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Abstrat

We onsider sets of oin denominations whih permit hange to be made using as

few oins as possible, on average, and explain why the United States should adopt an

18¢ piee.

1 Introdution

Most businesses in the United States urrently make hange using four di�erent types of

oins: 1¢ (ent),

1

5¢ (nikel), 10¢ (dime), and 25¢ (quarter). For people who make hange

on a daily basis, it is desirable to make hange in as eÆient a manner as possible. One

riterion for eÆieny is to use the smallest number of oins. For example, to make hange

for 30¢, one ould, at least in priniple, give a ustomer 30 1-ent oins, but most would

probably prefer reeiving a quarter and a nikel.

Formally, we an de�ne the optimal representation problem as follows: given a set of D

integer denominations e

1

< e

2

< � � � < e

D

and an integer N � 0, we wish to express N as

a non-negative integer linear ombination N =

P

1�i�D

a

i

e

i

suh that the number of oins

S =

P

1�i�D

a

i

is minimized. In order that every number atually have a representation, we

demand that e

1

= 1. If (a

1

; a

2

; : : : ; a

D

) is the D-tuple that minimizes S, then we say it is an

optimal representation, and we de�ne opt(N ; e

1

; e

2

; : : : ; e

D

) := S.

The optimal denomination problem is to �nd denominations that minimize the average

ost of making hange. We assume that every amount of hange between 0¢ and 99¢ is

equally likely.

2

We then ask, what hoie of D denominations minimizes the average number

�

\What this ountry needs is a really good �ve-ent igar." T. R. Marshall (US Vie-President), New

York Tribune, January 4, 1920.

1

Informally, a 1-ent oin is usually alled a \penny", but this usage is frowned upon by numismatists.

2

This assumption is probably inaurate for several reasons, not least being the fat that many items

have pries that end in the digit 9. Also, Benford's law may play a role; see Raimi [7℄.
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of oins needed to make hange? More formally, solving the optimal denomination problem

for D denominations up to the limit L means determining the denominations e

1

; e

2

; : : : ; e

D

whih minimize

ost(L; e

1

; e

2

; : : : ; e

L

) :=

1

L

X

0�i<L

opt(i; e

1

; e

2

; : : : ; e

D

):

For the urrent system, where (e

1

; e

2

; e

3

; e

4

) = (1; 5; 10; 25), a simple omputation de-

termines that ost(100; 1; 5; 10; 25) = 4:7. In other words, on average a hange-maker must

return 4:7 oins with every transation.

Can we do better? Indeed we an. There are exatly two sets of four denominations that

minimize ost(100; e

1

; e

2

; e

3

; e

4

); namely, (1; 5; 18; 25) and (1; 5; 18; 29). Both have an average

ost of 3:89. We would therefore gain about 17% eÆieny in hange-making by swithing

to either of these four-oin systems. The �rst system, (1; 5; 18; 25), possesses the notable

advantage that we only need make one small alteration in the urrent system: replae the

urrent 10¢ oin with a new 18¢ oin. This explains the title of this artile.

Figure 1 gives the optimal denominations of size D for 1 � D � 7, and their assoiated

osts.

D (e

1

; : : : ; e

D

) ost(100; e

1

; : : : ; e

D

)

1 (1) 49.5

2 (1; 10) 9

(1; 11)

3 (1; 12; 19) 5.15

4 (1; 5; 18; 25) 3.89

(1; 5; 18; 29)

5 (1; 5; 16; 23; 33) 3.29

6 (1; 4; 6; 21; 30; 37) 2.92

(1; 5; 8; 20; 31; 33)

7 (1; 4; 9; 11; 26; 38; 44) 2.65

Figure 1: Optimal denominations for hange-making for 1 � D � 7 denominations

Although the system (1; 5; 18; 25) would be superior to the urrent (1; 5; 10; 25) for hange-

making, it may be diÆult to onvine people to aept the removal of the popular dime.

Thus it may be worthwhile to onsider a di�erent question: what single denomination ould

we add to (1; 5; 10; 25) to ahieve the maximum improvement in ost? The unique answer

is 32¢; this improves ost(100; 1; 5; 10; 25) = 4:7 to ost(100; 1; 5; 10; 25; 32) = 3:46. If we

also allow the infrequently-used 50¢ piee as a legitimate denomination, then the maximum

improvement omes from adding an 18¢ piee; this improves ost(100; 1; 5; 10; 25; 50) = 4:2

to ost(100; 1; 5; 10; 18; 25; 50) = 3:18. Yet another reason to add an 18¢ piee to US oinage!

Other ountries provide di�erent problems. In Canada, the oin denominations urrently

in wide irulation are 1¢, 5¢, 10¢, 25¢, 100¢ (alled a \loonie" for the loon on the reverse),

and 200¢ (alled a \toonie"). The smallest denomination of paper money in wide irulation
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is a $5 bill. Assuming eah amount of hange between 0¢ and 499¢ is equally likely, the av-

erage ost of making hange in Canada is ost(500; 1; 5; 10; 25; 100; 200) = 5:9. This an be

best improved by adding an 83¢ oin; we have ost(500; 1; 5; 10; 25; 83; 100; 200) = 4:578. On

the other hand, the new system of Euros introdued in Europe provides oins of denomination

:01; :02; :05; :1; :2; :5; 1, and 2 Euros. For this system we have ost(500; 1; 2; 5; 10; 20; 50; 100; 200) =

4:6. This an be best improved (to average ost 3:92) by adding a oin of denomination 1:33

or 1:37 Euros.

2 Greedy methods for hange-making

One nie feature of the urrent set of US denominations (1; 5; 10; 25) is that the greedy

algorithm determines the representation with the minimum number of oins. By the greedy

algorithm, I mean the following proedure: given a number N to be represented as a non-

negative integer linear ombination of denominations e

1

< e

2

< � � � < e

D

, take as many opies

a

D

of the largest denomination e

D

as possible, so that a

D

e

D

� N . Then set N := N � a

D

e

D

and ontinue the proedure with the remaining smaller denominations. Use of the greedy

algorithm provides a simple, easily-remembered method for making hange. Not all sets of

denominations have the property that the greedy method always determines the optimal

representation. For example, with denominations (1; 7; 10) the greedy algorithm gives the

representation 14 = 10 + 1 + 1 + 1 + 1, whereas 7 + 7 uses fewer oins.

Unfortunately, none of the optimal sets of denominations in Figure 1 for D � 3 give

optimal representations when used greedily. For example, when we try to greedily make

hange for 24¢ using the system (1; 12; 19), we get 19 + 1 + 1 + 1 + 1 + 1, a far ry from the

optimal representation 12 + 12.

This suggests onsidering a variation on the optimal denomination problem, where ost

is replaed by the analogous funtion gost, and we ount only the ost of greedy represen-

tations. For the urrent system we still have gost(100; 1; 5; 10; 25) = 4:7. Figure 2 displays

the results for optimal sets of denominations. An asterisk denotes an optimal set for whih

the greedy representation is always an optimal representation.

We also might onsider what single denomination ould be added to the urrent US

system (1; 5; 10; 25) to best improve the greedy ost. It turns out that adding either a 2¢-

piee or a 3¢-piee improves gost(100;�) from 4.7 to 3.9, and this is the best possible 1-oin

improvement. It is interesting to note that the US atually had a 2¢-piee from 1864 to 1873,

and two di�erent 3¢-piees: one made in silver from 1851 to 1873, and one made in nikel

from 1865 to 1889.

3 Computational questions

So far we have foused on systems partiular to the US, Canada, and Europe, but a good

mathematiian will want more general results. Let us examine the omputational omplexity

of the problems we have studied, and some related ones.

1. Suppose we are given an amount of hange to make, say N , and a system of denomi-
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D (e

1

; : : : ; e

D

) gost(100; e

1

; : : : ; e

D

)

1 (1) � 49.5

2 (1; 10) � 9

(1; 11) �

3 (1; 5; 22) � 5.26

(1; 5; 23) �

4 (1; 3; 11; 37) � 4.1

(1; 3; 11; 38) �

5 (1; 3; 7; 16; 40) 3.46

(1; 3; 7; 16; 41)

(1; 3; 7; 18; 44) �

(1; 3; 7; 18; 45)

(1; 3; 8; 20; 44) �

(1; 3; 8; 20; 45)

6 (1; 2; 5; 11; 25; 62) 3.13

(1; 2; 5; 11; 25; 63)

(1; 2; 5; 13; 29; 64)

(1; 2; 5; 13; 29; 65)

7 (1; 2; 5; 8; 17; 27; 63) 2.86

.

.

.

(27 other sets omitted)

.

.

.

(1; 2; 5; 8; 19; 30; 63) �

(1; 2; 5; 8; 19; 30; 64)

(1; 2; 5; 8; 19; 30; 66) �

(1; 2; 5; 8; 19; 30; 67)

Figure 2: Optimal denominations for greedy hange-making

nations, say 1 = e

1

< e

2

< � � � < e

D

. How easy is it to ompute opt(N ; e

1

; e

2

; : : : ; e

D

) or �nd

an optimal representation N =

P

1�i�D

a

i

e

i

, i.e., one whih minimizes

P

1�i�D

a

i

?

The answer depends on how N and the e

i

are written down. If they are written in

ordinary deimal notation, or in binary, then there is no fast algorithm known to solve this

problem. In fat, it follows easily from results of Lueker [5℄ that this problem is NP-hard;

roughly speaking this means it is at least as hard as many famous ombinatorial problems,

suh as the travelling salesman problem, for whih no polynomial-time algorithm is urrently

known.

If, on the other hand, N and the e

i

are represented in unary, then a simple dynami

programming algorithm (e.g., [10℄) solves the optimal representation problem in polynomial

time.

2. Suppose we are given N and a system of denominations. How easy is it to determine

if the greedy representation for N is atually optimal? Kozen and Zaks [4℄ have shown that
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this problem is o-NP-omplete if the data is provided in ordinary deimal, or binary. This

strongly suggests there is no eÆient algorithm for this problem.

3. Suppose we are given a system of denominations. How easy is it to deide whether the

greedy algorithm always produes an optimal representation, for all values of N? It turns

out that this problem an be solved eÆiently; this surprising result is due to Pearson [6℄.

Sine Pearson's result appeared only in an obsure tehnial report, we give a few details.

Suppose the greedy algorithm for the system of denominations 1 = e

1

< e

2

< � � � < e

D

is

not always optimal. Pearson showed there exist integers i; j with 1 � j � i < D suh that

the minimal representation of the minimal ounterexample is of the form

0 � e

1

+ 0 � e

2

+ � � � + 0 � e

j�1

+ (a

j

+ 1)e

j

+ a

j+1

e

j+1

+ � � �+ a

D

e

D

;

where the greedy representation of e

i+1

� 1 is

a

1

e

1

+ a

2

e

2

+ � � �+ a

D

e

D

:

This gives the following algorithm for �nding the smallest number suh that the greedy

algorithm fails to be optimal (or 1 if no suh number exists):

PearsonTest(e

1

; e

2

; : : : ; e

D

)

m :=1

for j := 1 to D � 1 do

for i := j to D � 1 do

Let

P

1�i�D

a

i

e

i

be the greedy representation of e

i+1

� 1

a

j

:= a

j

+ 1

for k := 1 to j � 1 do

a

k

:= 0

r :=

P

1�i�D

a

i

e

i

if r < m then

Let

P

1�i�D

b

i

e

i

be the greedy representation of r

if

P

1�i�D

b

i

>

P

1�i�D

a

i

then

m := r

return(m)

(Here the sope of the loops is denoted by indentation.) It is easy to see that this algorithm

performs O(n

3

) arithmeti operations on numbers of size O(e

D

).

4. Suppose we are given N and a system of denominations. How easy is it to ompute

ost(N ; e

1

; e

2

; : : : ; e

D

)? Sine

opt(N ; e

1

; e

2

; : : : ; e

D

) = (N + 1)ost(N + 1; e

1

; e

2

; : : : ; e

D

) �Nost(N ; e

1

; e

2

; : : : ; e

D

);

any algorithm to ompute ost would also provide an algorithm to ompute opt. It follows

that omputing ost is NP-hard under Turing redutions.
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5. Suppose we are given L and D and want to �nd an optimal set of denominations that

minimizes the average ost of making hange for all amounts from 0 to L� 1? I don't know

the omputational omplexity of this problem, but it seems quite hard. The data presented

in Figure 1 were omputed using a brute-fore enumeration of possibilities, but with some

triks to speed up the omputation.

6. A related problem is the Frobenius problem. Here we are given a set of D denomina-

tions e

1

< e

2

< � � � < e

D

with gd(e

1

; e

2

; : : : ; e

D

) = 1, and we want to �nd the largest integer

N whih annot be expressed in the form

P

1�i�D

a

i

e

i

with the a

i

non-negative integers.

There is a huge literature on this problem (see, for example, Guy [2, pp. 113{114℄), but only

reently have researhers onsidered its omputational omplexity. Kannan [3℄ gave an al-

gorithm for the Frobenius problem that runs in polynomial time if the dimension D is �xed.

On the other hand, Ram��rez-Alfons��n [8℄ has shown that the general Frobenius problem is

NP-hard.

7. Another related problem is the postage stamp problem. There are two avors. The

\loal" problem asks, given a set of D denominations 1 = e

1

< e

2

< � � � < e

D

and a bound

h, what is the smallest integer N whih annot be represented in the form N =

P

1�i�D

a

i

e

i

where the a

i

are non-negative integers and

P

1�i�D

a

i

� h? In the \global" version, we are

given D and h and want to �nd the set of denominations that maximizes N . There is a

large literature on these two problems (see Guy [2, pp. 123{127℄), with muh e�ort devoted

to �nding eÆient algorithms for small D.

However, I reently showed [9℄ that the loal postage stamp problem is NP-hard under

Turing redutions, and that there is a polynomial-time algorithm for every �xed D.

4 Asymptoti results

Now we turn to some asymptoti estimates.

Let optost(L;D) denote the minimum value of ost(L; e

1

; e

2

; : : : ; e

D

) over all suitable

values of e

1

; : : : ; e

D

. Can we �nd good upper and lower bounds on optost(L;D)?

One way to �nd an upper bound is as follows: let k = dL

1=D

e, and de�ne e

i

= k

i�1

for

1 � i � D. In this ase, the greedy algorithm always �nds the optimal representation for

any N , and it turns out to be the base-k expansion of N . Letting s

k

(N) denote the sum of

the digits in the base-k expansion of N , we �nd

ost(L; e

1

; e

2

; : : : ; e

D

) = gost(L; e

1

; e

2

; : : : ; e

D

) =

1

L

X

0�i�L�1

s

k

(i):

Hene

optost(L;D) �

1

L

S

dL

1=D

e

(L) (1)

where S

k

(N) :=

P

0�i<N

s

k

(i).

Now the quantity S

k

(N) has a long history; it is known that

S

k

(N) =

k � 1

2 log k

N logN +NF

k

�

logN

log k

�

; (2)
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where F

k

is a ontinuous, nonpositive, nowhere di�erentiable funtion of period 1; see, for

example, [1℄. Combining (1) and (2), we obtain the upper bound

optost(L;D) �

D

2

L

1=D

:

Furthermore, using the identity

S

k

(kN + a) = kS

k

(N) +

k(k � 1)N

2

+ as

k

(N) +

a(a� 1)

2

one an ompute S

k

(N) in time polynomial in the number of digits in k and N . This provides

a fast way to ompute the upper bound (1).

For a lower bound, one may reason as follows: �x a set of D denominations e

1

; e

2

; : : : ; e

D

,

and onsider the number of di�erent D-tuples (a

1

; a

2

; : : : ; a

D

) suh that

P

1�i�D

a

i

� k. A

simple ombinatorial argument shows that this number is

�

D+k

D

�

. Now if

�

D+k

D

�

� L=2, it

follows that for at least L=2 hoies of N , 1 � N � L, any representation for N must use

at least k +1 oins, and hene optost(L;D) �

1

2

(k +1). Now

�

D+k

D

�

�

(k+D)

D

D!

; if D is �xed

and L!1, this gives the lower bound of optost(L;D) = 
(L

1=D

).
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