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Abstract

Entringer, Jackson, and Schatz conjectured in 1974 that every in-
finite cubefree binary word contains arbitrarily long squares. In this
paper we show this conjecture is false: there exist infinite cubefree
binary words avoiding all squares xz with || > 4, and the number 4
is best possible. However, the Entringer-Jackson-Schatz conjecture is
true if “cubefree” is replaced with “overlap-free”.

1 Introduction

Let ¥ be a finite nonempty set, called an alphabet. We consider finite and
infinite words over ¥. The set of all finite words is denoted by ¥*. The set
of all infinite words (that is, maps from N to ¥) is denoted by ¢.

A morphism is a map h : ¥* — A* such that h(zy) = h(x)h(y) for all
x,y € ¥*. A morphism may be specified by providing the image words h(«a)
foralla € . If h : ¥* — ¥* and h(a) = ax for some letter ¢ € X, then we
say that h is prolongable on a, and we can then iterate h infinitely often to
get the fixed point h*(a) := ax h(x) h*(x) h>(x)---.

A square is a nonempty word of the form xz, as in the English word
murmur. A cube is a nonempty word of the form xzzz, as in the English



sort-of-word shshsh. An overlap is a word of the form axaxa, where x is a
possibly empty word and «a is a single letter, as in the English word alfalfa.
It is well-known and easily proved that every word of length 4 or more
over a two-letter alphabet contains a square as a subword. However, Thue
proved in 1906 [4] that there exist infinite words over a three-letter alphabet
that contain no squares; such words are said to avoid squares or be squarefree.
Thue also proved that the word p*(0) = 0110100110010110 - - - is overlap-free
(and hence cubefree); here i is the morphism sending 0 — 01 and 1 — 10.

Entringer, Jackson, and Schatz [2] proved that while squares cannot be
avoided over a two-letter alphabet, arbitrarily long squares can. More pre-
cisely, they proved that there exist infinite binary words with no squares of
length > 3, and that the number 3 is best possible. Later, this result was
improved by Fraenkel and Simpson [3], who proved that there exist infinite
binary words where the only squares are 00, 11, and 0101.

Entringer, Jackson, and Schatz conjectured in 1974 that any infinite cube-
free word over {0,1} contains arbitrarily long squares [2, Conjecture B, p.
163]. In this paper we show that this conjecture is false; there exist infinite
cubefree binary words with no squares xx with |x| > 4. The number 4 is best
possible. Further, we show that the Entringer-Jackson-Schatz conjecture is
true if the word “cubefree” is replaced with “overlap-free”.

2 A cubefree word without arbitrarily long
squares

In this section we disprove the conjecture of Entringer, Jackson, and Schatz.
First we prove the following result.

Theorem 1 There is a squarefree infinite word over {0,1,2,3} with no oc-
currences of the subwords 12, 13, 21, 32, 231, or 10302.

Proof. Let the morphism /& be defined by

0 — 0310201023
1 — 0310230102
2 — 0201031023
3 — 0203010201

Then we claim the fixed point 2“(0) has the desired properties.
First, we claim that if w € {0,1,2,3}* then h(w) has no occurrences of
12, 13, 21, 32, 231, or 10302. For if any of these words occur as subwords of
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h(w), they must occur within some h(a) or straddling the boundary between
h(a) and h(b), for some single letters a,b. They do not; this easy verification
is left to the reader.

Next, we prove that if w is any squarefree word over {0, 1,2, 3} having no
occurrences of 12, 13, 21, or 32, then h(w) is squarefree.

We argue by contradiction. Let w = ajas - - - a,, be a squarefree string such
that h(w) contains a square, i.e., h(w) = xyyz for some x,z € {0,1,2,3}*,
y € {0,1,2,3}*. Without loss of generality, assume that w is a shortest such
string, so that 0 < |z, |z| < 10.

Case 1: |y| < 20. In this case we can take |w| < 5. To verify that
h(w) is squarefree, it therefore suffices to check each of the 49 possible words
w € {0,1,2,3}° to ensure that h(w) is squarefree in each case.

Case 2: |y| > 20. First, we establish the following result.

Lemma 2 (a) Suppose h(ab) = th(c)u for some letters a,b,c € {0,1,2,3}
and strings t,u € {0,1,2,3}*. Then this inclusion is trivial (that is,
t =€ oru=c¢) oru is not a prefix of h(d) for any d € {0,1,2,3}.

(b) Suppose there exist letters a,b,c and strings s,t,u,v such that h(a) =
st, h(b) = wv, and h(c) = sv. Then either a = ¢ or b= c.

Proof.

(a) This can be verified with a short computation. In fact, the only a,b,c
for which the equality h(ab) = th(c)u holds nontrivially is h(31) =
th(2)u, and in this case ¢t = 020301, v = 0102, so u is not a prefix of
any h(d).

(b) This can also be verified with a short computation. If |s| > 6, then no
two distinct letters share a prefix of length 6. If |s| < 5, then |t| > 5,
and no two distinct letters share a suffix of length 5.

Fori=1,2,...,n define A, = h(a;). Then if h(w) = xyyz, we can write

h(w) =AA4,---A, = A’lAlllAz s A]‘_lAllA;/Aj_H T An—lA:zAZ
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where

A = AlAY

A = AAY

An — A/ A//
v = Al
y = A/{Az"'Aj—lA;‘ :A;fAj+1...An_1A;
2= A

where |Af],|A7] > 0. See Figure 1.

AL Ay A4 AL A7
Av Ay | A A A [ Ana | A
x Yy Yy z

Figure 1: The string xyyz within h(w)

If |[AY| > |A7], then A1 = h(ajy1) is asubword of A7 Aj, hence a subword
of AjAy = h(aiay). Thus we can write A;yy = A’ , A7, with

AII/AQ — A;/A]+1A;+2

See Figure 2.

y= [ ar A, o A, Al
Yy = A;/ Aj-l—l A;‘+2 T An—l A;

Figure 2: The case |Af| > |A7]

But then, by Lemma 2 (a), either [AY]| = 0, or [A]] = [A]], or A%,, is a
not a prefix of any h(d). All three conclusions are impossible.
If [AY| < |AY], then Ay = h(ag) is a subword of A7A;,;, hence a subword
of AjAj+1 = h(aja;41). Thus we can write As = A5AY with
AlllAzAé — A;/A]+1

See Figure 3.



y= |A A, ALl A A
y = Al Aj ... A Al

Figure 3: The case |Af] < |4]]

By Lemma 2 (a), either [Af| = 0 or [A}| = |A]] or A is not a prefix of
any h(d). Again, all three conclusions are impossible.

Therefore |AY| = |A}|. Hence AY = AY, Ay = Ay, ..., Ajo1 = An_y,
and A; = A/. Since h is injective, we have a3 = @jq1,...,0j-1 = dp_1.
It also follows that [y| is divisible by 10 and A; = ALAY = A] A]. But
by Lemma 2 (b), either (1) a; = a, or (2) a; = a;. In the first case,
Qg+ @j_10; = Gjp1 " Au_1dy, SO w contains the square (az---a;_1a;)?, a
contradiction. In the second case, ay---a;_1 = aja;41 -+ ay_1, S0 W contains
the square (ay ---a;_y)?*, a contradiction.

It now follows that the infinite word

h*(0) = 03102010230203010201031023010203102010230201031023 - - -

is squarefree and contains no occurrences of 12, 13, 21, 32, 231, or 10302. =

Theorem 3 Let w be any infinite word satisfying the conditions of Theo-
rem 1. Define a morphism g by

0 — 010011
1 — 010110
2 — 011001
3 — 011010

Then g(w) is a cubefree word containing no squares xx with |x| > 4.

Before we begin the proof, we remark that all the words 12, 13, 21, 32,
231, 10302 must indeed be avoided, because

g(12)  contains the squares (0110)%, (1100)%, (1001)*
g(13)  contains the square (0110)?
g(21)  contains the cube (01)°
g(32)  contains the square (1001)>
g(231)  contains the square (10010110)?
g(10302)  contains the square (100100110110)>.
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Proof. The proof parallels the proof of Theorem 1. Let w = aqay - - - ay, be a
squarefree string, with no occurrences of 12, 13, 21, 32, 231, or 10302. We first
establish that if g(w) = zyyz for some z,z € {0,1,2,3}*, y € {0,1,2,3}F,
then |y| < 3. Without loss of generality, assume w is a shortest such string,
so 0 < |z|,|z| < 6.

Case 1: |y| < 12. In this case we can take |w| < 5. To verify that g(w)
contains no squares yy with |y| > 4, it suffices to check each of the 41 possible
words w € {0,1,2,3}%.

Case 2: |y| > 12. First, we establish the analogue of Lemma 2.

Lemma 4 (a) Suppose g(ab) = tg(c)u for some letters a,b,c € {0,1,2,3}
and strings t,u € {0,1,2,3}*. Then this inclusion is trivial (that is,
t=c¢€oru=c¢) oru is not a prefiz of g(d) for any d € {0,1,2,3}.

(b) Suppose there exist letters a, b, ¢ and strings s,t,u, v such that g(a) = st,
g9(b) = wv, and g(¢) = sv. Then eithera =c orb=c, ora=2,b=1,
c=3,5=0110, t = 01, u = 0101, v = 10.

Proof.

(a) This can be verified with a short computation. The only a,b,c for
which g(ab) = tg(c)u holds nontrivially are

¢(01) = 010 g(3) 110
¢(10) = 01 g(2) 0011
¢(23) = 0110 g(1) 10.

But none of 110, 0011, 10 are prefixes of any g(d).

(b) If |s| > 5 then no two distinct letters share a prefix of length 5. If
|s| <3 then |t| > 3, and no two distinct letters share a suffix of length
3. Hence |s| = 4, |[t| = 2. But only ¢(2) and ¢(3) share a prefix of
length 4, and only ¢(1) and ¢(3) share a suffix of length 2.

The rest of the proof is exactly parallel to the proof of Theorem 1, with
the following exception. When we get to the final case, where |y| is divisible
by 6, we can use Lemma 4 to rule out every case except where z = 0101,
2z =01, a; =1, a;j = 3, and a, = 2. Thus w = lada2 for some string
a € {0,1,2,3}*. This special case is ruled out by the following lemma:



Lemma 5 Suppose o € {0,1,2,3}*, and let w = 1a3a2. Then either w
contains a square, or w contains an occurrence of one of the subwords 12,

13, 21, 32, 231, or 10302.

Proof. This can be verified by checking (a) all strings w with |w| < 4, and
(b) all strings of the form w = abcw'de, where a,b,c,d,e € {0,1,2,3} and
w' € {0,1,2,3}*. (Here w’ may be treated as an indeterminate.) ™

It now remains to show that if w is squarefree and contains no occurrence
of 12, 13, 21, 32, 231, or 10302, then g(w) is cubefree. If g(w) contains a cube
yyy, then it contains a square yy, and from what precedes we know |y| < 3.
It therefore suffices to show that g(w) contains no occurence of 0%, 1°, (01)?,
(10)3, (001)%, (010)*, (011)°, (100)°, (101)*, (110)>. The longest such string
is of length 9, so it suffices to examine the 16 possibilities for g(w) where
|w| = 3. This is left to the reader.

The proof of Theorem 3 is now complete. ®

Corollary 6 If g and h are defined as above, then
¢(h*(0)) = 010011011010010110010011011001010011010110010011011001011010 - - -

is cubefree, and avoids all squares xx with |z| > 4.

3 The constant 4 is best possible

It is natural to wonder if the constant 4 in Corollary 6 can be improved. It
cannot, as the following theorem shows.

Theorem 7 Every binary word of length > 30 contains a cube or a square
xx with |x| > 3.

Proof. This may be proved purely mechanically. More generally, let
P C ¥* be a set of subwords to be avoided. We create and traverse a certain
tree T', as follows. The root of the tree is labeled e. If a node is labeled = and
contains no subword in P, then it has children labeled za for each a € ¥;
otherwise it is a leaf of T'. This tree is infinite if and only if there is an infinite
word avoiding the elements of P.

If T is finite, then the height of T' gives the length [ such that every word
of length [ or greater contains an element of P. The tree can be created and
traversed using a queue and breadth-first search.

If the set P is symmetric under renaming of the letters—as it is in this
case—we may further improve the procedure by labeling the root with any
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particular letter, say 0. When we run this procedure on the statement of
the theorem, we obtain a tree with 289 leaves, the longest being of length
30. The unique string of length 29 starting with 0 and avoiding cubes and
squares xa with || > 3 1s 00110010100110101100101001100. =

4 Overlap-free words contain arbitrarily long
squares

It is also natural to wonder if a result like Corollary 6 holds if “cubefree” is
replaced with “overlap-free”. It does not, as the following result shows.

Theorem 8 Any infinite overlap-free word over {0,1} contains arbitrarily
long squares.

Proof. By [1, Lemma 3] we know that if x is an overlap-free infinite word
over {0, 1}, then there exist a word u € {€,0,1,00,11} and an overlap-free
infinite word y such that x = uu(y), where p is the Thue-Morse morphism.
By iterating this theorem, we get that every overlap-free infinite word must

contain p"(0) for arbitrarily large n; hence contains arbitrarily long squares.
|
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