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Abstra
t

We 
onsider sets of 
oin denominations whi
h permit 
hange to be made using as

few 
oins as possible, on average.

1 Introdu
tion

Most businesses in the United States 
urrently make 
hange using four di�erent types of


oins: 1¢ (
ent),

1

5¢ (ni
kel), 10¢ (dime), and 25¢ (quarter). For people who make 
hange

on a daily basis, it is desirable to make 
hange in as eÆ
ient a manner as possible. One


riterion for eÆ
ien
y is to use the smallest number of 
oins. For example, to make 
hange

for 30¢, one 
ould, at least in prin
iple, give a 
ustomer 30 1-
ent 
oins, but most would

probably prefer re
eiving a quarter and a ni
kel.

Formally, we 
an de�ne the optimal representation problem as follows: given a set of D

integer denominations e

1

< e

2

< � � � < e

D

and an integer N � 0, we wish to express N as

a non-negative integer linear 
ombination N =

P

1�i�D

a

i

e

i

su
h that the number of 
oins

S =

P

1�i�D

a

i

is minimized. In order that every number a
tually have a representation, we

demand that e

1

= 1. If (a

1

; a

2

; : : : ; a

D

) is the D-tuple that minimizes S, then we say it is an

optimal representation, and we de�ne opt(N ; e

1

; e

2

; : : : ; e

D

) := S.

The optimal denomination problem is to �nd denominations that minimize the average


ost of making 
hange. We assume that every amount of 
hange between 0¢ and 99¢ is

equally likely.

2

We then ask, what 
hoi
e of D denominations minimizes the average number

of 
oins needed to make 
hange? More formally, solving the optimal denomination problem

�

\What this 
ountry needs is a really good �ve-
ent 
igar." T. R. Marshall (US Vi
e-President), New

York Tribune, January 4, 1920.

1

Informally, a 1-
ent 
oin is usually 
alled a \penny", but this usage is frowned upon by numismatists.

2

This assumption is probably ina

urate for several reasons, not least being the fa
t that many items

have pri
es that end in the digit 9. Also, Benford's law may play a role; see Raimi [7℄.
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for D denominations up to the limit L means determining the denominations e

1

; e

2

; : : : ; e

D

whi
h minimize


ost(L; e

1

; e

2

; : : : ; e

L

) :=

1

L

X

0�i<L

opt(i; e

1

; e

2

; : : : ; e

D

):

For the 
urrent system, where (e

1

; e

2

; e

3

; e

4

) = (1; 5; 10; 25), a simple 
omputation de-

termines that 
ost(100; 1; 5; 10; 25) = 4:7. In other words, on average a 
hange-maker must

return 4:7 
oins with every transa
tion.

Can we do better? Indeed we 
an. There are exa
tly two sets of four denominations that

minimize 
ost(100; e

1

; e

2

; e

3

; e

4

); namely, (1; 5; 18; 25) and (1; 5; 18; 29). Both have an average


ost of 3:89. We would therefore gain about 17% eÆ
ien
y in 
hange-making by swit
hing

to either of these four-
oin systems. The �rst system, (1; 5; 18; 25), possesses the notable

advantage that we only need make one small alteration in the 
urrent system: repla
e the


urrent 10¢ 
oin with a new 18¢ 
oin. This explains the title of this arti
le.

Figure 1 gives the optimal denominations of size D for 1 � D � 7, and their asso
iated


osts.

D (e

1

; : : : ; e

D

) 
ost(100; e

1

; : : : ; e

D

)

1 (1) 49.5

2 (1; 10) 9

(1; 11)

3 (1; 12; 19) 5.15

4 (1; 5; 18; 25) 3.89

(1; 5; 18; 29)

5 (1; 5; 16; 23; 33) 3.29

6 (1; 4; 6; 21; 30; 37) 2.92

(1; 5; 8; 20; 31; 33)

7 (1; 4; 9; 11; 26; 38; 44) 2.65

Figure 1: Optimal denominations for 
hange-making for 1 � D � 7 denominations

Although the system (1; 5; 18; 25) would be superior to the 
urrent (1; 5; 10; 25) for 
hange-

making, it may be diÆ
ult to 
onvin
e people to a

ept the removal of the popular dime.

Thus it may be worthwhile to 
onsider a di�erent question: what single denomination 
ould

we add to (1; 5; 10; 25) to a
hieve the maximum improvement in 
ost? The unique answer

is 32¢; this improves 
ost(100; 1; 5; 10; 25) = 4:7 to 
ost(100; 1; 5; 10; 25; 32) = 3:46. If we

also allow the infrequently-used 50¢ pie
e as a legitimate denomination, then the maximum

improvement 
omes from adding an 18¢ pie
e; this improves 
ost(100; 1; 5; 10; 25; 50) = 4:2

to 
ost(100; 1; 5; 10; 18; 25; 50) = 3:18. Yet another reason to add an 18¢ pie
e to US 
oinage!

Other 
ountries provide di�erent problems. In Canada, the 
oin denominations 
urrently

in wide 
ir
ulation are 1¢, 5¢, 10¢, 25¢, 100¢ (
alled a \loonie" for the loon on the reverse),

and 200¢ (
alled a \toonie"). The smallest denomination of paper money in wide 
ir
ulation

is a $5 bill. Assuming ea
h amount of 
hange between 0¢ and 499¢ is equally likely, the av-

erage 
ost of making 
hange in Canada is 
ost(500; 1; 5; 10; 25; 100; 200) = 5:9. This 
an be
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best improved by adding an 83¢ 
oin; we have 
ost(500; 1; 5; 10; 25; 83; 100; 200) = 4:578. On

the other hand, the new system of Euros introdu
ed in Europe provides 
oins of denomination

:01; :02; :05; :1; :2; :5; 1, and 2 Euros. For this system we have 
ost(500; 1; 2; 5; 10; 20; 50; 100; 200) =

4:6. This 
an be best improved (to average 
ost 3:92) by adding a 
oin of denomination 1:33

or 1:37 Euros.

2 Greedy methods for 
hange-making

One ni
e feature of the 
urrent set of US denominations (1; 5; 10; 25) is that the greedy

algorithm determines the representation with the minimum number of 
oins. By the greedy

algorithm, I mean the following pro
edure: given a number N to be represented as a non-

negative integer linear 
ombination of denominations e

1

< e

2

< � � � < e

D

, take as many 
opies

a

D

of the largest denomination e

D

as possible, so that a

D

e

D

� N . Then set N := N � a

D

e

D

and 
ontinue the pro
edure with the remaining smaller denominations. Use of the greedy

algorithm provides a simple, easily-remembered method for making 
hange. Not all sets of

denominations have the property that the greedy method always determines the optimal

representation. For example, with denominations (1; 7; 10) the greedy algorithm gives the

representation 14 = 10 + 1 + 1 + 1 + 1, whereas 7 + 7 uses fewer 
oins.

Unfortunately, none of the optimal sets of denominations in Figure 1 for D � 3 give

optimal representations when used greedily. For example, when we try to greedily make


hange for 24¢ using the system (1; 12; 19), we get 19 + 1 + 1 + 1 + 1 + 1, a far 
ry from the

optimal representation 12 + 12.

This suggests 
onsidering a variation on the optimal denomination problem, where 
ost

is repla
ed by the analogous fun
tion g
ost, and we 
ount only the 
ost of greedy represen-

tations. For the 
urrent system we still have g
ost(100; 1; 5; 10; 25) = 4:7. Figure 2 displays

the results for optimal sets of denominations.

We also might 
onsider what single denomination 
ould be added to the 
urrent US

system (1; 5; 10; 25) to best improve the greedy 
ost. It turns out that adding either a 2¢-

pie
e or a 3¢-pie
e improves g
ost(100;�) from 4.7 to 3.9, and this is the best possible 1-
oin

improvement. It is interesting to note that the US a
tually had a 2¢-pie
e from 1864 to 1873,

and two di�erent 3¢-pie
es: one made in silver from 1851 to 1873, and one made in ni
kel

from 1865 to 1889.

3 Computational questions

So far we have fo
used on systems parti
ular to the US, Canada, and Europe, but a good

mathemati
ian will want more general results. Let us examine the 
omputational 
omplexity

of the problems we have studied, and some related ones.

1. Suppose we are given an amount of 
hange to make, say N , and a system of denomi-

nations, say 1 = e

1

< e

2

< � � � < e

D

. How easy is it to 
ompute opt(N ; e

1

; e

2

; : : : ; e

D

) or �nd

an optimal representation N =

P

1�i�D

a

i

e

i

, i.e., one whi
h minimizes

P

1�i�D

a

i

?
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D (e

1

; : : : ; e

D

) g
ost(100; e

1

; : : : ; e

D

)

1 (1) 49.5

2 (1; 10) 9

(1; 11)

3 (1; 5; 22) 5.26

(1; 5; 23)

4 (1; 3; 11; 37) 4.1

(1; 3; 11; 38)

5 (1; 3; 7; 16; 40) 3.46

(1; 3; 7; 16; 41)

(1; 3; 7; 18; 44)

(1; 3; 7; 18; 45)

(1; 3; 8; 20; 44)

(1; 3; 8; 20; 45)

6 (1; 2; 5; 11; 25; 62) 3.13

(1; 2; 5; 11; 25; 63)

(1; 2; 5; 13; 29; 64)

(1; 2; 5; 13; 29; 65)

7 (1; 2; 5; 8; 17; 27; 63) 2.86

.

.

.

(30 other sets omitted)

.

.

.

(1; 2; 5; 8; 19; 30; 67)

Figure 2: Optimal denominations for greedy 
hange-making

The answer depends on how N and the e

i

are written down. If they are written in

ordinary de
imal notation, or in binary, then there is no fast algorithm known to solve this

problem. In fa
t, it follows easily from results of Lueker [5℄ that this problem is NP-hard;

roughly speaking this means it is at least as hard as many famous 
ombinatorial problems,

su
h as the travelling salesman problem, for whi
h no polynomial-time algorithm is 
urrently

known.

If, on the other hand, N and the e

i

are represented in unary, then a simple dynami


programming algorithm (e.g., [10℄) solves the optimal representation problem in polynomial

time.

2. Suppose we are given N and a system of denominations. How easy is it to determine

if the greedy representation for N is a
tually optimal? Kozen and Zaks [4℄ have shown that

this problem is 
o-NP-
omplete if the data is provided in ordinary de
imal, or binary. This

strongly suggests there is no eÆ
ient algorithm for this problem.

3. Suppose we are given a system of denominations. How easy is it to de
ide whether the

greedy algorithm always produ
es an optimal representation, for all values of N? It turns
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out that this problem 
an be solved eÆ
iently; this surprising result is due to Pearson [6℄.

4. Suppose we are given N and a system of denominations. How easy is it to 
ompute


ost(N ; e

1

; e

2

; : : : ; e

D

)? Sin
e

opt(N ; e

1

; e

2

; : : : ; e

D

) = (N + 1)
ost(N + 1; e

1

; e

2

; : : : ; e

D

) �N
ost(N ; e

1

; e

2

; : : : ; e

D

);

any algorithm to 
ompute 
ost would also provide an algorithm to 
ompute opt. It follows

that 
omputing 
ost is NP-hard under Turing redu
tions.

5. Suppose we are given L and D and want to �nd an optimal set of denominations that

minimizes the average 
ost of making 
hange for all amounts from 0 to L� 1? I don't know

the 
omputational 
omplexity of this problem, but it seems quite hard. The data presented

in Figure 1 were 
omputed using a brute-for
e enumeration of possibilities, but with some

tri
ks to speed up the 
omputation.

6. A related problem is the Frobenius problem. Here we are given a set of D denomina-

tions e

1

< e

2

< � � � < e

D

with g
d(e

1

; e

2

; : : : ; e

D

) = 1, and we want to �nd the largest integer

N whi
h 
annot be expressed in the form

P

1�i�D

a

i

e

i

with the a

i

non-negative integers.

There is a huge literature on this problem (see, for example, Guy [2, pp. 113{114℄), but only

re
ently have resear
hers 
onsidered its 
omputational 
omplexity. Kannan [3℄ gave an al-

gorithm for the Frobenius problem that runs in polynomial time if the dimension D is �xed.

On the other hand, Ram��rez-Alfons��n [8℄ has shown that the general Frobenius problem is

NP-hard.

7. Another related problem is the postage stamp problem. There are two 
avors. The

\lo
al" problem asks, given a set of D denominations 1 = e

1

< e

2

< � � � < e

D

and a bound

h, what is the smallest integer N whi
h 
annot be represented in the form N =

P

1�i�D

a

i

e

i

where the a

i

are non-negative integers and

P

1�i�D

a

i

� h? In the \global" version, we are

given D and h and want to �nd the set of denominations that maximizesN . There is a large

literature on these two problems (see Guy [2, pp. 123{127℄).

I have re
ently shown [9℄ that the lo
al postage stamp problem is NP-hard under Turing

redu
tions, and that there is a polynomial-time algorithm for every �xed D.

4 Asymptoti
 results

Now we turn to some asymptoti
 estimates.

Let opt
ost(L;D) denote the minimum value of 
ost(L; e

1

; e

2

; : : : ; e

D

) over all suitable

values of e

1

; : : : ; e

D

. Can we �nd good upper and lower bounds on opt
ost(L;D)?

One way to �nd an upper bound is as follows: let k = dL

1=D

e, and de�ne e

i

= k

i�1

for

1 � i � D. In this 
ase, the greedy algorithm always �nds the optimal representation for

any N , and it turns out to be the base-k expansion of N . Letting s

k

(N) denote the sum of

the digits in the base-k expansion of N , we �nd


ost(L; e

1

; e

2

; : : : ; e

D

) = g
ost(L; e

1

; e

2

; : : : ; e

D

) =

1

L

X

0�i�L�1

s

k

(i):
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Hen
e

opt
ost(L;D) �

1

L

S

dL

1=D

e

(L) (1)

where S

k

(N) :=

P

0�i<N

s

k

(i).

Now the quantity S

k

(N) has a long history; it is known that

S

k

(N) =

k � 1

2 log k

N logN +NF

k

�

logN

log k

�

; (2)

where F

k

is a 
ontinuous, nonpositive, nowhere di�erentiable fun
tion of period 1; see, for

example, [1℄. Combining (1) and (2), we obtain the upper bound

opt
ost(L;D) �

D

2

L

1=D

:

Furthermore, using the identity

S

k

(kN + a) = kS

k

(N) +

k(k � 1)N

2

+ as

k

(N) +

a(a� 1)

2

one 
an 
ompute S

k

(N) in time polynomial in the number of digits in k and N . This provides

a fast way to 
ompute the upper bound (1).

For a lower bound, one may reason as follows: �x a set of D denominations e

1

; e

2

; : : : ; e

D

,

and 
onsider the number of di�erent D-tuples (a

1

; a

2

; : : : ; a

D

) su
h that

P

1�i�D

a

i

� k. A

simple 
ombinatorial argument shows that this number is

�

D+k

D

�

. Now if

�

D+k

D

�

� L=2, it

follows that for at least L=2 
hoi
es of N , 1 � N � L, any representation for N must use

at least k +1 
oins, and hen
e opt
ost(L;D) �

1

2

(k +1). Now

�

D+k

D

�

�

(k+D)

D

D!

; if D is �xed

and L!1, this gives the lower bound of opt
ost(L;D) = 
(L

1=D

).
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