## Parikh Matrices

#### Mike Müller

Institut für Informatik Christian-Albrechts-Universität zu Kiel D-24098 Kiel, Germany



23. April 2013

## Parikh Vectors

Let  $\Sigma = \{a_1, a_2, \dots, a_k\}$  be an ordered alphabet.

The **Parikh vector** of a word  $w \in \Sigma^*$  is defined as

$$\Psi(w) = (|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_n}).$$

**Example:**  $\Sigma = \{a, b, c\}, w = abbcabac, \Psi(w) = (3, 3, 2)$ 

Mapping  $w \mapsto \Psi(w)$  is obviously **not injective**.

Every  $v \in \mathbb{N}^k$  is Parikh vector of a word  $w \in \Sigma^*$ .

## Parikh Matrices

Let  $\Sigma = \{a_1, a_2, \dots, a_k\}$  be an ordered alphabet. For simplicity, let k = 3 and  $\Sigma = \{a, b, c\}$  here.

The **Parikh matrix** of a word  $w \in \Sigma^*$  is a 4 × 4 upper triangular matrix, defined as

$$\Psi_M(w) = egin{pmatrix} 1 & |w|_a & |w|_{ab} & |w|_{abc} \ 0 & 1 & |w|_b & |w|_{bc} \ 0 & 0 & 1 & |w|_c \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Then for a word  $w = w_1 w_2 w_3 \cdots w_n$ , we have:

$$\Psi_M(w) = \Psi_M(w_1)\Psi_M(w_2)\Psi_M(w_3)\cdots\Psi_M(w_n)$$

CAU Mike Müller Parikh Matrices 23. April 2013

# Properties of the Parikh Matrix Mapping

Mapping  $w \mapsto \Psi_M(w)$  is also not injective:

$$\Psi_M(\mathit{cab}) = egin{pmatrix} 1 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 \end{pmatrix} = \Psi_M(\mathit{acb})$$

But this mapping is not surjective:

$$M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

is not a parikh matrix!

## Problem: Is a given Matrix M a Parikh Matrix?

Easy for binary Alphabet: M is parikh matrix iff  $|w|_a \cdot |w|_b \ge |w|_{ab}$ .

For larger alphabets: Only algorithm with runtime polynomial in |w|known.

But input (matrix) is of size  $\mathcal{O}(\log |w|)!$ 

 $\Rightarrow$  Exponential in inputsize!

#### Can we do better?