Nondeterministic Tree Width of Regular Languages

Cezar Câmpeanu*

Kai Salomaa[†]

^{*}Department of Computer Science University of Prince Edward Island CANADA

[†]School of Computer Science Queen's University, CANADA

- Nondeterminism
- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width
- ❖ Computing Tree Width

Operations

Conclusion

Measures of Non-Determinism

Nondeterminism

Measures of Non-Determinism

Nondeterminism

- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width
- Computing Tree Width

Operations

- Nondeterminism plays a fundamental role in the theory of computation.
- For some machine models, nondeterminism enhances the computational power of the model (pushdown automata), while for others it does not (Turing machines, finite automata).
- For resource bounded Turing machines, the relationship between determinism and nondeterminism leads to very difficult open problems (P vs. NP).
- Finite automata operate in real time, and the "resource" to measure is the number of states (descriptional complexity)
 - ... we can measure also nondeterminism and consider *trade-offs* between (the amount of) nondeterminism and size of the machine

Nondeterminism

Measures of Non-Determinism

Nondeterminism

- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width
- Computing Tree Width

Operations

- Nondeterminism plays a fundamental role in the theory of computation.
- For some machine models, nondeterminism enhances the computational power of the model (pushdown automata), while for others it does not (Turing machines, finite automata).
- For resource bounded Turing machines, the relationship between determinism and nondeterminism leads to very difficult open problems (P vs. NP).
- Finite automata operate in real time, and the "resource" to measure is the number of states (descriptional complexity)
 - ... we can measure also nondeterminism and consider *trade-offs* between (the amount of) nondeterminism and size of the machine

Nondeterminism

Measures of Non-Determinism

Nondeterminism

- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- Infinite vs Finite Tree Width
- Computing Tree Width

Operations

Conclusion

- Nondeterminism plays a fundamental role in the theory of computation.
- For some machine models, nondeterminism enhances the computational power of the model (pushdown automata), while for others it does not (Turing machines, finite automata).
- For resource bounded Turing machines, the relationship between determinism and nondeterminism leads to very difficult open problems (P vs. NP).
- Finite automata operate in real time, and the "resource" to measure is the number of states (descriptional complexity)

25.06.2015

...we can measure also nondeterminism and consider *trade-offs* between (the amount of) nondeterminism and size of the machine

Measures for NFAs

Measures of Non-Determinism

Nondeterminism

Measures for NFAs

- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- Infinite vs Finite Tree Width
- Computing Tree Width

Operations

Conclusion

- We measure the "amount of nondeterminism" of a *finite* automaton.
- Several approaches considered in the literature:
 - the number of accepting configurations for a given input (degree of ambiguity)
 - the number of partial computations for a given input (tree width)
 - the amount of nondeterminism on a single best (or worst) computation on a given input (branching)

- the size of look-ahead (guessing measure)
- the number of non-deterministic choices in a computation (advice measure)

Measures for Languages

Measures of Non-Determinism

- Nondeterminism
- Measures for NFAs

Measures for Languages

- Tree width
- ❖ Tree width of an NFA
- ❖ Example
- Infinite vs Finite Tree Width
- ❖ Computing Tree Width

Operations

Conclusion

- In case a minimal NFA for a language L is a DFA, we only have one possible computation, thus all the measures considered before are equal to 1 (including the tree width).
- For a language L we may have two different (even minimal) NFA's, such that the tree width of a computation on a given input is quite different.
- The nondeterministic width of a language L is defined as the least tree width of any state-minimal NFA recognizing L.

$$\operatorname{tw}(L) = \inf\{\operatorname{tw}(A) \mid L(A) = L, A \text{ is a minimal } NFA\}. \tag{1}$$

Tree width

Measures of Non-Determinism

- Nondeterminism
- Measures for **NFAs**
- Measures for Languages

Tree width

- Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width
- Computing Tree Width

Operations

Conclusion

The tree width of A on w, $tw_A(w)$, is the number of partial computations of A on w.

$$\operatorname{tw}(A) = \sup \{ \operatorname{tw}_A(w) \mid w \in \Sigma^* \}.$$

- A has finite tree width if tw(A) is finite.
- (A. Palioudakis, et all JALC 2012) An NFA A has finite tree width if and only if no cycle of A contains a nondeterministic transition.

$$\operatorname{nsc}_{\operatorname{tw} \leq k}(L) = \inf \{ \operatorname{size}(A) \mid A \text{ is an } NFA, L = L(A),$$
 and $\operatorname{tw}(A) \leq k \}.$ (2)

The tree width of a regular language L is

$$tw(L) = \inf\{tw(A) \mid L(A) = L, A \text{ is a minimal } NFA\}.$$

(3)

Tree width of an NFA

Measures of Non-Determinism

- Nondeterminism
- Measures for **NFAs**
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width
- Computing Tree Width

Operations

Conclusion

- Tree width not related to graph theory "tree width"
- Tree width counts the number of paths in computation trees of an NFA.
- This notion is called "leaf size" by Hromkovič et al. (2002) or "computations(A)" by Björklund and Martens (2012)

Example

Measures of Non-Determinism

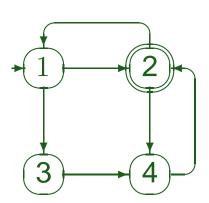
- Nondeterminism
- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA

❖ Example

- ❖ Infinite vs Finite Tree Width
- ❖ Computing Tree Width

Operations

Conclusion



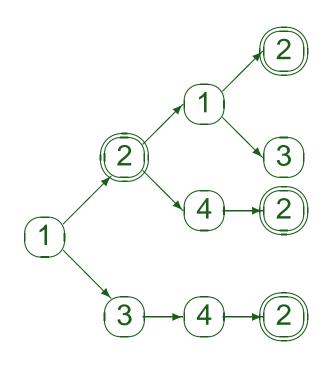


Figure 1: A unary NFA A and its computation tree on input a^3 .

The *tree width* of A on input a^3 is four, $tw_A(a^3) = 4$.

Infinite vs Finite Tree Width

Measures of Non-Determinism

- Nondeterminism
- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example

❖ Infinite vs Finite Tree Width

Computing Tree Width

Operations

Conclusion

- If language L has infinite tree width, this means that all minimal NFAs for L must have unbounded tree width.
- If L has tree width one, then the unique minimal DFA for L
 is also minimal as an NFA.
- $\operatorname{tw}(\Sigma^* w) = 1$.
- $\operatorname{tw}(L_k) = \infty$, where $L_k = \Sigma^* b \Sigma^{k-1}$, $k \geq 2$.
- $\operatorname{tw}(L_{a,k}) = \infty$, where $L_k = \Sigma^*(\Sigma a)\Sigma^{k-1}$, $k \geq 2$.

Computing Tree Width

Measures of Non-Determinism

- Nondeterminism
- Measures for NFAs
- Measures for Languages
- ❖ Tree width
- ❖ Tree width of an NFA
- ❖ Example
- ❖ Infinite vs Finite Tree Width

❖ Computing Tree Width

Operations

Conclusion

- Computing the tree width of a regular language is PSPACE-complete.
- The problem of deciding for a given NFA A with tree width k, and for a given $m \le k$ whether or not $\operatorname{tw}(L(A)) = m$ is in coNP.
- Deciding if tw(L) = 1 is NP hard even for unary languages.
- the proof uses a modification of the well-known hardness proof for the union-universe problem for DFAs: for a polynomial space bounded TM M and input string x, we construct an NFA D (having size polynomial in |x|), where D accepts the set of strings that are <u>not</u> accepting computations of M on x. Then L(D) has tree width one iff M does not accept x.

Operations

- ❖ Union
- Concatenation, Reversal, and Complement
- ❖ Intersection

Conclusion

Operations

Union

Measures of Non-Determinism

Operations

Union

- Concatenation, Reversal, and Complement
- Intersection

- $ullet L_k = igcup_{w \in \Sigma^{k-1}} L_w.$ $\mathrm{tw}(L_k) = \infty ext{ and } \mathrm{tw}(L_w) = 1.$
- There must be R_1, R_2 such that $\operatorname{tw}(R_1) < \infty$, $\operatorname{tw}(R_2) < \infty$ and $\operatorname{tw}(R_1 \cup R_2) = \infty$.
- $L_1 = L((a+b)^*baaa), L_2 = L((a+b)^*baba)$ $L_1 \cup L_2 = L((a+b)^*ba(a+b)a)$ $\operatorname{tw}(L_i) = 1, i = 1, 2, \text{ but } \operatorname{tw}(L_1 \cup L_2) = \infty$

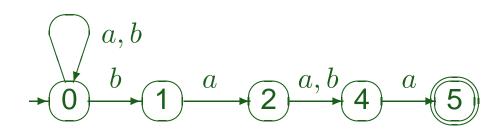


Figure 2: A minimal NFA for the union of $L((a+b)^*baba)$ and $L((a+b)^*baaa)$

Concatenation, Reversal, and Complement

Measures of Non-Determinism

Operations

- Union
- ❖ Concatenation, Reversal, and Complement
- ❖ Intersection
- Conclusion

- Concatenation: $L_1 = \Sigma^*$, $L_2 = b\Sigma^{k-1}$, $\operatorname{tw}(L_1) = 1$, $\operatorname{tw}(L_2) = 1$, $\operatorname{tw}(L_1 \cup L_2) = \operatorname{tw}(L_k) = \infty$.
- Reversal $\operatorname{tw}(L_k^R) = 1$.
- Complement

$$L = \{\varepsilon, a, a^2, a^4\}, tw(L) = 1$$

 $\overline{L} = L((a^2)^*(a^3)^+).$

Minimal NFA for L has 5 states and any finite tree width for L needs at least 6 states, cf. Palioudakis, Salomaa, Akl: Proceedings of SOFSEM 2014.

Intersection

Measures of Non-Determinism

Operations

- Union
- Concatenation, Reversal, and Complement

Intersection

Conclusion

• $L_1=L((a^*))\setminus\{arepsilon,a,a^2\}$ and $L_2=L((a^*))\setminus\{arepsilon,a^2,a^4\}.$ $L_1\cap L_2=L((a^*))\setminus\{arepsilon,a,a^2,a^4\},$ thus $\operatorname{tw}(L_1\cap L_2)=\infty$ and $\operatorname{tw}(L_i)=1,\,i=1,2$

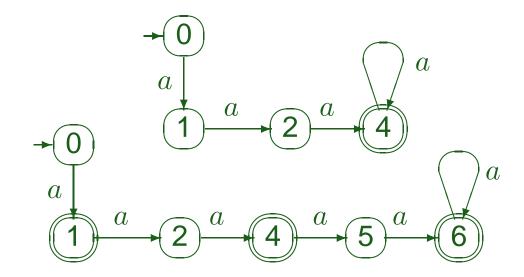


Figure 3: A minimal NFA for L_1 , up, and L_2 , down.

Operations

Conclusion

Conclusions and Open Problems

Conclusions and Open Problems

Measures of Non-Determinism

Operations

Conclusion Conclusions and Open Problems

- Computing tree width of a language is hard.
- If L_1 and L_2 are regular languages with finite tree width, for most operations o, there is no upper-bound for $\operatorname{tw}(L_1 \circ L_2)$.
 - Find an interesting operation for which we can find an upper-bound.
- Some examples are closely related to examples for deterministic regular expressions.
 - Find some strong relation between regular expression ambiguity and measures of non-determinism induced by NFAs.

Operations

Conclusion

Conclusions and Open Problems

Operations

Conclusion

Conclusions and Open Problems

Thank You!