
AUTOMATICITY III: POLYNOMIAL

AUTOMATICITY AND CONTEXT-FREE

LANGUAGES

Ian Glaister and Jeffrey Shallit

Abstract. If L is a formal language, we de�ne A

L

(n) to be the number

of states in the smallest deterministic �nite automaton that accepts a

language that agrees with L on all inputs of length � n. This mea-

sure is called automaticity. In this paper, we �rst study the closure

properties of the class DPA of languages of deterministic polynomial

automaticity, i.e., those languages L for which there exists k such that

A

L

(n) = O(n

k

). Next, we discuss similar results for a nondetermin-

istic analogue of automaticity, introducing the classes NPA (languages

of nondeterministic polynomial automaticity) and NPLA (languages of

nondeterministic poly-log automaticity). We conclude by showing how

to construct a context-free language of automaticity arbitrarily close to

the maximum possible.

Key words. automaticity, �nite automata, nondeterminism

Subject classi�cations. Primary 68Q68; Secondary 68Q75 68Q45.

1. Introduction.

In two previous papers (Shallit & Breitbart

(

1996

)

, Pomerance et al.

(

1996

)

),

the second author and co-authors studied the concept of automaticity: roughly

speaking, how closely a formal language L can be approximated by regular

languages L

0

; also see Shallit & Breitbart

(

1994

)

. In addition to its evident

intrinsic interest, automaticity has proved useful in obtaining nontrivial lower

bounds. For example, in Dwork & Stockmeyer

(

1989

)

, Dwork & Stockmeyer

(

1990

)

, and Kaneps & Freivalds

(

1991

)

the measure was used to obtain lower

bounds on computation by two-way probabilistic �nite automata. In Kaneps

& Freivalds

(

1990

)

it was used to obtain lower bounds on the space complexity

of probabilistic Turing machines.

In this paper, the third of a series, we introduce three new automaticity-

based complexity classes, and study their properties. Additional results on

automaticity can be found in Shallit

(

1996

)

.



2 Ian Glaister & Je�rey Shallit

As usual, we de�ne a �nite automaton M to be a 5-tuple, (Q;�; �; q

0

; F ),

where Q is a �nite set of states, � is a �nite input alphabet, q

0

is the start

state, and F is a set of �nal states. The map � is called the transition function.

If M is deterministic, then � maps Q � � to Q, and is extended in the usual

way to a map Q � �

�

to Q. We then de�ne L(M), the language accepted by

M , to be the set fx 2 �

�

: �(q

0

; x) 2 Fg. If M is nondeterministic, then �

maps Q � � to 2

Q

, and we de�ne L(M) = f�(q

0

; x) \ F 6= ;g. For more on

these concepts, see, for example, Hopcroft & Ullman

(

1979

)

.

We denote the class of all deterministic �nite automata by DFA, and the

class of all nondeterministic �nite automata by NFA. By jM j we mean jQj, the

number of states in the machine M .

Let � denote the empty string, and let �

�n

= �+�+�

2

+ � � �+�

n

, the set of

all strings over � of length at most n. Let L;L

0

be languages with L;L

0

� �

�

.

If L \ �

�n

= L

0

\ �

�n

, we say that L

0

is an nth order approximation to L.

Given a language L � �

�

, we de�ne the function A

L

(n), the deterministic

automaticity of L, as follows:

A

L

(n) = minfjM j : M 2 DFA and L(M) \ �

�n

= L \ �

�n

g:

Informally, A

L

(n) counts the number of states in the smallest �nite automaton

that accepts some nth order approximation to L.

Similarly, we de�ne N

L

(n), the nondeterministic automaticity of L, as fol-

lows:

N

L

(n) = minfjM j : M 2 NFA and L(M) \ �

�n

= L \ �

�n

g:

We now introduce three new complexity classes:

1. deterministic polynomial automaticity, or DPA:

DPA = fL � �

�

: 9k such that A

L

(n) = O(n

k

)g:

2. nondeterministic polynomial automaticity, or NPA:

NPA = fL � �

�

: 9k such that N

L

(n) = O(n

k

)g:

3. nondeterministic poly-log automaticity, or NPLA:

NPLA = fL � �

�

: 9k such that N

L

(n) = O((log n)

k

)g:



Automaticity III 3

(We do not de�ne deterministic poly-log automaticity (DPLA) because if

A

L

(n) = O((log n)

k

), then by a theorem of Karp

(

1967

)

, A

L

(n) = O(1) and L

is regular.)

There are clear analogies of these classes with more traditional ones such as

P , NP , and NC. In this paper, we �rst discuss the closure properties of these

new classes.

It is perhaps worth pointing out that, unlike the classes P and NP , and

as a consequence of the non-uniformity of the model, these classes contain

uncountably many languages. If this troubles the reader, one can restrict one's

attention to the recursive languages in these classes without altering any of the

results in this paper.

2. Results on DPA.

In this section, we discuss the properties of the class DPA. First, we show that

DPA consists of a strict hierarchy of complexity classes. Second, we study the

closure properties of DPA.

It is easy to see (Shallit & Breitbart

(

1996

)

) that if L is a unary language

(i.e., L is de�ned over an alphabet with one letter), then A

L

(n) = O(n). In this

case, DPA is trivially closed under every operation (e.g., union, concatenation,

Kleene closure, etc.). Hence, for the remainder of this section and the next

one, we assume that j�j � 2.

First, we state three useful lemmas. Let L � �

�

, and let S be a �nite

set of strings over �. Suppose for all x; y 2 S, there exists a w 2 �

�

such

that jxwj; jywj � n, and exactly one of xw; yw is in L. Then we call S an

n-dissimilar set of strings for L.

Lemma 2.1 (Kaneps and Freivalds). A

L

(n) is equal to the cardinality of

the largest n-dissimilar set of strings for L.

Proof. See Kaneps & Freivalds

(

1990

)

, Shallit & Breitbart

(

1996

)

.

2

Lemma 2.2. For n � 0 we have

A

L

(n) � 2 +

X

w2L\�

�n

jwj � 2 + njL \ �

�n

j:

Proof. See Shallit & Breitbart

(

1996

)

, Theorem 2, Part 5.

2



4 Ian Glaister & Je�rey Shallit

Lemma 2.3. The language L is regular if and only if A

L

(n) = O(1). The same

statement holds for N

L

(n).

Proof. See Shallit & Breitbart

(

1996

)

, Theorem 2, Part 2.

2

Lemma 2.1 is extremely useful in obtaining lower bounds on deterministic

automaticity, as the following theorem shows.

Theorem 2.4. For all integers k � 0, there is a language L

k

such that

A

L

k

(n) = �(n

k

).

Proof. For L

0

we may take any regular language, by Lemma 2.3.

Now let k be an integer � 1, and de�ne

L

k

= f0

a

1

1 0

a

2

1 � � � 0

a

k

1 0

a

1

1 0

a

2

1 � � � 0

a

k

1 : a

1

; : : : ; a

k

� 0g:

Let n

0

= bn=2c. We will show that

�

n

0

k

�

� A

L

k

(n) �

�

n

0

k

�

+ 2

�

n

0

+ 1

k

�

� 1;

and hence we have A

L

k

(n) = �(n

k

), where the constant implied in the �

depends on k.

First, the lower bound. Let

S = S(n; k) = f0

a

1

1 � � � 0

a

k

1 : a

1

; : : : ; a

k

� 0 and a

1

+ � � �+ a

k

+ k � n

0

g:

Then S is an n-dissimilar string set for L

k

, since for each v;w 2 S, we have

vv 2 L

k

and vw 62 L

k

, and jvvj = jvwj = 2n

0

� n. To determine jSj, consider

the number of ways to insert k 1's into a list of n

0

0's, and let the number of 0's

between two consecutive occurrences of the 1's correspond to the a

i

. It follows

that jSj =

�

n

0

k

�

.

The lower bound on A

L

k

(n) now follows from Lemma 2.1.

For the upper bound, we construct an automaton M = M

n;k

that accepts

an nth order approximation to L

k

. The basic idea is that M accumulates the

�rst half of the string in its state, symbol by symbol, and then, when the second

half is encountered, the symbols are matched with the stored word.

More formally, de�ne ppref(S), the set of proper pre�xes of elements of S,

as follows:

ppref(S) = fx 2 (0 + 1)

�

: 9w 2 (0 + 1)

+

with xw 2 Sg:



Automaticity III 5

Now de�ne M

k;n

= (Q;�; �; q

0

; F ), where

Q = f[w]

+

; [w]

�

: w 2 ppref(S)g [ f[w]

+

: w 2 Sg [ fdg;

q

0

= [�]

+

, F = f[�]

�

g, and � is de�ned as follows:

�([w]

+

; a) = [wa]

+

; 8a 2 �; w 2 ppref(S)

�([aw]

+

; a) = [w]

�

; 8a 2 �; aw 2 S

�([aw]

�

; a) = [w]

�

; 8a 2 �; aw 2 ppref(S)

�(d; a) = d; 8a 2 �

�(x; a) = d; for all other cases:

The correctness proof is left to the reader.

It follows that jQj = 2jppref(S)j + jSj + 1, so it remains to compute

jppref(S)j. We claim that jppref(S)j =

�

n

0

+1

k

�

� 1.

De�ne jwj

a

to be the number of occurrences of the symbol a in the string

w. Let s 2 ppref(S). If jsj

1

= r, then r � jsj � n

0

� k + r, for otherwise s

could not be a pre�x of a string of length � n with exactly k 1's. It follows

that there are

�

r

r

�

+

�

r + 1

r

�

+ � � �+

�

n

0

� k + r

r

�

=

�

n

0

� k + r + 1

r + 1

�

such strings. Summing this from r = 0 to r = k � 1 gives

jppref(S)j =

X

0�r�k�1

�

n

0

� k + r + 1

r + 1

�

=

�

n

0

+ 1

k

�

� 1;

as claimed. This completes the proof.

2

Now we move on to the closure properties of DPA.

Theorem 2.5. The class DPA is closed under union, intersection, comple-

ment, and inverse homomorphism.

Proof. The usual product constructions (see, e.g., Hopcroft & Ullman

(

1979

)

, pp. 59{60) show immediately that A

L

1

[L

2

(n) � A

L

1

(n)A

L

2

(n) and

A

L

1

\L

2

(n) � A

L

1

(n)A

L

2

(n).

By interchanging the accepting and non-accepting states in an automaton

accepting an nth order approximation to L, we get an automaton accepting an

nth order approximation to L; hence A

L

(n) = A

L

(n).



6 Ian Glaister & Je�rey Shallit

To show DPA is closed under inverse homomorphism, it su�ces to adapt

the standard construction (e.g., Hopcroft & Ullman

(

1979

)

, p. 61). Let L 2 �

�

be a member of DPA, and let h : �

�

! �

�

be a homomorphism. De�ne

m = max

a2�

jh(a)j. Let M = (Q;�; �; q

0

; F ) be an automaton accepting

an mnth order approximation to L. Then consider M

0

= (Q;�; �

0

; q

0

; F ),

where �

0

(q; a) = �(q; h(a)). Clearly M

0

accepts an nth order approximation to

h

�1

(L) = fx 2 �

�

: h(x) 2 Lg. It follows that A

h

�1

(L)

(n) � A

L

(mn).

2

Next, consider the operation

1

2

L de�ned as follows:

1

2

L = fx 2 �

�

: 9y such that jxj = jyj and xy 2 Lg:

Theorem 2.6. DPA is closed under the operation

1

2

.

Proof. We prove the contrapositive. Assume

1

2

L 62 DPA. Then, for any

given c > 1, the inequality

A
1

2

L

> (n+ 1)

c+1

(2.1)

must hold for in�nitely many n. Let n be such that (2.1) holds; then there is an

n-dissimilar string set R for

1

2

L of cardinality > (n+ 1)

c+1

. By the pigeonhole

principle, there exists m, 0 � m � n, such that jR \ �

m

j > (n + 1)

c

. Set

R

0

= R \ �

m

; note that R

0

is also an n-dissimilar string set for

1

2

L.

By the de�nition of n-dissimilar string set, for all u; v 2 R

0

with u 6= v, there

exists w such that exactly one of uw; vw are in

1

2

L, and also juwj; jvwj � n.

Without loss of generality, assume uw 2

1

2

L and vw 62

1

2

L. Since uw 2

1

2

L,

there exists z with jzj = juwj such that uwz 2 L. If vwz 2 L, then we would

have vw 2

1

2

L, a contradiction. Hence vwz 62 L. It follows that u; v are 2n-

dissimilar for L, and the su�x wz distinguishes them. Hence A

L

(2n) � jR

0

j >

(n+ 1)

c

. But c was arbitrary, and so L 62 DPA.

2

Now we turn to properties under which DPA is not closed. There is a

vague relation between these questions and the notion of \state complexity" of

regular languages, discussed, for example, in Yu et al.

(

1994

)

. In that paper,

the authors showed, among other things, that for each m;n � 1, there exist

an m-state DFA and an n-state DFA such that the minimal automaton for

the concatenation of the corresponding languages has m2

n

� 2

n�1

states. At

�rst glance, it would seem that this result immediately implies that DPA is not

closed under concatenation. This is not so, however, because the Yu et al. result

constructs a di�erent pair of languages for each pair m;n. As m;n ! 1, the

languages they construct tend to a \limiting language" that is actually regular.



Automaticity III 7

To prove that DPA is not closed under concatenation, we need something

di�erent: namely, two DPA languages L

1

; L

2

such that any nth order approxi-

mation to L

1

L

2

requires many states.

First, we prove the following lemma:

Lemma 2.7. Let (r

k

)

k�0

be any sequence of integers satisfying r

0

= 1 and

r

k+1

� 2r

k

. De�ne L = f(0 + 1)

�

1(0 + 1)

r

k

: k � 0g. De�ne n

k

= r

k

+ r

k�1

for k � 1. Then A

L

(n

k

) � 2

r

k�1

.

Proof. De�ne R = fr

0

; r

1

; r

2

; : : :g. Let w; x be two distinct strings in

(0 + 1)

r

k�1

. Without loss of generality, we may write

w = w

1

w

2

� � �w

t�1

1w

t+1

� � �w

r

k�1

x = x

1

x

2

� � � x

t�1

0w

t+1

� � �x

r

k�1

for some t with 1 � t � r

k�1

. Let y = 0

r

k

+t�r

k�1

. We have

wy 2 (0 + 1)

t�1

1(0 + 1)

r

k

;

so wy 2 L \ �

�n

k

. On the other hand, we claim that xy 62 L. If it were,

then there would be a su�x of xy of the form 1(0 + 1)

`

, for some ` 2 R. The

�rst 1 in this su�x must come from x. Without loss of generality, let it be

x

s

, so x = x

1

x

2

� � � x

s�1

1x

s+1

� � �x

r

k�1

, for some s 6= t. In this case we have

` = r

k

+ t � s 2 R. But either (i) 1 � s � t � 1, or (ii) t + 1 � s � r

k�1

. In

case (i), we have r

k

+ 1 � ` � r

k

+ t� 1 < r

k+1

. In case (ii), we have t 6= r

k�1

and so r

k�1

< r

k

� r

k�1

+ t � ` � r

k

� 1. Both cases contradict ` 2 R.

It follows that (0 + 1)

r

k�1

forms a set of n

k

-dissimilar strings. Hence

A

L

(n

k

) � 2

r

k�1

.

2

Theorem 2.8. The class DPA is not closed under concatenation.

Proof. Let L

1

= (0 + 1)

�

, and L

2

= f1(0 + 1)

2

k

: k � 0g. Then it is easy

to see that A

L

1

(n) = O(1), and A

L

2

(n) = O(n).

Now de�ne L = L

1

L

2

, and put r

k

= 2

k

in Lemma 2.7. Then n = 2

k

+2

k�1

=

3 � 2

k�1

. It follows that A

L

(n) � 2

k�1

. Thus, for in�nitely many n, we have

A

L

(n) � 2

n=3

, and so L 62 DPA.

2

Theorem 2.9. The class DPA is not closed under reversal.



8 Ian Glaister & Je�rey Shallit

Proof. Let L

0

= f(0+1)

2

k

1(0+1)

�

: k � 0g. It is easy to see that A

L

0

(n) =

O(n). On the other hand, L

0

R

= L, where L = f(0 + 1)

�

1(0 + 1)

2

k

: k � 0g.

From the previous theorem, L 62 DPA.

2

We now recall the de�nition of the quotient of two languages (Hopcroft &

Ullman

(

1979

)

, p. 62). Let L

1

; L

2

� �

�

. Then

L

1

=L

2

= fx 2 �

�

: there exists y 2 L

2

such that xy 2 L

1

g:

Theorem 2.10. The class DPA is not closed under quotient by regular sets.

Proof. Let � = f0; 1g, L = fww 1 0

2

k

: w 2 (0+1)

k

; k � 0g, and R = 10

�

.

By Lemma 2.2, we know that

A

L

(n) � 2 +

X

w2L\�

�n

jwj

� 2 +

X

0�j�n

jjL \ �

j

j

� 2 +

X

2

k

+2k+1�n

(2

k

+ 2k + 1)2

k

� 2 +

X

0�k�log

2

n

(2

k

+ 2k + 1)2

k

= O(n

2

):

Now L=R = fww : w 2 (0+1)

�

g. Let S = S

n

= fw 2 (0+1)

�

: jwj = bn=2cg.

Then it is easy to see that S

n

is an n-dissimilar string set for L=R, and so

A

L=R

(n) = 
(2

n=2

).

2

Theorem 2.11. The class DPA is not closed under Kleene closure.

Proof. Let � = f0; 1g, and de�ne L = f1(0+1)

k

2

�1

: k � 2g We will show

that L 2 DPA and L

�

62 DPA.

It is easy to see that A

L

= O(n), for we can accept an nth order approxi-

mation to L with a linear chain of nodes.

We now show that A

L

�

(n) � n

n

1=8

=8

for all n su�ciently large.

First, we introduce some de�nitions. We say that a string w 2 (0 + 1)

�

is

valid for position j if there exists a way to write w = w

1

w

2

� � �w

r

, where r � 1,

w

i

2 (0 + 1)

+

for 1 � i � r, w

i

2 L for 1 � i < r, the �rst symbol of w

r

is 1,

and jw

r

j = j. Note that a word may be valid for no positions, or for several.



Automaticity III 9

As an example, the string 100010000000010001 is valid for positions 1; 5; 14; 18.

Then it is easy to see that w 2 L

+

if and only if there exists a k > 1 such that

w is valid for position k

2

.

Next, let S = fs

1

; s

2

; : : : ; s

k

g be a nonempty set of positive integers. If S

satis�es the following two conditions, then we call it good:

(a) s

1

= 1;

(b) for all i with 2 � i � k, there exists an integer t

i

> 1 such that

s

i

� s

i�1

= t

2

i

.

We call s

k

the weight of the set S, k the size of the set S, and

max

2�i�k

(s

i

� s

i�1

)

the span of the set S.

If S is good, then there is a word w = w(S) of length equal to the weight

of S, such that w is valid exactly for the positions speci�ed by S. Namely, we

can take

w = 10

s

k

�s

k�1

�1

10

s

k�1

�s

k�2

�1

1 � � � 10

s

2

�s

1

�1

10

s

1

�1

:

Note that the map that sends S to w(S) is injective.

Now suppose S and T are di�erent good sets of weight at most m. Then we

claim there exists a word y with jyj � d(m+2)=2e

2

such that w(S)y 2 L

+

and

w(T )y 62 L

+

. Since S and T are di�erent, without loss of generality there exists

c such that c 2 S and c 62 T . Choose y = 0

d(m+2)=2e

2

�c

. Then w(S) is valid for

position c, so w(S)y is valid for position d(m+ 2)=2e

2

. Hence w(S)y 2 L

+

.

On the other hand, suppose w(T ) is valid for a position p. Then p 6= c and

1 � p � m. Thus if w(T )y is valid for a position q, we must have

d(m+ 2)=2e

2

� c+ 1 � q � d(m+ 2)=2e

2

� c+m:

This implies that

d(m+ 2)=2e

2

�m+ 1 � q � d(m+ 2)=2e

2

+m: (2.2)

If m is even, say m = 2t, then (2.2) implies that t

2

< q < (t + 2)

2

. If

w(T )y 2 L

+

, q must be a square, and so q = (t+ 1)

2

. But then w(T ) is valid

for position c, a contradiction. Similarly, if m is odd, say m = 2t + 1, then

(2.2) implies that (t+ 1)

2

< q < (t+ 3)

2

. Then q = (t+ 2)

2

, and w(T ) is valid

for position c, a contradiction. It follows that w(T )y 62 L

+

.

Now �x an n, and de�ne the collection C

n

to be those good sets S of span

at most (n

1=8

+ 2)

2

and size k = dn

1=8

e + 1. Each set has weight at most

1 + (n

1=8

+ 2)

2

(k � 1) = O(n

3=8

).



10 Ian Glaister & Je�rey Shallit

Now de�ne

U = fw(S) : S 2 C

n

g:

The cardinality of U is the cardinality of C

n

, which corresponds to the number

of possible choices of S with the given span and size. Each of the k�1 possible

di�erences s

i

� s

i�1

can be any one of at least n

1=8

possible squares, and so

there are (n

1=8

)

n

1=8

possibilities for S. We claim that, for all n su�ciently large,

U is an n-dissimilar string set for L

+

(and hence, for L

�

). This is clear, since

by the reasoning above, if S and T are di�erent elements of C

n

, then w(S) and

w(T ) are distinguishable by a string y whose length is O((n

3=8

)

2

) = O(n

3=4

).

Hence jw(S)yj = O(n

3=4

+ n

3=8

), and the same length bound holds for w(T )y.

It therefore follows that A

L

�

(n) � jU j � (n

1=8

)

n

1=8

, and so L

�

62 DPA.

2

Theorem 2.12. If j�j � 3, then DPA is not closed under homomorphism.

Proof. Let L = f(0 + 1)

�

2 (0 + 1)

2

k

: k � 0g, and de�ne h(0) = 0,

h(1) = h(2) = 1. Then it is easy to see that A

L

(n) = O(n), but h(L) is not in

DPA by Theorem 2.8.

2

3. Results on NPA.

In this section, we obtain results on languages of nondeterministic polynomial

automaticity: the class NPA.

We start by applying notions of communication complexity (e.g., Yao

(

1979

)

,

Aho et al.

(

1983

)

, Condon et al.

(

1994

)

) to the computation of nondeterministic

automaticity. Let U be a �nite set of strings. Then we say that U is a set of

uniformly n-dissimilar strings if for each string u 2 U there exists a string w

such that

(i) juwj � n and uw 2 L; and

(ii) for every string v 2 U such that u 6= v, we have jvwj � n and vw 62 L.

We sometimes call the string w a witness for u.

Then we have the following

Lemma 3.1. If U is a set of uniformly n-dissimilar strings for L, then N

L

(n) �

jU j.



Automaticity III 11

Proof. Consider a string u 2 U . By the de�nition, there exists a witness

string w satisfying conditions (i) and (ii). Let M = (Q;�; �; q

0

; F ) be any

nondeterministic �nite automaton that accepts an nth order approximation to

L. Now uw 2 L, and since M accepts all strings in L of length � n, we have

�(q

0

; uw) \ F 6= ;. Hence there exists at least one state q 2 �(q

0

; u) such that

p 2 �(q; w), where p 2 F .

However, for every other string v 2 U , with v 6= u, we must have q 62 �(q

0

; v).

For if q 2 �(q

0

; v), we would have p 2 �(q

0

; vw) and so vw 2 L, a contradiction

(since jvwj � n).

Hence every set �(q

0

; u) contains a state q which does not appear in any

other set �(q

0

; v) for u 6= v. It follows that there must be at least jU j di�erent

states in Q.

2

This simple, but powerful, lemma will allow us to estimate the nondeter-

ministic automaticity for a wide variety of languages; see below. However,

unlike the case of deterministic automaticity, the lower bound provided by

Lemma 3.1 is not tight. An example of this is the following: consider the set

L = f0

i

1

j

: i 6= jg. Then a simple argument shows that a set of uniformly

n-dissimilar strings for L can contain no more than 2 strings. Yet, we know

from Lemma 2.3 that N

L

(n) 6= O(1).

Proposition 3.2. Let L = f0

i

1

i

: i � 0g. Then N

L

(n) = 
(n).

Proof. The set f�; 0; 00; : : : ; 0

bn=2c

g forms a set of uniformly n-dissimilar

strings for L; the witness for 0

i

is 1

i

. It follows that N

L

(n) � bn=2c + 1.

2

Proposition 3.3. Let L = f0

i

1

i

2

i

: i � 0g. Then N

L

(n) = 
(n

2

).

Proof. The set S = f0

i

1

j

: 0 � j � i and 0 � i + j � n=3g forms a

set of uniformly n-dissimilar strings for L. The witness for 0

i

1

j

is 1

i�j

2

i

. The

cardinality of S is easily computed to be (bn=6c + 1)(dn=6e + 1) = 
(n

2

).

2

Using Lemma 3.1, we can also prove a theorem analogous to Theorem 2.4:

Proposition 3.4. For all integers k � 0, there is a language L

k

such that

N

L

k

(n) = �(n

k

).

Proof. Consider the languages L

k

introduced in the proof of Theorem 2.4.

The set S there is actually a uniformly n-dissimilar string set for L

k

, and so

exactly the same upper and lower bounds follow.

2

Here is another application of Lemma 3.1:



12 Ian Glaister & Je�rey Shallit

Proposition 3.5. Let L = fww : w 2 (0 + 1)

�

g. Then N

L

(n) = 
(2

n=2

).

Proof. The set S = S

n

= (0 + 1)

bn=2c

forms a uniformly n-dissimilar string

set for L; the witness for w is w itself. It follows that N

L

(n) � 2

bn=2c

.

2

Next, we prove a simple result on some operation under which the class

NPA is closed:

Proposition 3.6. The class NPA is closed under the operations of union,

intersection, concatenation, Kleene closure, and inverse homomorphism.

Proof. Let M

1

be an NFA accepting an nth order approximation to L

1

, and

let M

2

be an NFA accepting an nth order approximation to L

2

. Then we can

make an NFA accepting an nth order approximation to L

1

[ L

2

by using the

usual construction, as given, for example, in Hopcroft & Ullman

(

1979

)

, p. 31.

The construction gives an automaton with jM

1

j + jM

2

j + 2 states. The other

properties can be proved similarly.

2

Proposition 3.7. The class NPA is not closed under complement.

Proof. See Shallit & Breitbart

(

1996

)

, x5, Example 4.

2

Proposition 3.8. The class NPA is not closed under quotient by regular sets.

Proof. Consider the language L = fww 1 0

2

k

: w 2 (0 + 1)

k

; k � 0g

introduced in the proof of Theorem 2.10. By the same argument given there,

L 2 NPA. Let R = 1 0

�

. Then L=R = fww : w 2 (0 + 1)

�

g. But by

Proposition 3.5, we have N

L=R

= 
(2

n=2

).

2

4. Results on NPLA.

Finally, we examine the languages of nondeterministic poly-log automaticity:

the class NPLA.

Theorem 4.1. The class NPLA is closed under the operations of union, in-

tersection, concatenation, Kleene closure, and inverse homomorphism.

Proof. Left to the reader.

2

Theorem 4.2. The class NPLA is not closed under complement.



Automaticity III 13

Proof. Let L = fw 2 (0 + 1)

�

: jwj

0

6= jwj

1

g. By Theorem 17 of Shallit

& Breitbart

(

1996

)

, we know that L 2 NPLA. (If jwj

0

6= jwj

1

, then there is a

\small" prime p for which jwj

0

6� jwj

1

(mod p); an NFA can \guess" the correct

prime and then verify the inequality (mod p).)

Now L = fw 2 (0 + 1)

�

: jwj

0

= jwj

1

g. If this language were in NPLA,

then so would L\ 0

�

1

�

, by Theorem 4.1. But L\ 0

�

1

�

= f0

i

1

i

: i � 0g, which

by Proposition 3.2 is not in NPLA. Hence L 62 NPLA.

2

5. Relationships between complexity classes.

In this section, we examine the relationship between the classes DPA, NPA,

and NPLA introduced in this paper, and the more familiar language classes

REG (the regular sets) and CFL (the context-free languages).

Clearly we have the trivial inclusions REG � CFL, REG � DPA � NPA,

and REG � NPLA � NPA. The examples we give show that there are no

other inclusion relationships between these classes, with the possible exception

of the following interesting

Open Question. Is NPLA � DPA?

We do not know any example of a language in NPLA � DPA; nor do we

have a proof that no such language exists.

In what follows, we give examples corresponding to the eight non-trivial

possibilities that remain.

Example 1. A non-CFL outside NPA: L

1

= fww : w 2 (0 + 1)

�

g. Then we

know from Proposition 3.5 that L

1

62 NPA. On the other hand, a standard

argument using the pumping lemma shows that L

1

is not a CFL.

Example 2. A non-CFL in NPA, but not in DPA or NPLA:

L

2

= f(0 + 1)

�

1(0 + 1)

2

k

: k � 0g:

From Theorem 2.8, we know that A

L

2

(n) � 2

n=3

for in�nitely many n. It

follows that L

2

cannot be in NPLA, for if it were, we would have A

L

2

(n) �

2

(logn)

c

for some constant c, a contradiction. On the other hand, it is easy to

construct a nondeterministic automaton with O(n) states that accepts an nth

order approximation to L

2

. It is also easy to see that L

2

is not a CFL.

Example 3. A non-CFL in DPA, but not in NPLA: L

3

= f0

2

i

1

2

i

: i � 0g.

It is easy to see that L

3

is not a CFL. On the other hand, L

3

is in DPA by



14 Ian Glaister & Je�rey Shallit

Lemma 2.2. To see that L

3

is not in NPLA, we claim that f0; 00; : : : ; 0

bn=4c

g

is a uniformly n-dissimilar string set for L

3

. The \witness" for 0

i

is 0

2

k

�i

1

2

k

,

where 2

k�1

< i � 2

k

. The total length of the strings in question is therefore

bounded by

n

4

+

n

2

+

n

4

� n. Hence N

L

3

� bn=4c by Theorem 3.1.

Example 4. A non-CFL in DPA and NPLA: L

4

= f0

n

: n � 1 and the

least positive integer not dividing n is not a power of 2g. Since L

4

is a unary

language, L

4

is trivially in DPA. By Theorem 25 of Pomerance et al.

(

1996

)

we

have N

L

4

(n) = O((log n)

3

=(log log n)). Also, L

4

is not a CFL; if it were, since

it is unary, it would be regular, and it is proved in Pomerance et al.

(

1996

)

that

L

4

is not regular.

Example 5. A CFL outside NPA: L

5

= fw 2 (0 + 1)

�

: w = w

R

g. Clearly L

5

is a CFL. To see that L

5

is not in NPA, it su�ces to observe that (0 + 1)

bn=2c

is a uniformly n-dissimilar string set for L

5

.

Example 6. A CFL in NPA, but not in DPA or NPLA: L

6

= fw 2 (0 + 1)

�

:

w 6= w

R

g. In x5, Example 4 of Shallit & Breitbart

(

1996

)

, it is proved that

N

L

6

(n) = �(n) and A

L

6

(n) = 
(2

n=2

).

Example 7. A CFL in DPA, but not in NPLA: L

7

= f0

n

1

n

: n � 0g. In x5,

Example 1 of Shallit & Breitbart

(

1996

)

, it is proved that A

L

7

(n) = �(n). In

Proposition 3.2 above, we showed that N

L

7

= 
(n).

Example 8. A non-regular CFL in DPA and NPLA: L

8

= fw 2 (0 + 1)

�

:

jwj

0

6= jwj

1

g. In Theorem 17 of Shallit & Breitbart

(

1996

)

it is shown that

N

L

8

(n) = O((log n)

2

=(log log n)). On the other hand, it is easy to show that

A

L

8

(n) = n + 1.

6. Automaticity and context-free languages

In this section we brie
y discuss the automaticity of context-free languages.

As shown in Theorem 5 of Shallit & Breitbart

(

1996

)

, there exists a CFL L

s

such that A

L

s

(n) = b(n + 3)=2c. By a theorem of Karp

(

1967

)

, we know that

if L is nonregular, then A

L

(n) � (n + 3)=2 for in�nitely many n, so L

s

is the

language of essentially the lowest-possible deterministic automaticity. On the

other hand, in x5, Example 4 of Shallit & Breitbart

(

1996

)

, it is shown that the

CFL L

4

= fw 2 (0 + 1)

�

: w 6= w

R

g has automaticity A

L

4

(n) = 
(2

n=2

). This

raises the question, what is the maximum possible deterministic automaticity

for a context-free language over f0; 1g?



Automaticity III 15

We know from Theorem 9 of Shallit & Breitbart

(

1996

)

that if L � (0+1)

�

,

thenA

L

(n) = O(2

n

=n). We have not been able to �nd a CFL with deterministic

automaticity 
(2

n

=n), but in the following theorem we construct a sequence of

languages with deterministic automaticity arbitrarily close to 2

n

:

Theorem 6.1. For all real � > 0, there exists a CFL of deterministic auto-

maticity 
(2

n(1��)

).

Proof. First, we introduce the following notation. If w is a string with

jwj = n, then by w

�i

, (1 � i � n) we mean the symbol w

n�i+1

.

To prove the result, we will show that for all integers r � 1, there exists a

language L

r

of automaticity 
(2

brn=(r+1)c�r

). Let

L

r

= fw 0 1

a

0

b

: w 2 (0 + 1)

�

; 1 � a � r; b � 0; w

�(rb+a)

= 1g:

First, we claim that L

r

is a CFL for all r � 1. To see this, consider a PDA

M that reads the symbols of w and puts them on its stack. When it sees a 0

in the input, it (nondeterministically) can choose to enter a state in which it

pops symbols o� the stack (1 symbol, if it sees a 1 in the input; r symbols if it

sees a 0 in the input). If the last symbol popped o� the stack is a 1, M may

(nondeterministically) choose to accept. We leave it to the reader to verify that

M accepts L

r

.

We now prove that A

L

r

(n) � 2

brn=(r+1)c�r

. To do this, we exhibit an n-

dissimilar string set S = S

n;r

of cardinality 2

brn=(r+1)c�r

.

Assume n � r + 5, so that brn=(r + 1)c � r � 1, and de�ne

S = S

n;r

= fw : jwj = brn=(r + 1)c � rg:

Pick two distinct strings from S, say x and y. There must be some position k

at which x and y di�er, say x

�k

6= y

�k

. Clearly 1 � k � brn=(r + 1)c � r by

construction. Without loss of generality, assume x

�k

= 1 and y

�k

= 0. Write

k = rb + a with 1 � a � r and 0 � b � n=(r + 1)� 1.

Consider z = 0 1

a

0

b

. Then clearly xz 2 L, but yz 62 L. Also,

jxzj = jyzj =

�

rn

r + 1

�

� r + a+ b+ 1

�

�

rn

r + 1

�

� r + r +

n

r + 1

� 1 + 1

=

�

rn

r + 1

�

+

n

r + 1

� n;



16 Ian Glaister & Je�rey Shallit

so x and y are n-dissimilar.

To complete the proof, take r = d2=�e. Then for n � (r + 1)

2

, we have

A

L

r

(n) � 2

n(1��)

.

2

7. Acknowledgments.

This paper is based in part on the M. Math. thesis of the �rst author (Glaister

(

1995

)

). A preliminary version was presented at the 21st International Sym-

posium on Mathematical Foundations of Computer Science (1996) in Krak�ow,

Poland as Glaister & Shallit

(

1996

)

. Jean-Paul Allouche and Jonathan Buss

read a draft of this paper and o�ered several corrections. We would like to

thank the referees for an extremely careful reading of this paper.

References

A. V. Aho, J. D. Ullman, and M. Yannakakis, On notions of information

transfer in VLSI circuits. In Proc. Fifteenth Ann. ACM Symp. Theor. Comput.

ACM, 1983, 133{139.

A. Condon, L. Hellerstein, S. Pottle, and A. Wigderson, On the power

of �nite automata with both nondeterministic and probabilistic states. In Proc.

Twenty-sixth Ann. ACM Symp. Theor. Comput. ACM, 1994, 676{685.

C. Dwork and L. Stockmeyer, On the power of 2-way probabilistic �nite state

automata. In Proc. 30th Ann. Symp. Found. Comput. Sci. IEEE Press, 1989, 480{

485.

C. Dwork and L. Stockmeyer, A time complexity gap for two-way probabilistic

�nite-state automata. SIAM J. Comput. 19 (1990), 1011{1023.

I. Glaister, Automaticity and closure properties. Master's thesis, University of

Waterloo, 1995.

I. Glaister and J. Shallit, Polynomial automaticity, context-free languages, and

�xed points of morphisms. In Proc. 21st Annual Symposium, Mathematical Founda-

tions of Computer Science, MFCS '96, ed. W. Penczek and A. Sza las, vol. 1113

of Lecture Notes in Computer Science, 382{393. Springer-Verlag, 1996.

J. E. Hopcroft and J. D. Ullman, Introduction to AutomataTheory, Languages,

and Computation. Addison-Wesley, 1979.



Automaticity III 17

J. Kaneps and R. Freivalds, Minimal nontrivial space complexity of probabilistic

one-way Turing machines. In MFCS '90 (Mathematical Foundations of Computer

Science), ed. B. Rovan, vol. 452 of Lecture Notes in Computer Science, 355{361.

Springer-Verlag, 1990.

J. Kaneps and R. Freivalds, Running time to recognize nonregular languages

by 2-way probabilistic automata. In ICALP '91 (18th International Colloquium on

Automata, Languages, and Programming), ed. J. Leach Albert, B. Monien, and

M. Rodr

�

�guez Artalejo, vol. 510 of Lecture Notes in Computer Science, 174{185.

Springer-Verlag, 1991.

R. M. Karp, Some bounds on the storage requirements of sequential machines and

Turing machines. J. Assoc. Comput. Mach. 14 (1967), 478{489.

C. Pomerance, J. M. Robson, and J. O. Shallit, Automaticity II: Descrip-

tional complexity in the unary case. To appear, Theoret. Comput. Sci., 1996.

J. Shallit, Automaticity IV: Sequences, sets, and diversity. To appear, J. Th�eorie

des Nombres de Bordeaux, 1996.

J. Shallit and Y. Breitbart, Automaticity: Properties of a measure of descrip-

tional complexity. In STACS 94: 11th Annual Symposium on Theoretical Aspects

of Computer Science, ed. P. Enjalbert, E. W. Mayr, and K. W. Wagner, vol.

775 of Lecture Notes in Computer Science, 619{630. Springer-Verlag, 1994.

J. Shallit and Y. Breitbart, Automaticity I: Properties of a measure of descrip-

tional complexity. To appear, J. Comput. System Sci., 1996.

A. C. Yao, Some complexity questions reltated to distributive computing. In Proc.

Eleventh Ann. ACM Symp. Theor. Comput. ACM, 1979, 209{213.

S. Yu, Q. Zhuang, and K. Salomaa, The state complexities of some basic oper-

ations on regular languages. Theoret. Comput. Sci. 125 (1994), 315{328.

Manuscript received December 14, 1995

Ian Glaister

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1

Canada

Jeffrey Shallit

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 3G1

Canada

shallit@graceland.uwaterloo.ca



18 Ian Glaister & Je�rey Shallit

Current address of Ian Glaister:

Array Systems Computing, Inc.

1120 Finch Avenue West

8th Floor

North York, ON M3J 3H7

Canada

ian@array.ca


