L'. Balková, E. Pelantová, Š. Starosta

Department of mathematics FNSPE CTU in Prague

April 25, 2013

Program

1 Defect and complexities

2 The Brlek-Reutenauer conjecture step by step

3 Proof of the Brlek-Reutenauer conjecture

- \blacksquare a finite word $w = w_0 w_1 \dots w_n$
- \blacksquare an infinite word $\mathbf{u} = u_0 u_1 u_2 \dots$

Factor and palindromic complexity

Let **u** be an infinite word

lacksquare factor complexity $\mathcal{C}_{\mathbf{u}}: \mathbb{N} \to \mathbb{N}$

 $C_{\mathbf{u}}(n) = \text{the number of factors of length } n \text{ of } \mathbf{u}$

palindromic complexity $\mathcal{P}_{\mathbf{u}}: \mathbb{N} \to \mathbb{N}$

 $\mathcal{P}_{\mathbf{u}}(n)=$ the number of palindromes of length n contained in \mathbf{u}

Theorem (Baláži, Masáková, Pelantová, 2007)

Let u be an infinite word with language closed under reversal, then

$$\mathcal{P}_{\mathbf{u}}(n) + \mathcal{P}_{\mathbf{u}}(n+1) \le \mathcal{C}_{\mathbf{u}}(n+1) - \mathcal{C}_{\mathbf{u}}(n) + 2$$
 for all $n \in \mathbb{N}$.

Factor and palindromic complexity

Let u be an infinite word

a factor complexity $C_u : \mathbb{N} \to \mathbb{N}$

 $C_{\mathbf{u}}(n)$ = the number of factors of length n of \mathbf{u}

palindromic complexity $\mathcal{P}_{\mathbf{u}}: \mathbb{N} \to \mathbb{N}$

 $\mathcal{P}_{\mathbf{u}}(n)=$ the number of palindromes of length n contained in \mathbf{u}

Theorem (Baláži, Masáková, Pelantová, 2007)

Let \mathbf{u} be an infinite word with language closed under reversal, then

$$\mathcal{P}_{\mathbf{u}}(n) + \mathcal{P}_{\mathbf{u}}(n+1) \leq \mathcal{C}_{\mathbf{u}}(n+1) - \mathcal{C}_{\mathbf{u}}(n) + 2$$
 for all $n \in \mathbb{N}$.

Defect

Proposition (Droubay, Justin, Pirillo, 2001)

Every finite word w contains at most |w|+1 palindromes (including the empty word).

Definition (Brlek, Hamel, Nivat, Reutenauer, 2004)

Let w be a finite word, then **defect** of w is

$$D(w) = |w| + 1$$
 — the number of palindromes contained in w .

Let u be an infinite word, then defect of u is

$$D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a prefix of } \mathbf{u}\}.$$

Defect

Proposition (Droubay, Justin, Pirillo, 2001)

Every finite word w contains at most |w|+1 palindromes (including the empty word).

Definition (Brlek, Hamel, Nivat, Reutenauer, 2004)

Let w be a finite word, then **defect** of w is

$$D(w) = |w| + 1$$
 – the number of palindromes contained in w .

Let \mathbf{u} be an infinite word, then **defect** of \mathbf{u} is

$$D(\mathbf{u}) = \sup\{D(w) \mid w \text{ is a prefix of } \mathbf{u}\}.$$

Program

1 Defect and complexities

Relation of defect and complexities

Denote

$$T_{\mathbf{u}}(n) = \mathcal{C}_{\mathbf{u}}(n+1) - \mathcal{C}_{\mathbf{u}}(n) + 2 - \mathcal{P}_{\mathbf{u}}(n) - \mathcal{P}_{\mathbf{u}}(n+1).$$

Theorem (Bucci, De Luca, Glen, Zamboni, 2009)

Let \mathbf{u} be an infinite word with language closed under reversal, then $D(\mathbf{u})=0$ if and only if $T_{\mathbf{u}}(n)=0$ for all $n\in\mathbb{N}$.

Program

- 1 Defect and complexities
- 2 The Brlek-Reutenauer conjecture step by step

3 Proof of the Brlek-Reutenauer conjecture

Conjecture (Brlek, Reutenauer, 2011)

Let \mathbf{u} be an infinite word with language closed under reversal, then

$$\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u}).$$

Proof done ibidem

- for finite words,
- for periodic words,
- for words with zero defect (using Theorem of Bucci et al.).

Conjecture (Brlek, Reutenauer, 2011)

Let \mathbf{u} be an infinite word with language closed under reversal, then

$$\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u}).$$

Proof done ibidem

- for finite words.
- for periodic words,
- for words with zero defect (using Theorem of Bucci et al.).

■ Let w be a finite word, then

$$D(w) = \sum_{n=0}^{|w|} T_w(n).$$

■ Since $D(w) \le D(v)$ for any factor w of v,

$$\lim_{N\to\infty} D(u^{(N)}) = \sup_{N} D(u^{(N)}) = D(\mathbf{u}).$$

Let w be a finite word, then

$$D(w) = \sum_{n=0}^{|w|} T_w(n).$$

■ Since $D(w) \le D(v)$ for any factor w of v,

$$\lim_{N\to\infty} D(u^{(N)}) = \sup_{N} D(u^{(N)}) = D(\mathbf{u}).$$

Therefore

$$D(\mathbf{u}) = \lim_{N \to \infty} \sum_{n=0}^{N} T_{u(N)}(n) = \lim_{N \to \infty} \sum_{n=0}^{N} T_{\mathbf{u}}(n).$$

Let w be a finite word, then

$$D(w) = \sum_{n=0}^{|w|} T_w(n).$$

■ Since $D(w) \le D(v)$ for any factor w of v,

$$\lim_{N\to\infty} D(u^{(N)}) = \sup_{N} D(u^{(N)}) = D(\mathbf{u}).$$

Therefore

$$D(\mathbf{u}) = \lim_{N \to \infty} \sum_{n=0}^{N} T_{\mathbf{u}^{(N)}}(n) = \lim_{N \to \infty} \sum_{n=0}^{N} T_{\mathbf{u}}(n).$$

Difference between sums

■ The following two expressions are not equal

$$\sum_{n=0}^{N} T_{u^{(N)}}(n) = \sum_{n=0}^{N} C_{u^{(N)}}(n+1) - C_{u^{(N)}}(n) + 2 - P_{u^{(N)}}(n) - P_{u^{(N)}}(n+1)$$

$$\sum_{n=0}^{N} T_{\mathbf{u}}(n) = \sum_{n=0}^{N} C_{\mathbf{u}}(n+1) - C_{\mathbf{u}}(n) + 2 - \mathcal{P}_{\mathbf{u}}(n) - \mathcal{P}_{\mathbf{u}}(n+1)$$

Consider $\mathbf{u} = (0120210)^{\omega}$, then

$$\sum_{n=0}^{3} T_{u^{(3)}}(n) = 0 = 2D(u^{(3)}), \text{ but } \sum_{n=0}^{3} T_{\mathbf{u}}(n) = 2.$$

The Brlek-Reutenauer conjecture - partial proof

Theorem (Balková, Pelantová, Starosta, 2011)

Let \mathbf{u} be a uniformly recurrent infinite word with language closed under reversal, then the Brlek-Reutenauer conjecture holds for \mathbf{u} .

Proof.

Construction of a periodic word \mathbf{v} with language closed under reversal such that $D(\mathbf{v}) = D(\mathbf{u})$ and $T_{\mathbf{v}}(n) = T_{\mathbf{u}}(n)$. Use of validity of the BR conjecture for periodic words.

The Brlek-Reutenauer conjecture - partial proof

Theorem (Balková, Pelantová, Starosta, 2011)

Let \mathbf{u} be a uniformly recurrent infinite word with language closed under reversal, then the Brlek-Reutenauer conjecture holds for \mathbf{u} .

Proof.

Construction of a periodic word \mathbf{v} with language closed under reversal such that $D(\mathbf{v}) = D(\mathbf{u})$ and $T_{\mathbf{v}}(n) = T_{\mathbf{u}}(n)$. Use of validity of the BR conjecture for periodic words.

Lemma (essential property of uniformly recurrent words)

Let \mathbf{u} be a uniformly recurrent infinite word with finite defect. Then the set $\{w|ww\ is\ a\ factor\ of\ \mathbf{u}\}$ is infinite.

The Brlek-Reutenauer conjecture - partial proof

Theorem (Balková, Pelantová, Starosta, 2011)

Let **u** be a uniformly recurrent infinite word with language closed under reversal, then the Brlek-Reutenauer conjecture holds for **u**.

Proof.

Construction of a periodic word v with language closed under reversal such that $D(\mathbf{v}) = D(\mathbf{u})$ and $T_{\mathbf{v}}(n) = T_{\mathbf{u}}(n)$. Use of validity of the BR conjecture for periodic words.

Lemma (essential property of uniformly recurrent words)

Let **u** be a uniformly recurrent infinite word with finite defect. Then the set $\{w | ww \text{ is a factor of } \mathbf{u}\}$ is infinite.

Program

1 Defect and complexities

- 2 The Brlek-Reutenauer conjecture step by step
- 3 Proof of the Brlek-Reutenauer conjecture

The Brlek-Reutenauer conjecture - complete proof

Theorem (Balková, Pelantová, Starosta, 2012)

The Brlek-Reutenauer conjecture holds, i.e., $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$ for every infinite word \mathbf{u} with language closed under reversal.

Proof

2 steps:

- 1 If $D(\mathbf{u}) < \infty$ and $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$, then $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$.
- 2 $D(\mathbf{u}) < \infty$ if and only if $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$.

The Brlek-Reutenauer conjecture - complete proof

Theorem (Balková, Pelantová, Starosta, 2012)

The Brlek-Reutenauer conjecture holds, i.e., $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$ for every infinite word \mathbf{u} with language closed under reversal.

Proof.

2 steps:

- I If $D(\mathbf{u}) < \infty$ and $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$, then $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$.
- 2 $D(\mathbf{u}) < \infty$ if and only if $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$.

1st step of the complete proof

Theorem (1st step)

If
$$D(\mathbf{u}) < \infty$$
 and $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$, then $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$.

- 1 $D(\mathbf{u}) = D(\mathbf{v})$ for every prefix \mathbf{v} of \mathbf{u} of length $\geq H 1$,

1st step of the complete proof

Theorem (1st step)

If
$$D(\mathbf{u}) < \infty$$
 and $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$, then $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$.

Proof.

Find H such that

- **1** $D(\mathbf{u}) = D(v)$ for every prefix v of \mathbf{u} of length $\geq H 1$,
- $T_{\mathbf{u}}(n) = 0 \text{ for all } n \geq H.$

Take any prefix p of \mathbf{u} containing all factors of length $\leq H$. Then $2D(\mathbf{u}) = 2D(p) = \sum_{n=0}^{|p|} T_p(n) = \sum_{n=0}^{H-1} T_p(n) + \sum_{n=H}^{|p|} T_p(n) = \sum_{n=0}^{H-1} T_{\mathbf{u}}(n) = \sum_{n=0}^{\infty} T_{\mathbf{u}}(n)$.

1st step of the complete proof

Theorem (1st step)

If
$$D(\mathbf{u}) < \infty$$
 and $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$, then $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) = 2D(\mathbf{u})$.

Proof.

Find H such that

- **11** $D(\mathbf{u}) = D(v)$ for every prefix v of \mathbf{u} of length $\geq H 1$,
- $T_{\mathbf{H}}(n) = 0$ for all n > H.

Take any prefix p of **u** containing all factors of length $\leq H$. Then $2D(\mathbf{u}) = 2D(p) = \sum_{n=0}^{|p|} T_p(n) = \sum_{n=0}^{H-1} T_p(n) + \sum_{n=H}^{|p|} T_p(n) =$ $\sum_{n=0}^{H-1} T_{\mathbf{u}}(n) = \sum_{n=0}^{\infty} T_{\mathbf{u}}(n).$

Thank you for attention!

References

- P. Baláži, Z. Masáková, and E. Pelantová, Factor versus palindromic complexity of uniformly recurrent infinite words, Theoret. Comput. Sci., 380 (2007), pp. 266–275.
- L. Balková, E. Pelantová, and Š. Starosta, *Proof of the Brlek-Reutenauer conjecture*, submitted to Theoret. Comput. Sci., 475 (2013), 120-125.
- L. Balková, E. Pelantová, and Š. Starosta, On the Brlek-Reutenauer conjecture, Theoret. Comput. Sci., 412 (2011), pp. 5649–5655.
- S. Brlek, S. Hamel, M. Nivat, and C. Reutenauer, *On the palindromic complexity of infinite words*, Internat. J. Found. Comput., 15 (2004), pp. 293–306.
- S. Brlek and C. Reutenauer, Complexity and palindromic defect of infinite words, Theoret. Comput. Sci., 412 (2011), pp. 493–497.
- M. Bucci, A. De Luca, A. Glen, and L. Q. Zamboni, *A connection between palindromic and factor complexity using return words*, Adv. in Appl. Math., 42 (2009), pp. 60–74.
- X. Droubay, J. Justin, and G. Pirillo, *Episturmian words and some constructions of de Luca and Rauzy*, Theoret. Comput. Sci., 255 (2001), pp. 539-553.