
Hamoon Mousavi
March 9, 2015

Walnut
User Manual

	 Installation
You need to have Java installed on your machine. The rest is easy. Unzip the folder named
Walnut.zip. Then open the terminal, if you are on OS X or Linux, or command prompt, if you
are on Windows. Change the directory to …/Walnut/bin. To run the program write:

>java Main.prover

To exit the program write:

>exit;	

	 Commands
Every command ends in either semicolon(;) or colon (:). If you want to see all the steps of the
computation use colon otherwise use semicolon. Whitespace is ignored. You can also span one
single command into multiple lines to improve readability. So for example you can write the
followings interchangeably:

>eval test “a=b+1”;

>eval test

“a=b+1”;

>eval test “a

=b+1”;

Here is the full list of commands:

eval <name> <predicate>

def <name> <predicate>

reg <name> <number system> <regular expression>

reg <name> <alphabet> <regular expression>

load <file name>

exit

USER MANUAL - WALNUT "1

eval command
This is the most important command. This command has two arguments. The first argument is a
name for the evaluation. Name of the evaluation starts with a letter and can contain
alphanumerics and underscore. The second argument is a predicate that we want to evaluate.
Predicates are always place between quotation marks. Let’s see an example.

>eval test “b=a+1”;

This evaluates to an automaton with 2 binary inputs labeled a and b. The automaton accepts
only if b = a+1. This automaton will be drawn and saved in the “Result” directory under the file
named test.gv:

As can be seen, inputs are ordered lexicographically, i.e., a is the first input and b is the second
input. To see this graph drawing of the automaton, you need to have the graph visualization
software called Graphviz installed on your system. Graphviz is free and can be installed on all
platforms.

Walnut generates two other files as the outcomes of this evaluation: test.txt and test_log.txt. They
both can be found in the “Result” directory. The first file is test.txt which is the description of the
automaton depicted in test.gv:

USER MANUAL - WALNUT "2

The first line of test.txt indicates that the first and second inputs are both in most significant
digits first and that they are in base 2, i.e., binary. The second line has two numbers. The first
number is the state label and the second number is the state output. In this case, state 0 has
output 0 which means it is non accepting. Lines 3-5 are the transitions from state 0. So for
example, on state 0 and input (0,0) the automaton remains in state 0. The automaton transits to
state 1, if it sees (0,1). Line 6 is another state declaration. It says that state 1 is accepting. States
with zero as their output are non-accepting, whereas any other number as state output indicates
an accepting state.

The file test_log.txt contains the details of the computation including the intermediate steps and
the time each of those steps took to complete. In our example, there are not many intermediate
steps involved:

USER MANUAL - WALNUT "3

Let’s see a more interesting example:

>eval squares_in_thue_morse_word “Ak k < n => T[i+k]=T[i+n+k]”

The result of this evaluation is an automaton with two inputs (i,n). The automaton accepts (i,n) if
there is a square starting at position i of order n in the Thue-Morse word, i.e., T[i..i+n-1]=T[i
+n..i+2n-1]. The A in the beginning of the predicate is the for all quantification. You can read
the predicate as follows:

	 “Give me the automaton that accepts (i,n)’s for which for all k < n the symbols T[i+k]
and T[i+n+k] are equal.”

Now if we want to know all length n’s for which there exists a square of length n in the Thue-
Morse sequence, we simply use the existential quantifier E:

>eval order_of_squares_in_thue_morse_word “Ei Ak k < n => T[i+k]=T[i+n+k]”

So you can read the predicate as follows:

	 “Give me the automaton that accepts n’s for which there exists an index i for which for all
k’s less that n the symbols T[i+k] and T[i+n+k] are equal.”

Here is the order_of_squares_in_thue_morse_word.gv:

USER MANUAL - WALNUT "4

We know that the Thue-Morse word avoids overlaps. How do we make sure of that with Walnut?

>eval overlaps_in_thue_morse “n > 0 & Ak k <= n => T[i+k]=T[i+n+k]”

The result is

Which means that

	 “There is no (i,n) for which T[i..i+n] = T[i+n..i+2n].”

The definition for T can be found in the file T.txt in the directory “Word Automata Library”.
You can add your own words to this directory and use them as part of the eval command. The
other words that are defined for you includes fibonacci word and paperfolding words.

Is binary the only base we can use with Walnut? The answer is no. You can use base n for all n’s.
In addition, you can use Fibonacci and tribonacci bases. The good news is that you can even
define your own exotic number systems. Just follow the examples in the directory “Custom
Bases”. You can find more information in the section Custom Bases.

How to use bases other than binary?

>eval ternary_example “?lsd_3 a < 5”;

This results in

USER MANUAL - WALNUT "5

The automaton accepts exactly those words representing numbers 0,1,2,3, and 4 in the least
significant digit ternary base: 0*,10*,20*,10*,110*. Note the trailing zeros in the representations!

Let’s see another example, this time on the fibonacci word:

>eval order_of_squares_in_fibonacci_word “?msd_fib Ei Ak k < n => F[i+k]=F[i+n+k]”;

This evaluates to an automaton that accepts only n’s, in most significant fibonacci, for which
there exists a square of order n starting at position i in the fibonacci word. The result is

The automaton accepts 0*10*. These are the fibonacci representations of 0,1,2,3,5,8,13, … .

def command
This command has the exact same syntax as eval. The only difference is that the automaton
outcome of the evaluation is saved in an automata library for later use. As an example consider
the following command:

>eval nonsense “a = 3*((b+3)/2)”;

You can break it into the following commands:

>def core “x =(y+3)/2”;

>eval nonsense “Ec a = 3*c & $core(c,b)”;

Now suppose the nonsense we want to compute is the following:

>eval nonsense “a = 3*((b+4)/2)”;

USER MANUAL - WALNUT "6

If instead we want to make use of our library automaton, we could write

>eval nonsense “Ec a = 3*c & $core(c,b+1)”;

So we can pass any proper predicate as an argument to a library automaton. The only limitation
is that the automaton result of the predicate passed as an argument must have only one input.

So where do we save core? We save it as core.txt in the directory “Automata Library”. You can
write your own automata in text files and save them in this directory for later use. Just make sure
that the text files have UTF-16 encoding. Don’t forget the dollar sign when you are referring to
your library automaton.

reg command (and paperfolding sequence)
This command provides yet another way of defining an automaton. Just as an example, suppose
we want to have an automaton accepting (a,b) where a is the largest power of 2 not greater than
b. First we can define an automaton accepting only powers of 2:

>reg powerOf2 msd_2 “10*”;

The result is saved in “Automata Library” directory for late use. Now we can use our powerOf2
automaton as follows:

>eval largestPowerOf2 “b >= a & b < 2*a & $powerOf2(a)”;

To see the syntax of regular expressions we use in Walnut please refer to

	 http://www.brics.dk/automaton/doc/index.html

We use this very neat automata library for automata minimization and regular expressions.

USER MANUAL - WALNUT "7

http://www.brics.dk/automaton/doc/index.html

Sometimes some or all inputs of an automaton are not numbers. For example if you are familiar
with the paperfolding sequences, you’ll know that we need a folding instruction and an index:
PF[f][i]. The folding instruction f is just a combination of 1 and -1 which tells us which way to
fold. So it does not belong to any number system. We can compute the symbol at position i of the
paperfolding sequence with folding instruction f using the following automaton, provided that

in other words provided that enough folding instructions are provided (for more information refer
to our paper “A New Approach to Paperfolding Sequences”):

The * symbol is our wildcard matching symbol. The first input is the folding instruction an is
defined over {-1,1}, and the second input is the index in least significant binary representation.
How do we define this automaton in Walnut?

USER MANUAL - WALNUT "8

We create PF.txt as above and put it in “Word Automata Library”. Look at the first line of this
file. It says that the first input is defined over {-1,1} and the second input is in least significant
binary. The rest should be easy to understand. Note that all automata defined in “Word
Automata Library” are automata with output, whereas all automata defined in “Automata
Library” are ordinary automata.

Let’s see an example of paperfolding sequence evaluation in Walnut. We would like to find the
order of squares in all paperfolding sequences:

>reg endsIn2Zeros lsd_2 “(0|1)*00”;

This automaton accepts only binaries ending in 2 zeros when represented in least significant digit
first representation. We use this automaton to make sure indices to papferfolding sequences are
always within the limits of the folding instructions provided.

>eval orderOfSquaresInPaperfoldingSequences “?lsd_2 n > 0 & Ef,i i >= 1 & $endsIn2Zeros(i)
& $endsIn2Zeros(n) & (Ak k<n => PF[f][i+k] = PF[f][i+k+n])”;

The result is the following:

Which means that the only squares appearing in any paperfolding sequence are of order 1,3, and
5.

Let’s get back to reg command. You can use reg command without any number system:

>reg noNumberSystemReg {2,3} “2.*2”;

USER MANUAL - WALNUT "9

So noNumberSystemReg will be the following automaton (. means any character):

One last thing you should know about reg command is that your regular expressions are always
defined over {0,1,2,…,9}. So whatever regular expression your write, Walnut computes its
intersection with {0,1,2,…,9}*.

List of operators
So you might wonder what are all of the operators you can use in a predicate and what are their
precedences. Here is the list of all operators, starting with the most precedent and ending with
the least precedent:

USER MANUAL - WALNUT "10

*: multiplication by a constant
 /: division by a constant
 +: addition
 -: subtraction
 =: equal
 !=: not equal
 <: less than

>: greater than
 <=: less than or equal
 >=: greater than or equal
 ~: negation of an automaton
 `: reverse of an automaton
 &: logical and
 |: logical or
 ^: exclusive or
 =>: implies
 <=>: equivalence
 E: there exits (can be used with multiple variables Ea,b,c)
 A: for all (can be used with multiple variables Aa,b,c)

Parentheses overrides any precedence.

Constants
There are two types of constants in a predicate: numbers and alphabet symbols. To indicate an
alphabet symbol use @. So for example, we can write

>eval onesInThueMorse “T[a] = @1”;

This gives us:

USER MANUAL - WALNUT "11

USER MANUAL - WALNUT "12

