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Abstrat

Entringer, Jakson, and Shatz onjetured in 1974 that every in-

�nite ubefree binary word ontains arbitrarily long squares. In this

paper we show this onjeture is false: there exist in�nite ubefree

binary words avoiding all squares xx with jxj � 4, and the number 4

is best possible. However, the Entringer-Jakson-Shatz onjeture is

true if \ubefree" is replaed with \overlap-free".

1 Introdution

Let � be a �nite nonempty set, alled an alphabet. We onsider �nite and

in�nite words over �. The set of all �nite words is denoted by �

�

. The set

of all in�nite words (that is, maps from N to �) is denoted by �

!

.

A morphism is a map h : �

�

! �

�

suh that h(xy) = h(x)h(y) for all

x; y 2 �

�

. A morphism may be spei�ed by providing the image words h(a)

for all a 2 �. If h : �

�

! �

�

and h(a) = ax for some letter a 2 �, then we

say that h is prolongable on a, and we an then iterate h in�nitely often to

get the �xed point h

!

(a) := axh(x)h

2

(x)h

3

(x) � � � .

A square is a nonempty word of the form xx, as in the English word

murmur. A ube is a nonempty word of the form xxx, as in the English
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sort-of-word shshsh. An overlap is a word of the form axaxa, where x is a

possibly empty word and a is a single letter, as in the English word alfalfa.

It is well-known and easily proved that every word of length 4 or more

over a two-letter alphabet ontains a square as a subword. However, Thue

proved in 1906 [4℄ that there exist in�nite words over a three-letter alphabet

that ontain no squares; suh words are said to avoid squares or be squarefree.

Thue also proved that the word �

!

(0) = 0110100110010110 � � � is overlap-free

(and hene ubefree); here � is the morphism sending 0! 01 and 1! 10.

Entringer, Jakson, and Shatz [2℄ proved that while squares annot be

avoided over a two-letter alphabet, arbitrarily long squares an. More pre-

isely, they proved that there exist in�nite binary words with no squares of

length � 3, and that the number 3 is best possible. Later, this result was

improved by Fraenkel and Simpson [3℄, who proved that there exist in�nite

binary words where the only squares are 00, 11, and 0101.

Entringer, Jakson, and Shatz onjetured in 1974 that any in�nite ube-

free word over f0; 1g ontains arbitrarily long squares [2, Conjeture B, p.

163℄. In this paper we show that this onjeture is false; there exist in�nite

ubefree binary words with no squares xx with jxj � 4. The number 4 is best

possible. Further, we show that the Entringer-Jakson-Shatz onjeture is

true if the word \ubefree" is replaed with \overlap-free".

2 A ubefree word without arbitrarily long

squares

In this setion we disprove the onjeture of Entringer, Jakson, and Shatz.

First we prove the following result.

Theorem 1 There is a squarefree in�nite word over f0; 1; 2; 3g with no o-

urrenes of the subwords 12, 13, 21, 32, 231, or 10302.

Proof. Let the morphism h be de�ned by

0 ! 0310201023

1 ! 0310230102

2 ! 0201031023

3 ! 0203010201

Then we laim the �xed point h

!

(0) has the desired properties.

First, we laim that if w 2 f0; 1; 2; 3g

�

then h(w) has no ourrenes of

12, 13, 21, 32, 231, or 10302. For if any of these words our as subwords of
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h(w), they must our within some h(a) or straddling the boundary between

h(a) and h(b), for some single letters a; b. They do not; this easy veri�ation

is left to the reader.

Next, we prove that if w is any squarefree word over f0; 1; 2; 3g having no

ourrenes of 12, 13, 21, or 32, then h(w) is squarefree.

We argue by ontradition. Let w = a

1

a

2

� � � a

n

be a squarefree string suh

that h(w) ontains a square, i.e., h(w) = xyyz for some x; z 2 f0; 1; 2; 3g

�

,

y 2 f0; 1; 2; 3g

+

. Without loss of generality, assume that w is a shortest suh

string, so that 0 � jxj; jzj < 10.

Case 1: jyj � 20. In this ase we an take jwj � 5. To verify that

h(w) is squarefree, it therefore suÆes to hek eah of the 49 possible words

w 2 f0; 1; 2; 3g

5

to ensure that h(w) is squarefree in eah ase.

Case 2: jyj > 20. First, we establish the following result.

Lemma 2 (a) Suppose h(ab) = th()u for some letters a; b;  2 f0; 1; 2; 3g

and strings t; u 2 f0; 1; 2; 3g

�

. Then this inlusion is trivial (that is,

t = � or u = �) or u is not a pre�x of h(d) for any d 2 f0; 1; 2; 3g.

(b) Suppose there exist letters a; b;  and strings s; t; u; v suh that h(a) =

st, h(b) = uv, and h() = sv. Then either a =  or b = .

Proof.

(a) This an be veri�ed with a short omputation. In fat, the only a; b; 

for whih the equality h(ab) = th()u holds nontrivially is h(31) =

th(2)u, and in this ase t = 020301, u = 0102, so u is not a pre�x of

any h(d).

(b) This an also be veri�ed with a short omputation. If jsj � 6, then no

two distint letters share a pre�x of length 6. If jsj � 5, then jtj � 5,

and no two distint letters share a suÆx of length 5.

For i = 1; 2; : : : ; n de�ne A

i

= h(a

i

). Then if h(w) = xyyz, we an write

h(w) = A

1

A

2

� � �A

n

= A

0

1

A

00

1

A

2

� � �A

j�1

A

0

j

A

00

j

A

j+1

� � �A

n�1

A

0

n

A

00

n
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where

A

1

= A

0

1

A

00

1

A

j

= A

0

j

A

00

j

A

n

= A

0

n

A

00

n

x = A

0

1

y = A

00

1

A

2

� � �A

j�1

A

0

j

= A

00

j

A

j+1

� � �A

n�1

A

0

n

z = A

00

n

;

where jA

00

1

j; jA

00

j

j > 0. See Figure 1.
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1
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j�1
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j+1
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n�1
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Figure 1: The string xyyz within h(w)

If jA

00

1

j > jA

00

j

j, thenA

j+1

= h(a

j+1

) is a subword of A

00

1

A

2

, hene a subword

of A

1

A

2

= h(a

1

a

2

). Thus we an write A

j+2

= A

0

j+2

A

00

j+2

with

A

00

1

A

2

= A

00

j

A

j+1

A

0

j+2

:

See Figure 2.
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j�1

Figure 2: The ase jA

00

1

j > jA

00

j

j

But then, by Lemma 2 (a), either jA

00

j

j = 0, or jA

00

1

j = jA

00

j

j, or A

0

j+2

is a

not a pre�x of any h(d). All three onlusions are impossible.

If jA

00

1

j < jA

00

j

j, then A

2

= h(a

2

) is a subword of A

00

j

A

j+1

, hene a subword

of A

j

A

j+1

= h(a

j

a

j+1

). Thus we an write A

3

= A

0

3

A

00

3

with

A

00

1

A

2

A

0

3

= A

00

j

A

j+1

:

See Figure 3.
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n�1

A
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A
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A
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1
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0

n

A

0
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3
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y =

y =

Figure 3: The ase jA

00

1

j < jA

00

j

j

By Lemma 2 (a), either jA

00

1

j = 0 or jA

00

1

j = jA

00

j

j or A

0

3

is not a pre�x of

any h(d). Again, all three onlusions are impossible.

Therefore jA

00

1

j = jA

00

j

j. Hene A

00

1

= A

00

j

, A

2

= A

j+1

, : : :, A

j�1

= A

n�1

,

and A

0

j

= A

0

n

. Sine h is injetive, we have a

2

= a

j+1

; : : : ; a

j�1

= a

n�1

.

It also follows that jyj is divisible by 10 and A

j

= A

0

j

A

00

j

= A

0

n

A

00

1

. But

by Lemma 2 (b), either (1) a

j

= a

n

or (2) a

j

= a

1

. In the �rst ase,

a

2

� � � a

j�1

a

j

= a

j+1

� � � a

n�1

a

n

, so w ontains the square (a

2

� � � a

j�1

a

j

)

2

, a

ontradition. In the seond ase, a

1

� � � a

j�1

= a

j

a

j+1

� � � a

n�1

, so w ontains

the square (a

1

� � � a

j�1

)

2

, a ontradition.

It now follows that the in�nite word

h

!

(0) = 03102010230203010201031023010203102010230201031023 � � �

is squarefree and ontains no ourrenes of 12, 13, 21, 32, 231, or 10302.

Theorem 3 Let w be any in�nite word satisfying the onditions of Theo-

rem 1. De�ne a morphism g by

0 ! 010011

1 ! 010110

2 ! 011001

3 ! 011010

Then g(w) is a ubefree word ontaining no squares xx with jxj � 4.

Before we begin the proof, we remark that all the words 12, 13, 21, 32,

231, 10302 must indeed be avoided, beause

g(12) ontains the squares (0110)

2

; (1100)

2

; (1001)

2

g(13) ontains the square (0110)

2

g(21) ontains the ube (01)

3

g(32) ontains the square (1001)

2

g(231) ontains the square (10010110)

2

g(10302) ontains the square (100100110110)

2

:
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Proof. The proof parallels the proof of Theorem 1. Let w = a

1

a

2

� � � a

n

be a

squarefree string, with no ourrenes of 12, 13, 21, 32, 231, or 10302. We �rst

establish that if g(w) = xyyz for some x; z 2 f0; 1; 2; 3g

�

, y 2 f0; 1; 2; 3g

+

,

then jyj � 3. Without loss of generality, assume w is a shortest suh string,

so 0 � jxj; jzj < 6.

Case 1: jyj � 12. In this ase we an take jwj � 5. To verify that g(w)

ontains no squares yy with jyj � 4, it suÆes to hek eah of the 41 possible

words w 2 f0; 1; 2; 3g

5

.

Case 2: jyj > 12. First, we establish the analogue of Lemma 2.

Lemma 4 (a) Suppose g(ab) = tg()u for some letters a; b;  2 f0; 1; 2; 3g

and strings t; u 2 f0; 1; 2; 3g

�

. Then this inlusion is trivial (that is,

t = � or u = �) or u is not a pre�x of g(d) for any d 2 f0; 1; 2; 3g.

(b) Suppose there exist letters a; b;  and strings s; t; u; v suh that g(a) = st,

g(b) = uv, and g() = sv. Then either a =  or b = , or a = 2, b = 1,

 = 3, s = 0110, t = 01, u = 0101, v = 10.

Proof.

(a) This an be veri�ed with a short omputation. The only a; b;  for

whih g(ab) = tg()u holds nontrivially are

g(01) = 010 g(3) 110

g(10) = 01 g(2) 0011

g(23) = 0110 g(1) 10:

But none of 110, 0011, 10 are pre�xes of any g(d).

(b) If jsj � 5 then no two distint letters share a pre�x of length 5. If

jsj � 3 then jtj � 3, and no two distint letters share a suÆx of length

3. Hene jsj = 4, jtj = 2. But only g(2) and g(3) share a pre�x of

length 4, and only g(1) and g(3) share a suÆx of length 2.

The rest of the proof is exatly parallel to the proof of Theorem 1, with

the following exeption. When we get to the �nal ase, where jyj is divisible

by 6, we an use Lemma 4 to rule out every ase exept where x = 0101,

z = 01, a

1

= 1, a

j

= 3, and a

n

= 2. Thus w = 1�3�2 for some string

� 2 f0; 1; 2; 3g

�

. This speial ase is ruled out by the following lemma:
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Lemma 5 Suppose � 2 f0; 1; 2; 3g

�

, and let w = 1�3�2. Then either w

ontains a square, or w ontains an ourrene of one of the subwords 12,

13, 21, 32, 231, or 10302.

Proof. This an be veri�ed by heking (a) all strings w with jwj � 4, and

(b) all strings of the form w = abw

0

de, where a; b; ; d; e 2 f0; 1; 2; 3g and

w

0

2 f0; 1; 2; 3g

�

. (Here w

0

may be treated as an indeterminate.)

It now remains to show that if w is squarefree and ontains no ourrene

of 12, 13, 21, 32, 231, or 10302, then g(w) is ubefree. If g(w) ontains a ube

yyy, then it ontains a square yy, and from what preedes we know jyj � 3.

It therefore suÆes to show that g(w) ontains no ourene of 0

3

, 1

3

, (01)

3

,

(10)

3

, (001)

3

, (010)

3

, (011)

3

, (100)

3

, (101)

3

, (110)

3

. The longest suh string

is of length 9, so it suÆes to examine the 16 possibilities for g(w) where

jwj = 3. This is left to the reader.

The proof of Theorem 3 is now omplete.

Corollary 6 If g and h are de�ned as above, then

g(h

!

(0)) = 010011011010010110010011011001010011010110010011011001011010 � � �

is ubefree, and avoids all squares xx with jxj � 4.

3 The onstant 4 is best possible

It is natural to wonder if the onstant 4 in Corollary 6 an be improved. It

annot, as the following theorem shows.

Theorem 7 Every binary word of length � 30 ontains a ube or a square

xx with jxj � 3.

Proof. This may be proved purely mehanially. More generally, let

P � �

�

be a set of subwords to be avoided. We reate and traverse a ertain

tree T , as follows. The root of the tree is labeled �. If a node is labeled x and

ontains no subword in P , then it has hildren labeled xa for eah a 2 �;

otherwise it is a leaf of T . This tree is in�nite if and only if there is an in�nite

word avoiding the elements of P .

If T is �nite, then the height of T gives the length l suh that every word

of length l or greater ontains an element of P . The tree an be reated and

traversed using a queue and breadth-�rst searh.

If the set P is symmetri under renaming of the letters|as it is in this

ase|we may further improve the proedure by labeling the root with any
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partiular letter, say 0. When we run this proedure on the statement of

the theorem, we obtain a tree with 289 leaves, the longest being of length

30. The unique string of length 29 starting with 0 and avoiding ubes and

squares xx with jxj � 3 is 00110010100110101100101001100.

4 Overlap-free words ontain arbitrarily long

squares

It is also natural to wonder if a result like Corollary 6 holds if \ubefree" is

replaed with \overlap-free". It does not, as the following result shows.

Theorem 8 Any in�nite overlap-free word over f0; 1g ontains arbitrarily

long squares.

Proof. By [1, Lemma 3℄ we know that if x is an overlap-free in�nite word

over f0; 1g, then there exist a word u 2 f�; 0; 1; 00; 11g and an overlap-free

in�nite word y suh that x = u�(y), where � is the Thue-Morse morphism.

By iterating this theorem, we get that every overlap-free in�nite word must

ontain �

n

(0) for arbitrarily large n; hene ontains arbitrarily long squares.
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