PAY could be formed which would
have greater clarity than, for example,
either RATEQOFPAY or RATEAOFAPAY. There
is even some hope that and -~ could
replace the characters A and A as
alphabetic extenders, thereby making a
available as a function symbol.

2.1 Complex complications.

There are orthographic complications
in describing infinity in the complex
plane. In his summary paper [Pel]
Penfieid gives two proposals for the
representation of a complex constant.

In one, the real and imaginary parts are
separated by the character, for
example 3_u4. Penfield prefers the use
of the dieresis character ” , rather
than the underbar, since using the
underbar as separator would require
writing the complex constant having real
and imaginary parts equal to infinity as

. On many printing or display
devices the three underbars are not
distinguished, but run together to form
one line.

However, we propose that any complex
infinity (one not on the real line) be
represented in polar form. One such
polar form might be mPa, where m is the
magnitude of the number and a is the
angle in degrees. Thus an infinity at
an angle of 30 degrees would be
represented by P30. We propose that in
a display of complex values any

non-infinite value be represented in
rectangular form (or as a real number),
but that a complex infinity be
represented in polar form.

3. REPRESENTATION IN MACHINE FORM

This discussion is specific to the
machine architecture of the IBM
System/360 and equivalent machines, such
as those made by Amdahl Corporation.
Representations for other machine
architectures would have to be devised :
to accord with the possibilities of
those machines.

In System/360, a long floating-point
value has 64 bits. The first of these
is the sign bit for the fraction, the
next 7 are the (excess 64) exponent, and
the remaining 56 are used, four at a A
time, for 14 hexadecimal fraction
digits. A non-zero value is kept in a
normalized form, in which the leading
fraction digit is non-zero. This is the
form in which APL implementations
written for System/360 keep numbers with
fractional parts as well as integers
larger than can be accommodated in the
32-bit fixed-point form. System/360
also has a short floating-point form,
not used by APL implementations, which
uses only 32 bits, and gives only 6
fraction digits. One could use a long
unnormalized form, in which the first
six fraction digits were zero, and the
last eight encoded to have various
meanings, to represent the infinities we
are discussing. Thus, if such a
floating point number were to appear as .
an argument, a simple test could
determine that an infinity is present:

LTER. X,X TEST UPPER 6 DIGITS
BZ MAYBE BRANCH IF ZERO
MAYBE LTDR X,X TEST ALL 14 DIGITS s
’ BNZ YES BRANCH IF NON-ZERO
YES (code for infinite argument)

The sign bit could be used to
distinguish infinity from negative
infinity. The low-order 32 bits provide
enough encodings to represent not only
the infinities we are discussing, but
also other special values, such as
indeterminates and infinitesimals. One
could even distinguish "true" from
"machine" infinities. These matters
will not be further discussed in this
paper.




Extending APL to infinity 125

4, INFINITE ELEMENTS AS RESULTS; AS
ARGUMENTS

In this section we show which
functions can produce arrays having
infinite elements, and then discuss for
each function the implications of
allowing its argument(s) to have
infinite elements.

Only certain of the primitive
functions can give results which are
infinite. Before discussing these,
however, we have to distinguish two
cases. In the first case, the argument
is a pole of the function, and the
result is properly infinite. For
example, 0 is a pole for the reciprocal
function, and so 0 is properly
infinite. In the second case, the
argument is not a pole of the function,
but the result is not representable in
the machine environment. For example,
11000 is a perfectly ordinary, finite
number, but since it has 2568 decimal
digits it can't be represented using
System/360 architecture. Falkoff and
Iverson point out [Fal]

Problems such as overflow (i.e., a
result outside the range of the
representations available) were
treated as domain errors, the term
domain being understood as the domain
of the machine function provided,
rather than as the domain of the
abstract mathematical function on
which it was based.

We propose that this latter class of
result be called machine infinity, and
that it also be represented by the
underbar symbol. We shall distinguish
true infinity from machine infinity in
the tabulations of the scalar functions
given below by "T" and "M", for "true"
and "machine".

4.1 1Infinities as results of monadic
scalar functions

Table 1 shows the monadic scalar
functions which can produce an infinity
as a result, indicates whether this is a
true or machine infinity, whether this
is a positive or negative infinity, or
both, and, for a machine infinity, gives
the range of values of the argument
which produce the machine infinity,
using the architecture of System/360,
and the implementation of APL given by
I.P. Sharp Associates.

WA s M ([ 4) =4l
® Mt iAe D
® TR A=
L[ Py CA<Q)NAELA, T 3 Mi AZA3.
o |M: |A)>4n
30 | T and M: {(A>A5)AA<46,
50 | M: (|A)>A7, T _
60 | M: (|A4)>47,
so |mM: (la)>as, ~ _
60 |M: A>A8,
? | M: A>A9, _

legend
A=the argument
A1=1.381786988151113E 176
A2=174.673080444335935
A3=56.5452012056031
A4=2,3036104216320906E75
A5=1.5707963267948951
A6=1.570796326794899
and in general there are arguments
like A5 and A6 which give bounds
around OoN+0.5 for any integer W
A7=175.366226196289305
A8=8.50705917302346E37
A9=3.369993336532381E66; however, this
is a function of the value of URL as
well; the smaller the value of [RL,
the larger A9 can be. The value
shown is the smallest value which
will give a machine infinity and
corresponds to a value for [ORL of
T2+2%31.

Table 1

The functions which give a true
infinity are reciprocal, logarithm,
factorial and tangent. Except for
logarithm, which gives negative infinity
at zero, the others are ambiguous in
that either infinity or negative
infinity could be given as the value at
each pole. There does not appear to be
a simple rule which could be uniformly
applied to decide which infinity should
be given. For the tangent function, the
ambiguity is resolved because we cannot
represent pi over two or the other
members of its residue class, modulo two
pi, exactly, and thus any infinite
result for the tangent function will be
a machine infinity. The argument will
always be just below or just above the
pole, and therefore we are able to give
either infinity or negative infinity,
respectively, as the result.

With reciprocal, for values of the
argument which are sufficiently close to
zero, we also can determine, using the
sign of the arqument, whether the result
should be infinity or negative infinity.
On the other hand, for the argument zero
itself, there is no a priori reason for
preferring either of the choices. The
rule we propose is that the infinity



126 E.E. McDonnell, J.0. Shallit

chosen should have the same sign as the
result of applying the function to any

number for which the pole is the floor.
For example.

The same rule can be applied to the
poles of the factorial function (the
negative integers). Thus,

x172.3
1

L32:8
-3 ]

1723
N X
; o

but on the other hand

x!173.2
S

ks 3%2
-y ;

1Ty

-
!

4.2 Infinities as arguments of monadic
scalar functions

Once we admit the possibility of an
infinity as the result of an expression,
the question arises, what will be the
result if this infinity is used in turn
as the argument to a function. Table 3
shows, for each monadic scalar function,
the result when it is applied to
infinity or negative infinity. As will
be seen, it seems useful to say that
infinities, like zero, take on all the
characterizations of real numbers. They
are identically integers and
non-integers, divisible by 2, multiples
of two pi, and so forth.

Reciprocation The value shown for

and = is 0. Knuth [Knl] makes the
point that if infinity is used to
represent what we call machine infinity,
as well as true infinity, it is
incorrect to give 0 as the result of = ,

"lest inaccurate results be regarded as
true answers!"™ He suggests that an
indeterminate value be reserved for such
results. 1In this paper we do not
discuss the possibility of an
indeterminate result, and give zero as
the result of reciprocating infinity.

Floor and ceiling These functions show
how the infinities can be characterized
as integers, since we see no alternative
to giving as results the value of the
arguments.

Roll Statistically, any finite number
has zero probability of being chosen out
of an infinitude of numbers, and so we
give _ as the result of ?_.

Logarithm The result of is shown as

being a domain error. In fact, if

complex numbers are admitted, it will be 4
possible to give the logarithm of a

negative number. In this paper we do

not discuss further the implications of

complex numbers on the question of

infinities.

Circular functions The circular
functions 1 2 30 are shown as giving
zero as the result. Ball, in [Ball,
says that these results should be
undefined. We give zero as the result
for each, since we claim that the
infinities are multiples of two pi (for
sine and tangent) and also pi over two
and the members of its residue class,
modulo two pi, for the cosine. In
indeterminate cases like this, there is
also some justification in claiming that
zero is an unbiased choice, using the
arguments given in [Mcl].

Factorial We show ~ as the result of

'~ . Here we consider negative infinity

not only to be an integer, but an even

integer, since, as we saw in the

discussion of Table 1 the factorial of

negative even integers is negative 2
infinity.

4.3 Infinities as results of dyadic
scalar functions

Table 2 shows the dyadic scalar
functions which can produce infinity or
negative infinity as a result. The only
functions which give true infinities are
those derived from the corresponding
monadic scalar functions, namely divide
and dyadic logarithm (from reciprocal
and logarithm).

Y

Yy




pra omy Lo

dopury

Extending APL to infinity 127

+ | K

M

M

F: A1030 ..M
M

T: 41080

M

X

o= @ * o

legend
A10%0

Table 2

4.4 Infinities as arguments of dyadic
scalar functions

Table 4 shows the result of using
each dyadic scalar function with
negative infinity as one argument, and
several kinds of other argument. For
the commutative functions, such as
addition, only one row is given, which
may be read either with negative

infinity as the left argument, and each
element at the head of the columns as
the right argument, or vice-versa. For
the non-commutative functions, such as
subtraction, there are two entries, the
first showing negative infinity as left
argument, with the elements at the head
of the columns as right argument, and
the second with negative infinity as
right argument, and the elements at the
head of the columns as left argument.
Table 5 provides the same information
for infinity as left and right argument.

For many scalar dyadic functions we
show domain error when both arguments
are infinite. Although some authorities
[Bal Bul Knl] give results in some of
these cases, we feel that there is
enough disagreement among competent
judges that at present we ought to beg
the question. It is easier to remove a
domain error than to put one in.

2k AP LF |~ ¥ o P S 1 =l FR DR 204 Qe P eSS 1 G ER
+ [T e AT e D |+ + | D AL T iyl
- et A e DS e =T % B e & D
x 71 1 Dogr L ol o e Dl
|0 0 x 0 x _x 0. = SopEe \
| T DT D s, DT s o D
L - D 0 0 0 D|+” D 0O 0 0 D |+ |
N e Il |p N 0 P D Clp N TP D
7D 0. 04190 D|I- 0 70 S o %D 0- |1
P Tl S e T sl LT N0 P g N ;
®| D _ RUE] SR S e SAHrE AL T SRR
o - i D R0 A &
70| D D D D 1 0| %~ DisD <0 (ke HIGES T [ o
60 Te D P ®| D D71 o0 1
Lo o R D @~ D D1 ERE P e,
4o . “o D _o D
30 |-V V o~ o \
201D D T4l 0 .00 0 2. Aatiend 0 - 90: 10 A
“10{D D i 0 0 0 0N v 0 0 0 0 10
oo| D D B T R | 1 _<|/o0o o o0 o0 0 |
100 o0 0 0 0 O 0] <" L AL R & 0.| =2
200 0 20 s e 1 2 10, H0n 0 10 1
3o| 0 o0 170" -0k 0 0| <" Rt R R | e
40 "= |1 0 0 o 0 =" =10 0. 0 -0 1=
50| = >0 0 0 0 0 17411k 0
BOW 7 i (1S CREEH TR | 1i>" L0 0000 0 {>.
7071 1 et il 07100 0 O 3 D LN W | 1
L e <R L T 12" 0 0 0 O 1|z
i R S 1|2 - R G R I | 0 {=_
Table 3 Table 4 Table 5
legend
D domain error
function
1<G, G<

left argument
negative number
positive number
right argument
0<S, S<1

00.5 4

<hmw=EToON


Jeffrey Shallit


128 E.E. McDonnell, J.0. Shallit

4.5 Infinities as results of mixed
functions

The two mixed functions that may give
results having infinite elements are
decode (L) and the two forms of [:
matrix divide and matrix inverse. For
decode, the infinities are machine
infinities; this follows from the
definition of decode in terms of
addition and multiplication. Matrix
inverse may result in a machine infinity
if the matrix is close to singular;
however it will also give a true
infinity if its argument is a singular
matrix, one having a zero determinant.
To see why this is so, recall that the
inverse of a square matrix is given by

B4 <> (RADJOINT A)+DET A

and if the determinant of 4 is zero,
then for each non-zero element of the
"transposed adjoint, the corresponding
element of the inverse will be infinite.

An application where this would be
useful is as follows: currently, it is
difficult to determine (under program
control) whether a given matrix is
singular without error trapping
facilities. If we permit division of
non-zero by zero to give an infinite
result, a test for singularity is given
by el|B4. Similar results exist for
dyadic §.

4.6 Infinities as arguments of mixed
functions

If A4 and B are arrays having one or
more infinite elements, then expressions
of the form

pA ¢4 ®A K+A ,A K/A A\B A v4 ALK]
KpA KOA KQA K¥A A B K\A AeB VA Kv4

have obvious definitions in terms of
current APL.

The expressions

ApB  A+B 1vB 14

B
can produce infinite arrays as discussed
in the next section. For example, 1_ is
an array such that (1 )[X] <+ K.

We see no way by which the deal
function ? can be meaningfully defined
for infinite arguments.

The functions 1, T, and B are defined
in terms of more primitive functions,
and we may retain these definitions with
respect to infinite arguments. For
example, 10L_ 2 3 <> _.

55 INFINITE ARRAYS
Expressions such as

1

and

_ 2pX
suggest a generalization of APL to
infinite arrays

_epA. The concept of infinite arrays
adds significant new capabilities to
APL.

Consider the problem of evaluating
the series for the constant e. This
series is infinitely long, and
practically speaking, one uses only a
finite prefix of it. Suppose we wish to
evaluate it until the n-th term is
smaller than 1E78. If we know that we
don't have to sum more than 25 terms, we
can write

+/311(1E78>210,125)11.

If, on the other hand, 1E78 is
replaced by an arbitrarily small
positive number EPS, an accurate
a priori bound may be difficult to
compute. In this case, we might replace
25 by 100 or some larger number. But
is greater than any number; hence we
should be able to write

+/311(EPS>210,1_ )1,

which gives a solution using the
infinite vector 1_.

5.1 Implementing infinite arrays

Typically, an APL implementation
stores an array with a header containing
the number of the array's axes and the
length of each axis. For an infinite
array, the length of an infinite axis
can be given as a negative integer, for
example ~1. Furthermore, an infinite
array may be stored as a function of its
indices. For example, to store the
infinite vector V<2+3x1_ we need only
store the function VF:2+3xw. Then it is
easy to see that V[K] <+ VF K. Any
particular element of V may be obtained
by using the associated function VF.
Since the user can never examine all the
elements of V, it does not matter that
the entire infinite array is not in fact
stored¢ any portion of it may be
computed as needed. A request such as

O«v



Jeffrey Shallit


Extending APL to infinity 129

may be interpreted as continued
evaluation and display of the results of
VF until the user interrupts the
display. Thus, to the user, it appears
as if an infinite array is present.

This is a generalization of the J-vector
introduced by Abrams [Abl] and
implemented in several versions of APL.

If V is an infinite vector and 4 is a
scalar, then Vi4 should return the
location of the first occurrence of 4 in
V; if 4 is not in V the search for it
will go on forever. Hence the
introduction of infinite arrays leads to
simple expressions whose execution never
terminates.

Note that expressing an infinite
array as a function of its coordinates
implies that the number of axes of the
array is finite; otherwise it is
conceivable that we could never compute
the value of a given array position. 1In
particular, all infinite arrays have a
countable number of elements, meaning
that we can pair each element of V with
a non-negative integer in a unique
fashion.

Before discussing in detail which
mixed functions may be implemented on
infinite arrays, it will be useful to
make a few informal definitions
concerning a monadic function f.

f is totally locally computable (TLC)
if there is a well-defined, terminating
procedure to compute (f 4)LX] for any K,
which requires that the procedure need
only look at a finite subset of 4, and
that the procedure need not have access
to any global information about 4;

f is partially locally computable
(PLC) if such a procedure exists for
certain 4;

f is locally uncomputable (LUC) if
such a procedure never exists.

For example, f:2*a is TLC since
£ V)LK] <> 2xV[K].

The function g:e11 is PLC, since if 1
is in V the computation V11 will
terminate, while if 1 is not in V it
won't.

Finally, +/V is LUC since we can
never compute the sum of an infinite
number of elements by looking only at a
finite subset. To compute +/V, "global"
information about V is needed.

Those functions that are TLC may be
conveniently implemented. Those
functions which are PLC present more
formidable difficulties.

We can now discuss the implementation
of primitive functions and operators
with respect to infinite arrays.

5.2 Scalar functions of infinite arrays

The scalar functions are easily
implemented using the following
identities. If A and B are infinite
vectors then

(f A)[K] <> £ ALK]
(A £ B)LK] <> ALK] £ BLK].

5.3 Mixed functions of infinite arrays

For most of the mixed functions it
suffices to examine their behavior for
infinite vectors Extension to
higher-order arrays is based on their
action on infinite vectors.

Functions along finite axes of «n

infinite array are easily implemented.
For example, if

A 2p
then
(+/A)LK] «» +/AlK;]1 <> (4xK)-1.

Since every infinite array is
represented as a function of its
indices, it suffices for implementation
purposes to exhibit such a function.
For example, the identity (1_)[K] <> X
indicates how 1_ may be implemented.

In the discussion that follows, 4 and
B are infinite arrays, V and W are
infinite vectors, Kk is a finite scalar,
J is either a finite scalar or ) e
and ¢ is a finite vector. e

shape: If 4 is an infinite array, then
_€pA.
reshape: Here we must have ~ el¥pd. To

see this, consider the following: an
expression like 3 _p1_ says to fill an
array in row-major order with three rows
and an infipjte number of columns with
the numbers f{rom one to infinity. This
cannot be done, since it takes an
infinite amount: of numbers to f£ill the
first row. Thus we have the unpleasant
result that there are certain arrays
that cannot be created with reshape

alone. 1In particular, the identity
A «> (pd)p4A
no longer holds in general, since the

expression on the right may not even be
defined. As another example, 1let


Jeffrey Shallit
n i

Jeffrey Shallit
f

Jeffrey Shallit
one

Jeffrey Shallit
ount

Jeffrey Shallit
T h


130 E.E. McDonnell, J.0. Shallit

A+{13)e.x1_. Then _pA effectively takes
only the first row of 4.

Reshape may be implemented using the
fact that

(_pC)LK] > C[1+(pC) |K-1]

ravel: This may be implemented using the
identity ,4 <> (x/p4)pA. Once again we
obtain results that may look peculiar
for infinite arrays of rank two or
greater, that is

s(13)e.x1_ > 1
reverse: ¢V is not defined, since the
"last" element of ¥V is not defined.

rotate: For non-negative, finite kX, KoV
is K+V. KoV is not defined if X is
negative or infinite.

catenation:

VW <>V

VsC <>V

(C,V)LK] <> C[K] if KerpC
VLK-pC] otherwise

transpose (monadic and dyadic):
Transposition of infinite arrays
(represented as functions of their
indices) is facilitated by the use of
Iverson's "from" function [Ivl, p.17]:

I04 <+ (,4)[1+Q(pA)1®I-1]
(this definition in terms of L works
correctly for p4 finite; it must be

modified for infinite arrays, but the
extension is clear). Then

KOJRA <~ K[LJI1DA.

take:
A
(_4C)LK] <> CLK] if K<pC
fill element otherwise
T4V is not defined.
drop:
(K¥V)ILJ] <> VLK+J] (X¥20)
K¥V <+ V (K<0)

_+V and “+V are not defined. -
compress:
(B/V)LK] <+ VI(+\B)1K]

expand:

(B\V)LK] <+ 0 if B[k]1=0
VL+/BL1k11 if BLK]1=1

indexing: (VIW1)LK] <> VIWL[K]]

index generator: (1l )LKl: <> K

index of:

V1C: This function is PLC. It may be
implemented as a parallel look up
for each element of C.

C1V: We have (CiV)LK] «» C1V[K]

ViW: This function is also PLC, and may
be implemented as shown for ViC.

membership:
(VeC)LK] <> VIKleC.

CeV: This function is PLC and may be
implemented in a fashion similar to
that for ViC. Note that we have
the unusual fact that if the
computation for CeV terminates, the
result is just (pC)lpl.

VeWw: As with ViC, this is PLC.

upgrade, downgrade: These functions are
not in general well-defined. For
example, no meaningful result can be
assigned to

h2x-1

monadic and dyadic format: These are
both TLC functions, but no easy
algorithm appears possible.

decode, encode, matrix inverse and
divide, and execute: are all LUC and
hence we propose that they not be
implemented.

5.4 Derived functions of infinite
arrays

inner product, reduction: These 5
generally create LUC functions, and

hence cannot be easily implemented

[Mol}.

scan: (£\V)LK] «» £/V[1K]
outer product:

IlAe.f B <+~
((CppA)+I)NA)E((-ppB)tI)IB

where pI <+ (ppA)+ppB

e
5.5 Display of infinite arrays
Since APL prints arrays in row-major
order, we encounter problems when trying
to display arrays 4 with _e1+p4. For s



Jeffrey Shallit
e d.

Jeffrey Shallit

Jeffrey Shallit
(


Extending APL to infinity 131

example, since it takes an infinite
amount of time to print the first row of
(14)e.x1_, we never get to see the other
rows. However, Breed [Brl] has shown
how APL display can be modified so that,
instead of displaying a matrix by giving
each row in its entirety before starting
the next row, one could instead display
as much of each row as would fit in the
print width before going on with the

. remainder of each row, continuing in
this fashion until the entire matrix has
been displayed. To illustrate the
effect, compare the way an APL system
currently displays the matrix A4<«2
20p140, with print width set at 4¢:

1.2 8 4B 5 B 7.8 °9 1011 1213
1% 15 16 .17 18 19 20

21 22.23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40

with the way it would be displayed using
Breed's modification:

(G ERRE AEE - T SRR Ty R R 0 R e 3N
21.22 23 24 252627 .28 29,30 31,.32 33

i4 15 16 17 18 19 20
34 35 36 37 38 39 40

This suggestion applies also to higher
rank arrays having only one infinite
axis, where the infinite axis is the
last axis: successive infixes of all the
planes, etc. are displayed to the extent
that they can fill the given display
width, before the remainder of the
planes, etc. are displayed. It cannot
be used for displaying an array having
more than one infinite axis.

5.6 The functions DIAG and IDIAG

As we noted before, if A4 is an
infinite array, then ,4 may not include
all the elements of A. However, a
function can be defined which converts
an infinite array to an infinite vector
without "losing"™ information.

For example, suppose

4 5
6 8 10
15
12 16 20
15 20 25

GDE W e
o@D FEN
©
=
N

i

We can convert 4 to a vector by
selecting elements from successive
diagonals of the array:

DIAG A
122343 46614589875 ...

DIAG for finite arrays may be defined
as follows

DIAG: (,w)iLd,+#/I0TApwl
I0TA:1+wTwp 1X/w)-1

DIAG causes a diagonal transformation
of its array right argument. The result
is a vector.

DIAG allows the user to examine
arrays that otherwise could not be
printed. For example,

DIAG (12)e.+1_
2 380 %8 50 8 7 7 8%

DIAG may be used with finite arrays
as well, of course:

DIAG 3 5p115
1263711 4% 8 12 5 9 13 10 14 15

The inverse to the function DIA4G is
the function IDIAG. For finite arrays
we have the following definition:

IDIAG:apwidd,+7/I0T40]

Note that IDIAG is dyadic; the left
argument specifies the shape of the
result. We have

A <+ (pA)IDIAG DIAG A

This identity holds for all arrays 4,
while the related identity

4 <> (pd)p,4A
holds only for finite arrays.
Example:

A< _IDIAG1_

5 542
12 & 711
3. 5 ¢18 X2- 17
6 9 13 18 24
10 14 19 25 32
15 20 26 33 41

IDIAG (unlike reshape) allows the
creation of infinite arrays of any
shape.



132 E.E. McDonnell, J.0. Shallit

ACKNOWLEDGMENTS

We should like to thank the following
people, who read an early draft of this
paper and gave us many valuable
comments: Larry Breed of IBM, Paul
Penfield of MIT, Steve Smoliar of
General Research, and Arlene Azzarello,
Bob Bernecky Leigh Clayton, Doug
Forkes, Ken Iverson, Roland Pesch, Joey
Tuttle, and Ed Wilts, of I.P. Sharp
Associates.

REFERENCES

[Abl] Abrams, P.S., An APL Machine, SLAC
Report No. 114, Stanford
University, Stanford, Ca, 1979

[Bal] Ball, J.A., Algorithms for RPN
Calculators, Wiley-Interscience,

New York, 1978

[Brl] Breed, L.M., personal
communication

[Bul] Bucholz, W. (ed), Planning a
Computer System: Project Stretch,
McGraw-Hill, New York, 1962

[Fal] Falkoff, A.D. and K.E. Iverson,
"The Evolution of APL", SIGPLAN
Notices, 13, 8, ACM, New York,
(NI I s L

[Ivl] Iverson, K.E. "Operators and
Functions", RC 7091, IBM Corp.,
Yorktown Heights, NY, 1978

[Knl] Knuth, D.E. Seminumerical
Algorith@g, Addison-Wesley,
Reading, MA, 1969

[Mcl] McDonnell, E.E., "Zero divided by
zero", APL76, ACM, New York, 1976

[Mol] More, T., Jr., "Axioms and
theorems for a theory of arrays",
IBM Journal of research and
development, 17, 2, 1973

[Pel] Penfield, P., Jr., "Proposal for a
complex APL", APL Quote Quad, 9,
4, 1979




