Are there patterns which are 6-avoidable but not 5-avoidable?

James D. Currie

University of Winnipeg

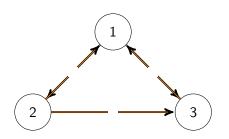
April 14, 2013

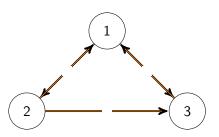
• We say that word w **encounters** pattern p if, for some non-erasing morphism h, h(p) is a factor of w.

- We say that word w encounters pattern p if, for some non-erasing morphism h, h(p) is a factor of w.
- Otherwise, w avoids p.

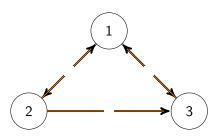
- We say that word w encounters pattern p if, for some non-erasing morphism h, h(p) is a factor of w.
- Otherwise, w avoids p.
- Pattern p is k-avoidable if there are infinitely many words over $\{1, 2, ..., k\}$ which avoid p.

- We say that word w **encounters** pattern p if, for some non-erasing morphism h, h(p) is a factor of w.
- Otherwise, w avoids p.
- Pattern p is k-avoidable if there are infinitely many words over $\{1, 2, ..., k\}$ which avoid p.
- The classic example is that xx is 3-avoidable but not 2-avoidable.





• No infinite word over $\{1, 2, 3\}$ walkable on this graph avoids xx.



- No infinite word over $\{1, 2, 3\}$ walkable on this graph avoids xx.
- Any infinite squarefree words walkable on this graph must have final segments concatenated from 31, 312, 3121.

• Pattern p = abwbcxcaybazac is not 3-avoidable.

- Pattern p = abwbcxcaybazac is not 3-avoidable.
- Suppose w is a recurrent infinite word over $\{1, 2, 3\}$ avoiding p.

- Pattern p = abwbcxcaybazac is not 3-avoidable.
- Suppose w is a recurrent infinite word over $\{1, 2, 3\}$ avoiding p.
- Then w cannot contain all of the factors 12, 23, 31, 21, 13 or some non-erasing morphism extending $a \to 1$, $b \to 2$, $c \to 3$ will show that w encounters p.

- Pattern p = abwbcxcaybazac is not 3-avoidable.
- Suppose w is a recurrent infinite word over $\{1, 2, 3\}$ avoiding p.
- Then w cannot contain all of the factors 12, 23, 31, 21, 13 or some non-erasing morphism extending $a \to 1$, $b \to 2$, $c \to 3$ will show that w encounters p.
- Then w can be walked on the graph of the previous slide, and some square qq is a factor of w infinitely often.

- Pattern p = abwbcxcaybazac is not 3-avoidable.
- Suppose w is a recurrent infinite word over $\{1, 2, 3\}$ avoiding p.
- Then w cannot contain all of the factors 12, 23, 31, 21, 13 or some non-erasing morphism extending $a \to 1$, $b \to 2$, $c \to 3$ will show that w encounters p.
- Then w can be walked on the graph of the previous slide, and some square qq is a factor of w infinitely often.
- Then $a \rightarrow q$, $b \rightarrow q$, $c \rightarrow q$ extends to a non-erasing morphism witnessing that w encounters p.

- Then w can be walked on the graph of the previous slide, and some square qq is a factor of w infinitely often.
- Then $a \rightarrow q$, $b \rightarrow q$, $c \rightarrow q$ extends to a non-erasing morphism witnessing that w encounters p.
- It follows that *p* is not 3-avoidable.

- Then w can be walked on the graph of the previous slide, and some square qq is a factor of w infinitely often.
- Then $a \rightarrow q$, $b \rightarrow q$, $c \rightarrow q$ extends to a non-erasing morphism witnessing that w encounters p.
- It follows that *p* is not 3-avoidable.
- Dean's word (fixed point of $0 \rightarrow 01$, $1 \rightarrow 23$, $2 \rightarrow 03$, $3 \rightarrow 21$) avoids p.

- Then w can be walked on the graph of the previous slide, and some square qq is a factor of w infinitely often.
- Then $a \rightarrow q$, $b \rightarrow q$, $c \rightarrow q$ extends to a non-erasing morphism witnessing that w encounters p.
- It follows that *p* is not 3-avoidable.
- Dean's word (fixed point of $0 \rightarrow 01$, $1 \rightarrow 23$, $2 \rightarrow 03$, $3 \rightarrow 21$) avoids p.
- Theorem (1989 Baker, McNulty, Taylor) Pattern *p* is 4-avoidable but not 3-avoidable.

• The pattern p = abubawacxbcycdazdcd is 5-avoidable, but not 4-avoidable (Clark, 2001).

- The pattern p = abubawacxbcycdazdcd is 5-avoidable, but not 4-avoidable (Clark, 2001).
- Is there a pattern which is 6-avoidable but not 5-avoidable?

- The pattern p = abubawacxbcycdazdcd is 5-avoidable, but not 4-avoidable (Clark, 2001).
- Is there a pattern which is 6-avoidable but not 5-avoidable?
- Is there, for each $k \ge 1$, a pattern which is (k + 1)-avoidable but not k-avoidable?

- The pattern p = abubawacxbcycdazdcd is 5-avoidable, but not 4-avoidable (Clark, 2001).
- Is there a pattern which is 6-avoidable but not 5-avoidable?
- Is there, for each $k \ge 1$, a pattern which is (k + 1)-avoidable but not k-avoidable?
- If an avoidable pattern p contains at most α distinct letters, then p is $(\alpha + 5)$ -avoidable. (Mel'nichuk, 1988)