Cubefree Binary Words Avoiding Long Squares

Narad Rampersad, Jeffrey Shallit, and Ming-wei Wang
School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1
CANADA
nrampersad@math.uwaterloo.ca
shallit@graceland.uwaterloo.ca
m2wang@math.uwaterloo.ca

Abstract

Entringer, Jackson, and Schatz conjectured in 1974 that every infinite cubefree binary word contains arbitrarily long squares. In this paper we show this conjecture is false: there exist infinite cubefree binary words avoiding all squares $x x$ with $|x| \geq 4$, and the number 4 is best possible. However, the Entringer-Jackson-Schatz conjecture is true if "cubefree" is replaced with "overlap-free".

1 Introduction

Let Σ be a finite nonempty set, called an alphabet. We consider finite and infinite words over Σ. The set of all finite words is denoted by Σ^{*}. The set of all infinite words (that is, maps from \mathbb{N} to Σ) is denoted by Σ^{ω}.

A morphism is a map $h: \Sigma^{*} \rightarrow \Delta^{*}$ such that $h(x y)=h(x) h(y)$ for all $x, y \in \Sigma^{*}$. A morphism may be specified by providing the image words $h(a)$ for all $a \in \Sigma$. If $h: \Sigma^{*} \rightarrow \Sigma^{*}$ and $h(a)=a x$ for some letter $a \in \Sigma$, then we say that h is prolongable on a, and we can then iterate h infinitely often to get the fixed point $h^{\omega}(a):=a x h(x) h^{2}(x) h^{3}(x) \cdots$.

A square is a nonempty word of the form $x x$, as in the English word murmur. A cube is a nonempty word of the form $x x x$, as in the English
sort-of-word shshsh. An overlap is a word of the form axaxa, where x is a possibly empty word and a is a single letter, as in the English word alfalfa.

It is well-known and easily proved that every word of length 4 or more over a two-letter alphabet contains a square as a subword. However, Thue proved in 1906 [4] that there exist infinite words over a three-letter alphabet that contain no squares; such words are said to avoid squares or be squarefree. Thue also proved that the word $\mu^{\omega}(0)=0110100110010110 \cdots$ is overlap-free (and hence cubefree); here μ is the morphism sending $0 \rightarrow 01$ and $1 \rightarrow 10$.

Entringer, Jackson, and Schatz [2] proved that while squares cannot be avoided over a two-letter alphabet, arbitrarily long squares can. More precisely, they proved that there exist infinite binary words with no squares of length ≥ 3, and that the number 3 is best possible. Later, this result was improved by Fraenkel and Simpson [3], who proved that there exist infinite binary words where the only squares are 00,11 , and 0101 .

Entringer, Jackson, and Schatz conjectured in 1974 that any infinite cubefree word over $\{0,1\}$ contains arbitrarily long squares [2, Conjecture B, p. 163]. In this paper we show that this conjecture is false; there exist infinite cubefree binary words with no squares $x x$ with $|x| \geq 4$. The number 4 is best possible. Further, we show that the Entringer-Jackson-Schatz conjecture is true if the word "cubefree" is replaced with "overlap-free".

2 A cubefree word without arbitrarily long squares

In this section we disprove the conjecture of Entringer, Jackson, and Schatz. First we prove the following result.

Theorem 1 There is a squarefree infinite word over $\{0,1,2,3\}$ with no occurrences of the subwords 12, 13, 21, 32, 231, or 10302.

Proof. Let the morphism h be defined by

$$
\begin{aligned}
& 0 \rightarrow 0310201023 \\
& 1 \rightarrow 0310230102 \\
& 2 \rightarrow 0201031023 \\
& 3 \rightarrow 0203010201
\end{aligned}
$$

Then we claim the fixed point $h^{\omega}(0)$ has the desired properties.
First, we claim that if $w \in\{0,1,2,3\}^{*}$ then $h(w)$ has no occurrences of $12,13,21,32,231$, or 10302 . For if any of these words occur as subwords of
$h(w)$, they must occur within some $h(a)$ or straddling the boundary between $h(a)$ and $h(b)$, for some single letters a, b. They do not; this easy verification is left to the reader.

Next, we prove that if w is any squarefree word over $\{0,1,2,3\}$ having no occurrences of $12,13,21$, or 32 , then $h(w)$ is squarefree.

We argue by contradiction. Let $w=a_{1} a_{2} \cdots a_{n}$ be a squarefree string such that $h(w)$ contains a square, i.e., $h(w)=x y y z$ for some $x, z \in\{0,1,2,3\}^{*}$, $y \in\{0,1,2,3\}^{+}$. Without loss of generality, assume that w is a shortest such string, so that $0 \leq|x|,|z|<10$.

Case 1: $|y| \leq 20$. In this case we can take $|w| \leq 5$. To verify that $h(w)$ is squarefree, it therefore suffices to check each of the 49 possible words $w \in\{0,1,2,3\}^{5}$ to ensure that $h(w)$ is squarefree in each case.

Case 2: $|y|>20$. First, we establish the following result.
Lemma 2 (a) Suppose $h(a b)=t h(c) u$ for some letters $a, b, c \in\{0,1,2,3\}$ and strings $t, u \in\{0,1,2,3\}^{*}$. Then this inclusion is trivial (that is, $t=\epsilon$ or $u=\epsilon$) or u is not a prefix of $h(d)$ for any $d \in\{0,1,2,3\}$.
(b) Suppose there exist letters a, b, c and strings s, t, u, v such that $h(a)=$ $s t, h(b)=u v$, and $h(c)=s v$. Then either $a=c$ or $b=c$.

Proof.

(a) This can be verified with a short computation. In fact, the only a, b, c for which the equality $h(a b)=t h(c) u$ holds nontrivially is $h(31)=$ $t h(2) u$, and in this case $t=020301, u=0102$, so u is not a prefix of any $h(d)$.
(b) This can also be verified with a short computation. If $|s| \geq 6$, then no two distinct letters share a prefix of length 6 . If $|s| \leq 5$, then $|t| \geq 5$, and no two distinct letters share a suffix of length 5 .

For $i=1,2, \ldots, n$ define $A_{i}=h\left(a_{i}\right)$. Then if $h(w)=x y y z$, we can write

$$
h(w)=A_{1} A_{2} \cdots A_{n}=A_{1}^{\prime} A_{1}^{\prime \prime} A_{2} \cdots A_{j-1} A_{j}^{\prime} A_{j}^{\prime \prime} A_{j+1} \cdots A_{n-1} A_{n}^{\prime} A_{n}^{\prime \prime}
$$

where

$$
\begin{aligned}
A_{1} & =A_{1}^{\prime} A_{1}^{\prime \prime} \\
A_{j} & =A_{j}^{\prime} A_{j}^{\prime \prime} \\
A_{n} & =A_{n}^{\prime} A_{n}^{\prime \prime} \\
x & =A_{1}^{\prime} \\
y & =A_{1}^{\prime \prime} A_{2} \cdots A_{j-1} A_{j}^{\prime}=A_{j}^{\prime \prime} A_{j+1} \cdots A_{n-1} A_{n}^{\prime} \\
z & =A_{n}^{\prime \prime},
\end{aligned}
$$

where $\left|A_{1}^{\prime \prime}\right|,\left|A_{j}^{\prime \prime}\right|>0$. See Figure 1.

Figure 1: The string $x y y z$ within $h(w)$
If $\left|A_{1}^{\prime \prime}\right|>\left|A_{j}^{\prime \prime}\right|$, then $A_{j+1}=h\left(a_{j+1}\right)$ is a subword of $A_{1}^{\prime \prime} A_{2}$, hence a subword of $A_{1} A_{2}=h\left(a_{1} a_{2}\right)$. Thus we can write $A_{j+2}=A_{j+2}^{\prime} A_{j+2}^{\prime \prime}$ with

$$
A_{1}^{\prime \prime} A_{2}=A_{j}^{\prime \prime} A_{j+1} A_{j+2}^{\prime} .
$$

See Figure 2.

$y=$	$A_{1}^{\prime \prime}$	A_{2}			A_{j}^{\prime}
$y=$	$A_{j}^{\prime \prime}$	A_{j+1}	$A^{\prime}{ }^{\prime}$	A_{n-1}	A_{n}^{\prime}

Figure 2: The case $\left|A_{1}^{\prime \prime}\right|>\left|A_{j}^{\prime \prime}\right|$
But then, by Lemma 2 (a), either $\left|A_{j}^{\prime \prime}\right|=0$, or $\left|A_{1}^{\prime \prime}\right|=\left|A_{j}^{\prime \prime}\right|$, or A_{j+2}^{\prime} is a not a prefix of any $h(d)$. All three conclusions are impossible.

If $\left|A_{1}^{\prime \prime}\right|<\left|A_{j}^{\prime \prime}\right|$, then $A_{2}=h\left(a_{2}\right)$ is a subword of $A_{j}^{\prime \prime} A_{j+1}$, hence a subword of $A_{j} A_{j+1}=h\left(a_{j} a_{j+1}\right)$. Thus we can write $A_{3}=A_{3}^{\prime} A_{3}^{\prime \prime}$ with

$$
A_{1}^{\prime \prime} A_{2} A_{3}^{\prime}=A_{j}^{\prime \prime} A_{j+1}
$$

See Figure 3.

Figure 3: The case $\left|A_{1}^{\prime \prime}\right|<\left|A_{j}^{\prime \prime}\right|$
By Lemma 2 (a), either $\left|A_{1}^{\prime \prime}\right|=0$ or $\left|A_{1}^{\prime \prime}\right|=\left|A_{j}^{\prime \prime}\right|$ or A_{3}^{\prime} is not a prefix of any $h(d)$. Again, all three conclusions are impossible.

Therefore $\left|A_{1}^{\prime \prime}\right|=\left|A_{j}^{\prime \prime}\right|$. Hence $A_{1}^{\prime \prime}=A_{j}^{\prime \prime}, A_{2}=A_{j+1}, \ldots, A_{j-1}=A_{n-1}$, and $A_{j}^{\prime}=A_{n}^{\prime}$. Since h is injective, we have $a_{2}=a_{j+1}, \ldots, a_{j-1}=a_{n-1}$. It also follows that $|y|$ is divisible by 10 and $A_{j}=A_{j}^{\prime} A_{j}^{\prime \prime}=A_{n}^{\prime} A_{1}^{\prime \prime}$. But by Lemma 2 (b), either (1) $a_{j}=a_{n}$ or (2) $a_{j}=a_{1}$. In the first case, $a_{2} \cdots a_{j-1} a_{j}=a_{j+1} \cdots a_{n-1} a_{n}$, so w contains the square $\left(a_{2} \cdots a_{j-1} a_{j}\right)^{2}$, a contradiction. In the second case, $a_{1} \cdots a_{j-1}=a_{j} a_{j+1} \cdots a_{n-1}$, so w contains the square $\left(a_{1} \cdots a_{j-1}\right)^{2}$, a contradiction.

It now follows that the infinite word

$$
h^{\omega}(0)=03102010230203010201031023010203102010230201031023 \cdots
$$

is squarefree and contains no occurrences of $12,13,21,32,231$, or 10302 .

Theorem 3 Let \mathbf{w} be any infinite word satisfying the conditions of Theorem 1. Define a morphism g by

$$
\begin{aligned}
& 0 \rightarrow 010011 \\
& 1 \rightarrow 010110 \\
& 2 \rightarrow 011001 \\
& 3 \rightarrow 011010
\end{aligned}
$$

Then $g(\mathbf{w})$ is a cubefree word containing no squares $x x$ with $|x| \geq 4$.
Before we begin the proof, we remark that all the words $12,13,21,32$, 231, 10302 must indeed be avoided, because

$g(12)$	contains the squares $(0110)^{2},(1100)^{2},(1001)^{2}$
$g(13)$	contains the square $(0110)^{2}$
$g(21)$	contains the cube $(01)^{3}$
$g(32)$	contains the square $(1001)^{2}$
$g(231)$	contains the square $(10010110)^{2}$
$g(10302)$	contains the square $(100100110110)^{2}$.

Proof. The proof parallels the proof of Theorem 1. Let $w=a_{1} a_{2} \cdots a_{n}$ be a squarefree string, with no occurrences of $12,13,21,32,231$, or 10302 . We first establish that if $g(w)=x y y z$ for some $x, z \in\{0,1,2,3\}^{*}, y \in\{0,1,2,3\}^{+}$, then $|y| \leq 3$. Without loss of generality, assume w is a shortest such string, so $0 \leq|x|,|z|<6$.

Case 1: $|y| \leq 12$. In this case we can take $|w| \leq 5$. To verify that $g(w)$ contains no squares $y y$ with $|y| \geq 4$, it suffices to check each of the 41 possible words $w \in\{0,1,2,3\}^{5}$.

Case 2: $|y|>12$. First, we establish the analogue of Lemma 2.
Lemma 4 (a) Suppose $g(a b)=t g(c) u$ for some letters $a, b, c \in\{0,1,2,3\}$ and strings $t, u \in\{0,1,2,3\}^{*}$. Then this inclusion is trivial (that is, $t=\epsilon$ or $u=\epsilon$) or u is not a prefix of $g(d)$ for any $d \in\{0,1,2,3\}$.
(b) Suppose there exist letters a, b, c and strings s, t, u, v such that $g(a)=s t$, $g(b)=u v$, and $g(c)=s v$. Then either $a=c$ or $b=c$, or $a=2, b=1$, $c=3, s=0110, t=01, u=0101, v=10$.

Proof.

(a) This can be verified with a short computation. The only a, b, c for which $g(a b)=t g(c) u$ holds nontrivially are

$$
\begin{aligned}
g(01) & =010 g(3) 110 \\
g(10) & =01 g(2) 0011 \\
g(23) & =0110 g(1) 10
\end{aligned}
$$

But none of $110,0011,10$ are prefixes of any $g(d)$.
(b) If $|s| \geq 5$ then no two distinct letters share a prefix of length 5 . If $|s| \leq 3$ then $|t| \geq 3$, and no two distinct letters share a suffix of length 3. Hence $|s|=4,|t|=2$. But only $g(2)$ and $g(3)$ share a prefix of length 4 , and only $g(1)$ and $g(3)$ share a suffix of length 2 .

The rest of the proof is exactly parallel to the proof of Theorem 1, with the following exception. When we get to the final case, where $|y|$ is divisible by 6 , we can use Lemma 4 to rule out every case except where $x=0101$, $z=01, a_{1}=1, a_{j}=3$, and $a_{n}=2$. Thus $w=1 \alpha 3 \alpha 2$ for some string $\alpha \in\{0,1,2,3\}^{*}$. This special case is ruled out by the following lemma:

Lemma 5 Suppose $\alpha \in\{0,1,2,3\}^{*}$, and let $w=1 \alpha 3 \alpha 2$. Then either w contains a square, or w contains an occurrence of one of the subwords 12 , 13, 21, 32, 231, or 10302.

Proof. This can be verified by checking (a) all strings w with $|w| \leq 4$, and (b) all strings of the form $w=a b c w^{\prime} d e$, where $a, b, c, d, e \in\{0,1,2,3\}$ and $w^{\prime} \in\{0,1,2,3\}^{*}$. (Here w^{\prime} may be treated as an indeterminate.)

It now remains to show that if w is squarefree and contains no occurrence of $12,13,21,32,231$, or 10302 , then $g(w)$ is cubefree. If $g(w)$ contains a cube $y y y$, then it contains a square $y y$, and from what precedes we know $|y| \leq 3$. It therefore suffices to show that $g(w)$ contains no occurence of $0^{3}, 1^{3},(01)^{3}$, $(10)^{3},(001)^{3},(010)^{3},(011)^{3},(100)^{3},(101)^{3},(110)^{3}$. The longest such string is of length 9 , so it suffices to examine the 16 possibilities for $g(w)$ where $|w|=3$. This is left to the reader.

The proof of Theorem 3 is now complete.

Corollary 6 If g and h are defined as above, then
$g\left(h^{\omega}(0)\right)=010011011010010110010011011001010011010110010011011001011010 \cdots$
is cubefree, and avoids all squares $x x$ with $|x| \geq 4$.

3 The constant 4 is best possible

It is natural to wonder if the constant 4 in Corollary 6 can be improved. It cannot, as the following theorem shows.

Theorem 7 Every binary word of length ≥ 30 contains a cube or a square xx with $|x| \geq 3$.

Proof. This may be proved purely mechanically. More generally, let $P \subset \Sigma^{*}$ be a set of subwords to be avoided. We create and traverse a certain tree T, as follows. The root of the tree is labeled ϵ. If a node is labeled x and contains no subword in P, then it has children labeled $x a$ for each $a \in \Sigma$; otherwise it is a leaf of T. This tree is infinite if and only if there is an infinite word avoiding the elements of P.

If T is finite, then the height of T gives the length l such that every word of length l or greater contains an element of P. The tree can be created and traversed using a queue and breadth-first search.

If the set P is symmetric under renaming of the letters-as it is in this case-we may further improve the procedure by labeling the root with any
particular letter, say 0 . When we run this procedure on the statement of the theorem, we obtain a tree with 289 leaves, the longest being of length 30. The unique string of length 29 starting with 0 and avoiding cubes and squares $x x$ with $|x| \geq 3$ is 00110010100110101100101001100 .

4 Overlap-free words contain arbitrarily long squares

It is also natural to wonder if a result like Corollary 6 holds if "cubefree" is replaced with "overlap-free". It does not, as the following result shows.

Theorem 8 Any infinite overlap-free word over $\{0,1\}$ contains arbitrarily long squares.

Proof. By [1, Lemma 3] we know that if \mathbf{x} is an overlap-free infinite word over $\{0,1\}$, then there exist a word $u \in\{\epsilon, 0,1,00,11\}$ and an overlap-free infinite word \mathbf{y} such that $\mathbf{x}=u \mu(\mathbf{y})$, where μ is the Thue-Morse morphism. By iterating this theorem, we get that every overlap-free infinite word must contain $\mu^{n}(0)$ for arbitrarily large n; hence contains arbitrarily long squares.

5 Acknowledgments

We thank Jean-Paul Allouche for helpful discussions.

References

[1] J.-P. Allouche, J. Currie, and J. Shallit. Extremal infinite overlap-free binary words. Electronic J. Combinatorics 5 (1998), \#R27.
[2] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences. J. Combin. Theory. Ser. A 16 (1974), 159-164.
[3] A. S. Fraenkel and J. Simpson. How many squares must a binary sequence contain? Electronic J. Combinatorics 2 (1995), \#R2.
[4] A. Thue. Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1-22. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 139158.

