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The 2-adic Valuation of the Coefficients of a
Polynomial
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ABSTRACT. In this paper we compute the 2-adic valuations of some polynomials associated
with the definite integral

/°° dz
o (a*+ 2az? +1)mt1’

1. Introduction.

In this paper we present a study of the coefficients of a polynomial defined in terms of
the definite integral
dz

oo
1.1 Noala;m) =
(1.1) oa( ) /0 (z* + 2a2? 4+ 1)m+!1
where m is a positive integer and a > —1 is a real number.
Apart from their intrinsic interest, these polynomials form the basis of a new algorithm
for the definite integration of rational functions.
An elementary calculation shows that

2m+3/2
(1.2) P,(a) = - (a+1)m+1/2N0,4(a; m)

18 a polynomial of degree m in a with rational coeflicients. Let
m

(1.3) Pnla) =Y _di(m)d.
1=0

Then it can be shown that d;(m) is equal to
I m=l m . . .

ZZ Z (_1)k—l~s2‘3k<2k> <2m+ 1) <m — S —]) <S+]> <k — S —]>

=0 s=0 k=s+1 kJ\2(s +7) m—k J L=
from which it follows that di{(m) is a rational number with only a power of 2 in its denomina-
tor. Extensive calculations have shown that, with rare exceptions, the numerators of d;(m)
contain a single large prime divisor and its remaining factors are very small. For example

ds(30) = 22.7-11-13-17-31-37-639324594880985776531.
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48 GEORGE BOROS, VICTOR MOLL & JEFFREY SHALLIT

Similarly, d10(200) has 197 digits with a prime factor of length 137 and its second largest
divisor is 797. This observation lead us to investigate the arithmetic properties of d;(m). In
this paper we discuss the 2-adic valuation of these d;(m).

The fact that the coefficients of P, (a) are positive is less elementary. This follows from
a hypergeometric representation of Ny 4(a;m) that implies the expression

(1.4) dy(m) = 272 kzz; ok (QZ - 2‘“) <m7;: k) (’;)

We have produced a proof of (1.4) that is independent of this hypergeometric connection
and is based on the Taylor expansion

(1.5) a+Vite = Va+1 (1+§: (—QH Pi-s(a) L ck) :

- 2k+1 (CL +1

see [1] for details.
The expression (1.4) can be used to efficiently compute the coefficients d;(m) when [ is
large relative to m. In Section 8 we derive a representation of the form

d(m) = m(al(m)Huk—l)—ﬁz<m)H(4k+1>)
k=1

k=1
where o;(m) and 8;(m) are polynomials in m of degrees | and [ — 1 respectively. For example

(1.6) di(m) = ;n,—;rm ((2m ) [k - 1) - [[ak+ 1)) .

k=1 k=1
This representation can now be used to efficiently examine the coefficients dj(m) when [ is
small compared to m. In Section 7 we prove that

va(di(m)) = 1—2m+1/2<<m;1)>+52(m)

where sy(m) is the sum of the binary digits of m.

2. The polynomial P, (a).

Let
e dx
Noala;m) = / .
oalaim) o (z*+2az2 +1)""
Then
m+3/2
(2.1) Pn(a) = (a+ 1) V2N, 4(a; m)

is a polynomial in ¢ with positive rational coefficients. The proof is elementary and is
presented in [1]. It is based on the change of variables z = tan 6 and u = 26 that yields

i 1 + cos u)?m+!
N0,4(a§ m) = -t / ( ) m+1
o (T+a)+ (1 —a)cos?u)
Expanding the numerator and employing the standard substitution z = tan u produces

du.
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(2.2) Nosla;m) = 2—2m—3/zz<21r;:— l)m(i—z)}n)_ml;;ﬁ
(" )t k2

where B is Euler’s beta function, defined by
I'(z)I'(y)
Mz +y)

The expression (2.1) now produces the first formula for d;(m) given in the Introduction.

B(:E?y) =

3. The triple sum for d;(m).
The expression for the coefficients d;(m) given in the Introduction can be written as
I m-l m . . .
Z Z (__1),6_[_52_%(2/0) <2m+1) <m— S—j) <S+j> <k— s—]>.
parar et k J\2(s+7) m—k j -3
(3.1)

This expression follows directly from expanding (2.3) and the value

B(j+1/2,1/2) = 1<2j>.

227 \
It follows that d;(m) is a rational number whose denominator is a power of 2, therefore

Lemma 3.1. Let p be an odd prime. Then
vp(di(m)) = 0.

The positivity of d;(m) remains to be seen.

4, The single sum expression for d;(m).

An alternative form of the coefficients d;(m) is obtained by recognizing Ny 4(a;m) as a
hypergeometric integral. A standard argument shows that

Noala;m) = ()

2m+3/2(a+ 1)m+1/22F1 [_m7m + 1, 1/2 —m, (1 +a)/2]

where 5 F} is a hypergeometric function, defined by

where (r), is the rising factorial
(Me = rr+1)r+2)---(r+k—1).
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It follows that Pp.(a) is the Jacobi polynomial of degree m with parameters m + 1/2 and
—(m + 1/2). Therefore the coefficients are given by

(4.1) d(m) = 27" g 2" (22 _ Zk) (m; k) (I;)

from which their positivity is obvious. We have obtained a proof of (4.1) that is indepen-
dent of hypergeometric considerations and is based on the presence of P, (a) in the Taylor
expansion (1.5). See [1] for details.

The formula (4.1) is very efficient for the calculation of the coefficients dj(m) when [
approximately equal to m. For instance, we have

dnim) = (27

m

9—(m+1) 2m .

m
The expression (4.1), rewritten in the form
m
2m —2k\ (m+k\ [k
d _ 2—(2m‘l) 2k:—l
l(m) kZ:l m—k m I ’
shows that

(4.2) vo(di(m)) > 1 —2m.

dm_1 (m)

5. Basics on valuations.

Here we describe what is required on valuations.
Given a prime p and a rational number r, there exist unique integers a, b, m with pfa, b such
that

(5.1) ro=

a’m
p?

The integer m is the p—adic valuation of 7 and we denote it by v,(r).
Now recall a basic result of number theory which states that

(5.2) vo(ml) = g L%J .

Naturally the sum is finite and we can end it at £ = |log, m].
There is a famous result of Legendre [2, 4] for the p—adic valuation of m!. It states that

m— sp(m)
p—1
where s,(m) is the sum of the base—p digits of m. In particular

(5.4) vo(m!) = m — so(m).

(5.3) vp(ml) =
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6. The constant term.

51

The calculation of the 2-adic valuation of the coefficients can be made very explicit for

the first few. We begin with the case of the constant term.
We first compute

oo dz
Noa(Oym) = | —2
0,4(0;m) /0 (@' + 1)+

via the change of variable u = z*, yielding

Noa(0;m) = %B(l/4,m+3/4)

m

™
T lozm+s/2 H(4k -1
k=1
Therefore
) 1 Ll
1 = —— 4k — 1).
(61) dotm) = [Tk =)

Theorem 6.1. The 2-adic valuation of the constant term do(m) is given by

wp(do(m)) = —(m+ a(m!))
= s9(m) —2m.

Proof: This follows directly from (6.1). The second expression comes from (5.4).

Using the single sum formula for dy(m) we obtain

(S (Y) - monen

= s3(m).

Corollary 6.2,

Corollary 6.3. The 2-adic valuation of the constant term do(m) satisfies
va(do(m)) > 1-2m
with equality iof and only if m is a power of 2.

We now present a different proof of Corollary 3 that is based on the expression

(6.2) do(m) = —=— [ (4~ 1)

ml2m
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and the single sum formula

o - £(272)(2Y

k=0
2m ~ 2m —2k\ (m+k
2y okl )
o) () (0
Proof: From (6.3) it follows that
va(do(m)) > 1-2m

(6.3)

Il

because the central binomial coefficient is an even number. Now from (6.2) we obtain
(6.4) va(do(m)) = —(m + ve(m!)).
From (5.2) we have
X m
> |5
k=1
Thus, from (6.4),

vy(do(m)) = — f: [2% .

k=0
1

We know v5(dy(m)) > 1 — 2m, so it suffices to determine when equality occurs. Indeed, the
equation

o0
m
(6.5) Zbﬂ = 2m—1
k=0
can be solved explicitly. Write m = 2°r with r odd, and say 2V < r < 2¥*1. Then
“\m e o1 r r r
Y|gl = worrrrr s G4 (5] [
k=0
and (6.5) leads to
N r N r [e'S) r
r-1 = Zb}J <GS 53
k=1 k=1 k=1

and we conclude that r = 1. The proof is finished.

7. The linear term.

From the triple sum we obtain

-1

" Sl 2N /(2m+2\ /fm—s—~1
d(m Z ) 3k(m—8)<k)<28+1)( m-—k )

s=0 k=s+1

3

i
<)
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Differentiating (2.1) and d,(m) = P/ (0) we produce

di(m) = M;mﬁ((2m+1)g(4k—1)—g(4k+1)).

Therefore the linear coefficient is given in terms of

(7.1) Ar(m) = m+1)JJ@k-1) -]k +1)
k=1 k=1
so that
Ai(m)
We prove

Theorem 7.1. The 2-adic valuation of the linear coefficient di(m) is given by

vo(di(m)) = 1—2m+y2<(m;’1>)+32(m).

53

Recall that the inequality vo(d;(m)) > 1—2m follows directly from the single sum expression.

The theorem determines the exact value of the correction term.

Proof: We prove
vp (A1(m)) = w(2m(m+1))

(1)

The result then follows from (5.4) and (7.2).

Define
B, = JJ@k+1)-1
k=1
and
Com = m+1)JJ@k-1)-1.
k=1

Then evidently A;(m) = B, — C,,.
We show

g )

b) 2(Cm) > 3+ 11 ((m;ﬂ))

from which the result follows immediately.
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a) We have

o
e
I
e E

(4 +1) -1

k=1

- (B )

m

gl

m-+1 m+1
— 22 221(:

[ m ]+kz:; [m-l—l—k}

m—+1 i m+1
— 22 22k

("3 ) e [

where [7'] is an (unsigned) Stirling numbers of the first kind, i.e.

zx+1)---(z+m-1) = i[;ﬂxk

7

"To prove a), it suffices to show that

(") < (L))

for 2 <k <m.
To do this we observe that there exist integers Cy; (k > 1, 7 > 0) such that

[mnz k} - S(%ﬁii)a”

=0

see [3, p. 152]. For example

m | _ (m
m—1]  \2
[ m ] m m
W) =30 2(3)
[ m ] m m m

= 2
s = 0(5) +20(5) +o(7)
[ m ] m m m m
105 210 130 24 .

m 4] (8)+ (7)* (6)+ (5)

Hence the rational number

m(m—1)---(m—k)
(2k)!

U=
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divides [m'fk] in the sense that the quotient

L]

U

is an integer.
It follows that

w (7)) 2 wlmn =0 - ) (b
va(m(m —1)---(m —k)) — 2k + s3(k)

where we have used (5.3).
Hence, provided &k > 3,

m+1—k
so that

ok m+1
o ()

VQ([ m 1 D > w((m+)mlm—1)---(m+1— k) — 2k + s5(k)

v

vo((m + 1)m) + va((m — 1)(m — 2)) + so(k)

v

vo((m+1)m)+1+1

- e (")

provided m > 3. (‘For m =1, 2 it is easy to check 1, (B,,) = 2.)
On the other hand, if £ = 2, then

o) = 3(3) +(3)

1
ﬁm(m —1)(m—2)(3m —1),

so if m is even, m > 4, we have

VQ([m’f2]) = <W)+u2(m—2)—y2(12)

() - o
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so in either event

Hence

as desired.

We now prove b):
Com = (@m+1)]]¢4k-1)
k=1
We have
[Tuk-1) = a"JJk-1/9)
k=1

= '-4”’“%1 [m,'f 1} (—1/4)*

thus

When m is even, we have

Cr = (2m+1)—(2m+1)-4{m7;:1} —1+(2m+1)§: [mﬁik}(—m

= —2m*(2m+3)+ (2m + 1) é [mrj_iri k} (-4)*
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s0, as in the proof of a), we have

vy (C) > min (15(2m?), 1y { 42 mf”

(el )
> min (14 2v5(m), 3+ w2 ("))

> 3+ ((")))

since m is even.
On the other hand, when m is odd we observe that

Cot+1 = @m+1)]](4k-1)
k=1
and
Cotr+1 = (2m+3)(4m +3) [[(4k - 1)
k=1
)
Cm+1 + 1 - Cm + 1
(2m +3)(4m+3)  2m+1
and hence
(Cpsr +DH(2m + 1)
Cm —
(2m +3)(2m + 3)
(2m + 1)Cm+1 - 8(m + 1)2
(7.3) =
(2m+ 3)(4m + 3)
S0
v2(Crm) > min (ve(Cmy1), 2v2(m + 1) + 3)

2
since m is odd.
This completes the proof.

The corresponding question of the 3-adic valuation of di(m) seems to be more difficult. We
propose.

Problem 7.2.  Prove the existence of a sequence of positive integers m; such that
v3(di(m;)) = 0. Eztensive calculations show that
(7.4) mip—m; € {2,7,20,61,182,---}

where the sequence {q;} in (7.4) is defined by q1 = 2 and g; 1 = 3q; + (=1)771. It would be
of interest to know whether v3(di(m)) is unbounded: the mazimum value for 2 < m < 20000
s 12, so perhaps v3(di(m)) = O(logm) as m — oo.
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8. The general situation.

In this section we prove the existence of polynomials o;(z) and 8;(x) with positive integer
coeflicients such that

1 m m
dl(m) = W—l(a H4k‘-—1 ,Bl H4k+1)
k=1 k=1

These polynomials are efficient for the calculation of d;(m) if I is small relative to m, so they
complement the results of Section 4.

For example

=1

2m+1

2(2m® + 2m + 1)

Il

Q

()
NN N N
\_/\_/\S/\./v

Il

az(m) = 4(2m+ 1)(m* +m + 3)
as(m) = 8(2m* + 4m3 + 26m? + 24m + 9).
and
Bo(m) = 0

)

Bi(m) = 1

Ba(m) = 2(2m+1)
B3(m) 12(m?* + m + 1)

Bi(m) = 8(2m+ 1)(2m*+ 2m +9).

The proof consists in computing the expansion of P,,(a) via the Leibnitz rule:

Paa) = 20 El% (l) (%)H @+ 1) (é%)jsz(a; m)

T = Vi a=0
We have
d\’ o 2m+2)! (m—r+1)!
A — 1 m+1/2 = 9 2r
(8.1) (da) (a+ 1™ (m+1)! @m—2r + 2)!
and

82 () Noslosm)

- (_1)r%(m+r)!2r/0m EEST g

a=0 m! zt F 1)mtrtl

The integral is evaluated via the change of variable t = z* as

/°° trde o lp(r LT 3
o (et+mrit o472 4 2 4/
This yields

(=)r@2r) 7« &
ey R [J@i-1+2r).
=1

83 (55) Nostasm)

a=0
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Therefore

(2m + 2)! (=17 (m—1+75+ 1)} o
PO —1+29)
(0) = 2m+21m’m—{—1'Z g = NH'2m — 2l+23+2'H +2)-

We now split the sum according to the parity of j. In the case 7 is odd (= 2t — 1) we use

ﬁ4y—1+2] - ﬁ(4u+1)(m 41/+1)/H41/+1>

v= v=1 v=m-+1

1
and if j is even (= 2¢) we employ

ﬁ(4u~1+2j) = 1"‘1[(41/—1)<m+ 4y—1/H4y—1>

v=1 v=1

We conclude that

d(m) = X(m,)][(4v—1) m, 1) [[(4v +1)
r=1 v=1
with
Xm.) = —2m+2) 2 e T (v - 1)
2mt3ml(m + 1)) = (20)12(0 - 20)1(2m — 20 + 4t +2)! []'_ (4v —1)
and
Y(m,l) =
(2m+oyn G (m — 1+ 26)!(4¢ — 2)! [T (4w + 1)

2+ 2ml(m + 1)1 = (2t~ 1)12(1 - 2t + 1)(2m — 21 + 4¢)! M +1)

The quotients of factorials appearing above can be simplified via

-2t
[[G+m—t+2t+1)
=1

(m+1)!
(m—14+2t+1)!

and

(2m + 2)! =2t 1—2t
@m—20+4t+2) 2 [IG+m—t+2t+1)) [ ]2i+2m—20+4t+1) ).

=1 =1

We conclude that

d(m) = W(a,(m)H(4y—1)—ﬁl(m)H(4u+1))

with

A (M | : i
wlm) = V) T = 1) (H(4”_1)) m<H ey
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and

[(I+1)/2] (4t—2) (l—[m+t~1 (41/ + 1)) m
Z 2t-1 v=m+1 H

2A—1(] _ ] -1
— 2 (l 2t + 1! Huzl (4v +1) v=m—(1-2t)

The identity

v=1

[Tav-1) = 22(:1(;):)! (f[(4y+1)>

is now employed to produce

1/2] 1\ T m t—1
a(m) = Z <2t> H (4v — 1) H (2v+1) H(4l/ +1)

t=0 v=m+1 v=m—(1—-2t—1)
and

[(t+1)/2] I m+t—1 m -1
Bilm) = > <2t—1> IT w+n J[ e+y]Juer-2.
(1—2t) v=1

t=1 v=m+1 v=m—(l—

We have proven:

Theorem 8.1. There ezist polynomials ay(x) and Bi(x) with integer coefficients such that

d(m) = %715?%7( H4k~1 Bi(m )I_I(4k+1)>.

Based on extensive numerical calculations we propose

Conjecture 8.2.  All the roots of the polynomials og(m) and Bi(m) lie on the line
Re(m) = —1/2.
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