The State Complexity of Permutations on Finite Languages Over Binary Alphabets

Alexandros Palioudakis¹ Da-Jung Cho¹ Daniel Goč² Yo-Sub Han¹ Sang-Ki Ko¹ Kai Salomaa²

> ¹Department of Computer Science Yonsei University

> > ²School of Computing Queen's University

Descriptional Complexity of Formal Systems, 2015

Outline

- Introduction
 - Motivation
 - Definition
- Main Results
 - Upper Bound Construction for per(L) with restriction
 - State Complexity of per(L)
- Conclusion
 - Summary
 - Open Problems

DCFS 2014, Turku, Finland

- Cho et al., Pseudo-Inversion on Formal Languages, UCNC 2014
- Cho et al., State Complexity of Inversion Operations, DCFS 2014

DCFS 2014, Turku, Finland

We proved the following theorem:

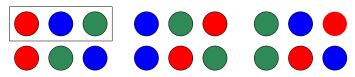
Theorem

Given a string w over Σ , $\mathbb{PI}^*(w) = \pi(w)$, where $\pi(w)$ is the set of all permutations of w.

What is the property of permutation operation?

Permutation

Permutation is well-known in combinatorics.



An example of different permutations of three distinct balls

In formal language theory, permutation per on a string w is

$$\operatorname{per}(w) = \{u \in \Sigma^* \mid |w|_a = |u|_a, \text{ for } a \in \Sigma\}.$$

Permutation

• Regular languages are not closed under permutation.

Example

Let a language $L = L(a \cdot b)^*$. Then,

$$per(L) = \{ w \mid |w|_a = |w|_b \}.$$

State Complexity

- Deterministic State Complexity (sc): the number of states in a minimal DFA.
- Nondeterministic State Complexity (nsc): the number of states in an NFA.
- State complexity of some operations:
 - $ightharpoonup \operatorname{sc}(L_1) = m \text{ and } \operatorname{sc}(L_2) = n$
 - $ightharpoonup \operatorname{sc}(L_1 \cap L_2) = mn$
 - $ightharpoonup \operatorname{sc}(L_1 \cup L_2) = mn$
 - $\operatorname{sc}(L_1)^R = 2^m$

State Complexity of Permutations on Finite Languages

- Upper bound construction for per of a binary finite language with restriction.
 - ▶ restriction: length of strings s.t. $L \subseteq \{a, b\}^{n-1}$
- State complexity of per on a binary finite language.

Lemma

Let n be a positive integer and $L \subseteq \{a, b\}^{n-1}$ be a finite language such that sc(L) = n. Then, we have the following inequality for the state complexity of the permutation of L:

$$\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^2 + n + 1}{3}$$

Let *A* be the minimal DFA for $L \subseteq \{a, b\}^{n-1}$.

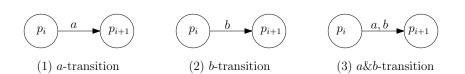
A DFA A forms a chain.

Lemma

Let n be a positive integer and $L \subseteq \{a, b\}^{n-1}$ be a finite language such that sc(L) = n. Then, we have the following inequality for the state complexity of the permutation of L:

$$\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^2 + n + 1}{3}$$

Let *A* be the minimal DFA for $L \subseteq \{a, b\}^{n-1}$.



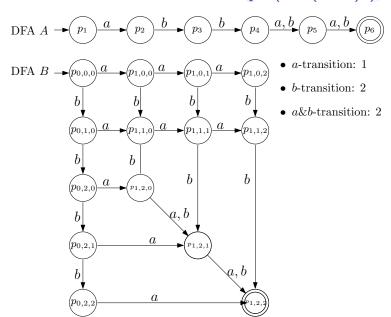
Lemma

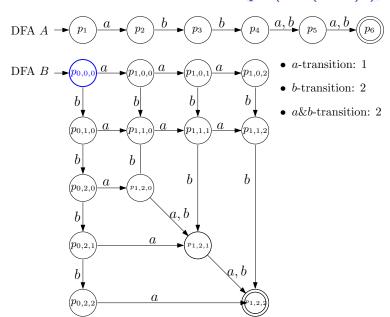
Let n be a positive integer and $L \subseteq \{a, b\}^{n-1}$ be a finite language such that sc(L) = n. Then, we have the following inequality for the state complexity of the permutation of L:

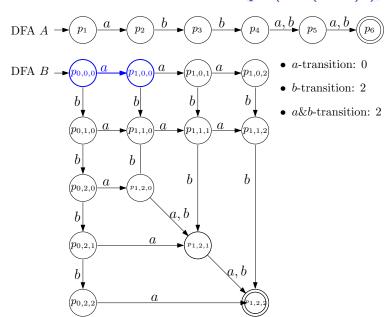
$$\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^2 + n + 1}{3}$$

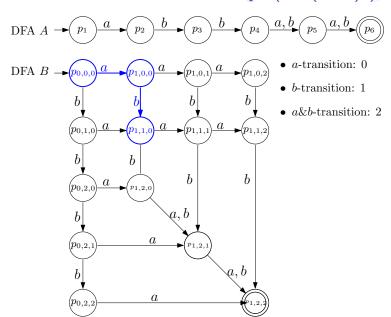
The order of a, b and a&b-transitions does not affect per(L).

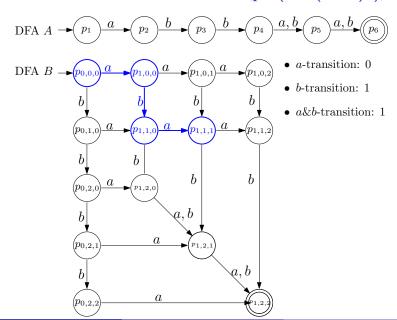
• Assume that for $i, j, k \ge 1$ and i+j+k = n-1, L is of the form $a^i b^j (a+b)^k$.

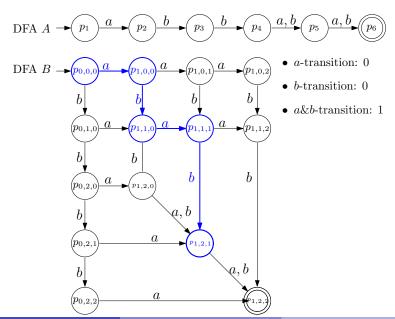


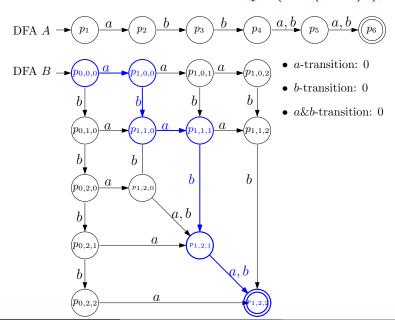


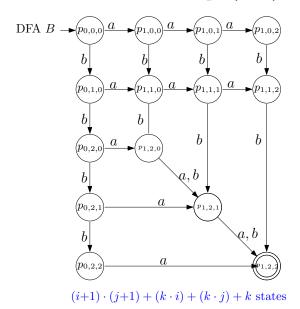












Lemma

Let n be a positive integer and $L \subseteq \{a, b\}^{n-1}$ be a finite language such that sc(L) = n. Then, we have the following inequality for the state complexity of the permutation of L:

$$\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^2 + n + 1}{3}$$

We can construct a DFA B for per(L(A)) with

$$(i+1) \cdot (j+1) + (k \cdot i) + (k \cdot j) + k$$
 states.

Lemma

Let n be a positive integer and $L \subseteq \{a, b\}^{n-1}$ be a finite language such that sc(L) = n. Then, we have the following inequality for the state complexity of the permutation of L:

$$\operatorname{sc}(\operatorname{per}(L)) \leq \frac{n^2 + n + 1}{3}$$

- Let function $f(i,j,k) = (i+1) \cdot (j+1) + (k \cdot i) + (k \cdot j) + k$.
- Then, f is maximized when $i = j = k = \frac{n-1}{3}$.

$$\max f(i,j,k) = \begin{cases} \frac{n^2 + n + 1}{3} & \text{if } n \equiv 1 \pmod{3} \\ \frac{n^2 + n}{3} & \text{otherwise} \end{cases}.$$

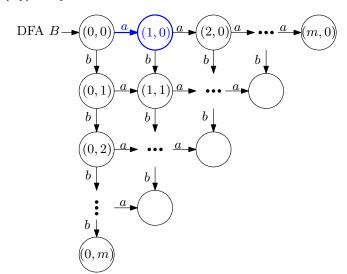
Lemma

Let L be a binary finite language and $m = \max\{|w| \mid w \in L\}$ for some positive integer m. Then, we have $\operatorname{sc}(\operatorname{per}(L)) \leq \frac{m^2 + m + 2}{2}$.

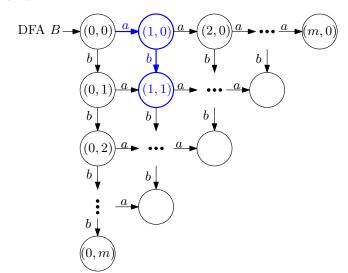
Given a DFA A for L over the binary alphabet,

- We construct a DFA B for per(L(A)).
- *B* has states of the form (i, j), for $w \in L(A)$:
 - i tracks |w|_a,
 - j tracks |w|_b.
- For all states (i,j), $i+j \leq m$.

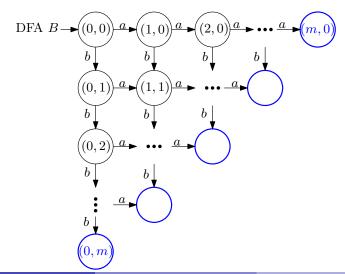
- For (i, j), i tracks $|w|_a$ and j tracks $|w|_b$.
- For (i, j), $i + j \le m$.



- For (i, j), i tracks $|w|_a$ and j tracks $|w|_b$.
- For (i, j), $i + j \le m$.



- For (i, j), i tracks $|w|_a$ and j tracks $|w|_b$.
- For (i, j), $i + j \le m$.



The total number of states of *B* for per(L(A)):

$$1+2+\cdots+m+1=\frac{m\cdot(m+1)}{2}+1$$

$$i+j = 0 \qquad (0,0)$$

$$i+j = 1 \qquad (0,1) \qquad (1,0)$$

$$i+j = 2 \qquad (0,2) \qquad (1,1) \qquad (2,0)$$

$$\vdots$$

$$i+j = m-1 \qquad (m-1,0)$$

$$i+j = m \qquad (0,m) \qquad \cdots \qquad (m,0)$$

Corollary

Let *L* be a binary finite languages and sc(L) = n for some positive integer *n*. Then, we have

$$sc(per(L)) \leq \frac{n^2-n+2}{2}.$$

Since $1+\max\{|w|\mid w\in L\}\leq \mathrm{sc}(L)$,

$$m \leq \operatorname{sc}(L) - 1 = n - 1$$
.

Then,

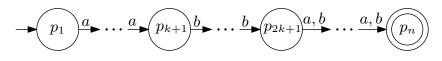
$$sc(per(L)) \le \frac{m^2 + m + 2}{2} = \frac{(n-1)^2 + (n-1) + 2}{2}.$$

Theorem

For any $n_0 \in \mathbb{N}$, there exists a regular language L with $\operatorname{sc}(L) = n$, for $n \ge n_0$, such that

$$sc(per(L)) \ge \frac{n^2 + n + 1}{3}.$$

Let $n = 3k + 1 \ge n_0, k \in \mathbb{N}$ and $L_n = L(a^k b^k (a + b)^k)$.



DFA A for L_n

Let $n=3k+1\geq n_0, k\in\mathbb{N}$ and $L_n=L(a^kb^k(a+b)^k)$. Then,

$$per(L_n) = \{ w \in \Sigma^{3 \cdot k} \mid |w|_a, |w|_b \ge k \text{ and } n = 3 \cdot k + 1 \}.$$

Let X and Y be the sets of strings:

- $X = \{a^i b^j \mid 0 \le i \le 2k \text{ and } 1 \le j \le k\},$
- $Y = \{a^i b^j \mid 0 \le i < k \text{ and } k < j \le 2k\}.$

Inequivalent check

All strings of $X \cup Y$ are pairwise inequivalent with respect to the Myhill-Nerode congruence of $per(L_n)$.

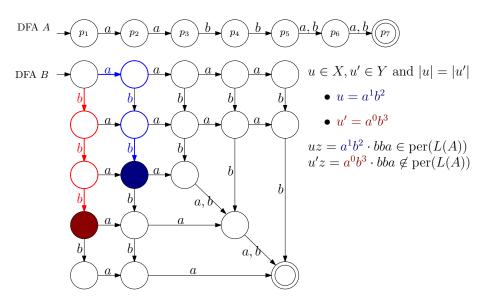
Let $u = a^i b^j$ and $u' = a^{i'} b^{j'}$ be two arbitrary distinct strings $\in X \cup Y$.

- (i) $u, u' \in X$
- (ii) $u, u' \in Y$
- (iii) $u \in X$ and $u' \in Y$

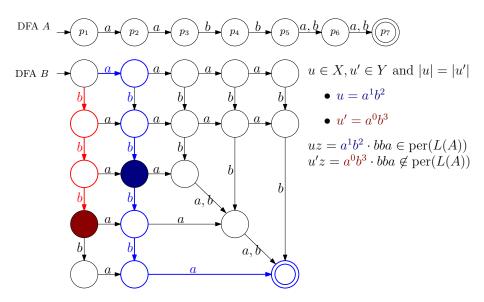
Case (iii)

- Let $u \in X$, $u' \in Y$ and |u| = |u'|.
- Because of following condition:
 - $X = \{a^i b^j \mid 0 \le i \le 2k \text{ and } 1 \le j \le k\}$
 - $Y = \{a^i b^j \mid 0 \le i < k \text{ and } k < j \le 2k\}$
- $|u|_b \le k$ and $|u'|_b > k$.
- Then, $|u|_a > |u'|_a$.
- For $z = a^{k-i}b^{2k-j}$, $uz = a^ib^j \cdot a^{k-i}b^{2k-j} \in per(L_n)$.
- But, $u'z = a^{i'}b^{j'} \cdot a^{k-i}b^{2k-j} \notin per(L_n)$.

Lower Bound for $sc(per(a^2b^2(a+b)^2))$



Lower Bound for $sc(per(a^2b^2(a+b)^2))$



Theorem

For any $n_0 \in \mathbb{N}$, there exists a regular language L with sc(L) = n, for $n \ge n_0$, such that

$$\operatorname{sc}(\operatorname{per}(L)) \geq \frac{n^2 + n + 1}{3}.$$

- $X = \{a^i b^j \mid 0 \le i \le 2k \text{ and } 1 \le j \le k\},$
- $Y = \{a^i b^j \mid 0 \le i < k \text{ and } k < j \le 2k\}.$

Thus, the # of states of the minimal DFA has at least

$$(2 \cdot k+1) \cdot (k+1)+k^2 = 3 \cdot k^2+3 \cdot k+1$$
 states.

Since
$$n = 3 \cdot k + 1$$
, $k = \frac{n-1}{3}$,

$$3 \cdot (\frac{n-1}{3})^2 + 3 \cdot (\frac{n-1}{3}) + 1 = \frac{n^2 + n + 1}{3}$$

Summary

Deterministic state complexity

- Upper bound for per(L), where $L \subseteq \{a, b\}^{n-1}$: $\frac{n^2+n+1}{3}$
- Upper bound for per(L): $\frac{n^2-n+2}{2}$
- Lower bound for per(L): $\frac{n^2+n+1}{3}$

Open Problems

- State complexity of permutation over non-binary languages
- State complexity of permutation of set of equal length strings
- Nondeterministic state complexity of permutation on finite languages

Thank you!

WELCOME TO CIAA 2016

SEOUL, SOUTH KOREA JULY 19 -- 22, 2016

