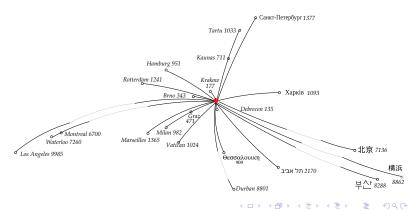
Galina Jirásková, Jozef Jirásek (and his PC:-)

Slovak Academy of Sciences and Šafárik University, Košice



Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - tight bounds for bd(L)
 - 2 5-letter alphabet
 - optimal size (?)
- Applications

Motivation I

- J. Brzozowski, E. Grant, J. Shallit: Closures in formal languages and Kuratowski's theorem [DLT 09, IJFCS 11]
 - concepts of "open" and "closed"
 - $L \subseteq \Sigma^*$ is closed if $L = L^*$
 - L is open if L^c closed
 - natural analogues of classical THMs

In point-set topology:

$$\mathrm{bd}(S) = \mathrm{closure}(S) \cap \mathrm{closure}(S^c)$$

•
$$S = \{(x, y) : x^2 + y^2 \le 1\} \Rightarrow$$

 $bd(S) = \{(x, y) : x^2 + y^2 = 1\}$

Outline

- Motivation and history
- Two problems by JS 2010

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - **1** tight bounds for bd(L)
 - 2 5-letter alphabet
 - optimal size (?)
- Applications

Motivation II

A. Salomaa, K. Salomaa, S. Yu:
State complexity
of combined operations [TCS 07]

operation	composition	complexity
$(K \cap L)^*$		$3/4 \cdot 2^{mn}$
$(K \cup L)^*$	$3/4 \cdot 2^{mn}$	$\leq 3/4 \cdot 2^{m+n}$

Combined operations [SSY 07,]				
comb. operations				
without c and \cap	$2^{O(m+n)}$			
without <i>c</i>	2 ^{poly(mn)}			
	$2^{\Theta(n \log n)}$	[JS 12]		

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - **1** tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Motivation III (for me:)

An article by Horák about Paul Erdös:

- A pop-singer needs crowds; the larger, the better...
- A researcher needs to be acknowledged by 5 people; he knows them by name.
- Horak's fives:
 Erdös, Erdös, Erdös, Erdös.
- My fives?

...

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - **1** tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Known results				
operation	complexity			
L ^c	n	[folklore]		
$K \cap L$	mn	[RS 59, Ma 70]		
L*	$3/4 \cdot 2^n$	[YZS 94]		

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - **1** tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Known results				
	operation	complexity		
	L ^c	n	[folklore]	
	$K \cap L$	mn	[RS 59, Ma 70]	
	L *	$3/4 \cdot 2^{n}$	[YZS 94]	

ound on sc of bd(1).

Trivial upper bound on sc of $\operatorname{bu}(L)$.		
operation	complexity	
<u>L</u> *	$3/4 \cdot 2^n$	
L ^c *	$3/4 \cdot 2^n$ $3/4 \cdot 2^n$ $9/16 \cdot 4^n$	
$bd(L) = L^* \cap L^{c*}$	$9/16 \cdot 4^n$	

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - \bigcirc tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Triv. upper bound for bd(L) is $9/16 \cdot 4^n$

Question: Is it attainable???

Answer: Almost!!!

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Triv. upper bound for bd(L) is $9/16 \cdot 4^n$

Question: Is it attainable???

Answer: Almost!!!

If *L* is accepted by an *n*-state DFA with *k* final states, then

$$\operatorname{sc}(L^* \cap L^{c*}) \le 2 + 2^{n-k} 2^{n-1} - 3^{n-k} 2^{k-1} + 2^{k-1} 2^{n-1} - 3^{k-1} 2^{n-k} + 4^{n-1} - \binom{n-1}{k-1},$$

which is maximal if k = 2, and it equals $3/8 \cdot 4^n + 2^{n-2} - 2 \cdot 3^{n-2} - n + 2$.

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - \bigcirc tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Triv. upper bound for bd(L) is $9/16 \cdot 4^n$

Question: Is it attainable???

Answer: Almost!!!

If *L* is accepted by an *n*-state DFA with *k* final states, then

$$\operatorname{sc}(L^* \cap L^{c*}) \le 2 + 2^{n-k} 2^{n-1} - 3^{n-k} 2^{k-1} + 2^{k-1} 2^{n-1} - 3^{k-1} 2^{n-k} + 4^{n-1} - \binom{n-1}{k-1},$$

which is maximal if k = 2, and it equals $3/8 \cdot 4^n + 2^{n-2} - 2 \cdot 3^{n-2} - n + 2$.

This upper bound is tight!!! $(|\Sigma| \ge 5)$

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

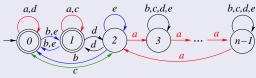
Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Worst-case example over $\{a, b, c, d, e\}$



a:
$$0 \to 0 \quad 1 \to 1$$
 cycle (2,3,4,..., $n-1$)

b:
$$0 < -> 1$$
 $2 -> 0$ $i -> i$

c:
$$0 < -> 2$$
 $i -> i$ $i -> i$

meets
$$3/8 \cdot 4^n + 2^{n-2} - 2 \cdot 3^{n-2} - n + 2$$

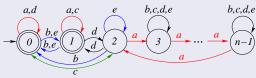
Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - \bigcirc tight bounds for bd(L)
 - 2 5-letter alphabet
 - optimal size (?)
- Applications

Worst-case example over $\{a, b, c, d, e\}$



a:
$$0 \to 0 \quad 1 \to 1$$
 cycle $(2,3,4,...,n-1)$

b:
$$0 < -> 1$$
 $2 -> 0$ $i -> i$

c:
$$0 < -> 2$$
 $i -> i$ $i -> i$ $i -> i$

meets
$$3/8 \cdot 4^n + 2^{n-2} - 2 \cdot 3^{n-2} - n + 2$$

Quaternary case:

The DFA restrited to $\{a, b, c, d\}$ meets $3/8 \cdot 4^n + 2^{n-2} - 2 \cdot 3^{n-2} - n + 1$

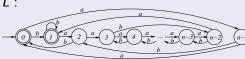
• this lower bound is tight if $|\Sigma| = 4$

Outline

- Motivation and history
- Two problems by JS 2010

 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - tight bounds for bd(L)
 - 2 5-letter alphabet
 - 3 optimal size (?)
- Applications

Binary case:



- $sc(bd(L)) \ge 1/256 \cdot 4^n$
- asymptotically tight bound $\Theta(4^n)$ if $|\Sigma| = 2, 3$

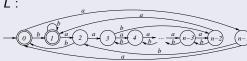
Outline

- Motivation and history
- Two problems by JS 2010

②
$$bd(L) = L^* \cap (L^c)^*$$

- Known results
- Our results
 - tight bounds for bd(L)
 - 2 5-letter alphabet
 - optimal size (?)
- Applications

Binary case:



- $sc(bd(L)) \ge 1/256 \cdot 4^n$
- asymptotically tight bound $\Theta(4^n)$ if $|\Sigma| = 2, 3$

Unary case:

- $\operatorname{bd}(L) = L^* \text{ or } \operatorname{bd}(L) = L^{c*}$
- $(n-1)^2+1$ [Yu, Zhuang, Salomaa 94]

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - tight bounds for bd(L)
 - 2 5-letter alphabet
 - optimal size (?)
- Applications

Summary

Outline

- Motivation and history
- Two problems by JS 2010
 - 1 L*c*
 - ② $bd(L) = L^* \cap (L^c)^*$
- Known results
- Our results
 - **1** tight bounds for bd(L)
 - 5-letter alphabet
 - optimal size (?)
- Applications

Applications

- Euclid and his student
- Osuský about Poincaré conjecture:

"I agree with the view of the ancient Indian religious culture that the commercial thinking is a thinking of animals, and that only thanks to the ingenious creativity, we've got to today's level..."

Jon you all more of the same o Thank You for Your Attention