Regular Functions

Rajeev Alur
University of Pennsylvania

Joint work with
Pavol Cerny, Loris D’Antoni, Mukund Raghothman and others

DCFS, U. Waterloo, June 2015
Regular Languages

- **Natural**
 Intuitive operational model of finite-state automata

- **Robust**
 Alternative characterizations and closure properties

- **Analyzeable**
 Algorithms for emptiness, equivalence, minimization, learning ...

- **Applications**
 Algorithmic verification, text processing ...

What is the analog of regularity for defining functions?

Do we really need such a concept?
FlashFill: Programming by Examples

Ref: Gulwani (POPL 2011)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallit, Jeffrey</td>
<td>J. Shallit</td>
</tr>
<tr>
<td>Alexander Okhotin</td>
<td>A. Okhotin</td>
</tr>
<tr>
<td>Colcombet T.</td>
<td>T. Colcombet</td>
</tr>
</tbody>
</table>

- Infers desired Excel macro program
- Iterative: user gives examples and corrections
- Already incorporated in Microsoft Excel

Learning regular languages : L* (Angluin’92)
Learning string transformation : ??
function delete
 input ref curr;
 input data v;
 output ref result;
 output bool flag := 0;
 local ref prev;

 while (curr != nil) & (curr.data = v) {
 curr := curr.next;
 flag := 1;
 }

 result := curr;
 prev := curr;
 if (curr != nil) then {
 curr := curr.next;
 prev.next := nil;
 while (curr != nil) {
 if (curr.data = v) then {
 curr := curr.next;
 flag := 1;
 }
 else {
 prev.next := curr;
 prev := curr;
 curr := curr.next;
 prev.next := nil;
 }
 }
 }

Typically a simple function $D^* \rightarrow D^*
- Insert
- Delete
- Reverse ...

But finite-state verification algorithms not applicable, only lots of undecidability results!
Should we use Perl? sed?
But these are Turing-complete languages with no "analysis" tools.
Complexity Classification of Languages

--- Recursive

--- NP

--- P

--- Linear-time

--- Regular

What if we consider functions?
From strings to strings

No essential change for Recursive, NP, P, linear-time...

Natural starting point for regular functions:
Variation of classical finite-state automata
Finite-State Sequential Transducers

- Deterministic finite-state control + transitions labeled by (input symbol / string of output symbols)

\[a/010 \]
\[q \xrightarrow{a/010} q' \]

- Examples:
 - Delete all a symbols
 - Duplicate each symbol
 - Insert 0 after first b

- Theoretically not that different from classical automata, and have found applications in speech/language processing

Expressive enough? What about reverse?
Deterministic Two-way Transducers

- Unlike acceptors, two-way transducers are more expressive than one-way model (Aho, Ullman 1969)
 - Reverse
 - Duplicate entire string (map w to w.w)
 - Delete a symbols if string ends with b (regular look-ahead)
Theory of Two-way Finite-state Transducers

- Closed under sequential composition (Chytil, Jakl, 1977)
- Checking functional equivalence is decidable (Gurari 1980)
- Equivalent to MSO (monadic second-order logic) definable graph transductions (Engelfriet, Hoogeboom, 2001)

- Challenging theoretical results
 - Not like finite automata (e.g. Image of a regular language need not be regular !)
 - Complex constructions
 - No known applications
Talk Outline

- Machine model: Streaming String Transducers
 - DReX: Declarative language for string transformations
 - Regular Functions: Beyond strings to strings
Example Transformation 1: Delete

\[\text{Del}_a(w) = \text{String } w \text{ with all } a \text{ symbols removed} \]

Traditional transducer

Finite-state control + Explicit string variable to compute output
Example Transformation 2: Reverse

Rev(w) = String w in reverse

String variables updated at each step as in a program

Key restriction: No tests! Write-only variables!
Example Transformation 3: Regular Choice

\[f(w) = \text{If input ends with } b, \text{ then } \text{Rev}(w) \text{ else } \text{Del}_a(w) \]

Multiple string variables used to compute alternative outputs

Model closed under “regular look-ahead”
Example Transformation 4: Swap

\[f(u_1 : v_1 \# u_2 : v_2 \# ...) = v_1 : u_1 \# v_2 : u_2 \# ... \quad \text{u}_i \text{ and } v_i : \{a,b\}^* \]

Concatenation of string variables allowed (and needed)

Restriction: if \(x := x.y \) then \(y \) must be assigned a constant
Streaming String Transducer (SST)

1. Finite set Q of states
2. Input alphabet Σ
3. Output alphabet Γ
4. Initial state q_0
5. Finite set X of string variables
6. Partial output function $F : Q \rightarrow (\Gamma \cup X)^*$
7. State transition function $\delta : Q \times \Sigma \rightarrow Q$
8. Variable update function $\rho : Q \times \Sigma \times X \rightarrow (\Gamma \cup X)^*$

- Output function and variable update function required to be copyless: each variable x can be used at most once
- Configuration = (state q, valuation α from X to Γ^*)
- Semantics: Partial function from Σ^* to Γ^*
SST Properties

- At each step, one input symbol is processed, and at most a constant number of output symbols are newly created.
- Output is bounded: Length of output = \(O(\text{length of input})\)
- SST transduction can be computed in linear time.
- Finite-state control: String variables not examined.
- SST cannot implement merge:
 \[f(u_1u_2\ldots u_k\#v_1v_2\ldots v_k) = u_1v_1u_2v_2\ldots u_kv_k \]
- Multiple variables are essential:
 For \(f(w)=w^k \), \(k \) variables are necessary and sufficient.
Decision Problem: Type Checking

Pre/Post condition assertion: \{ L \} S \{ L' \}

Given a regular language L of input strings (pre-condition), an SST S, and a regular language L' of output strings (post-condition), verify that for every w in L, S(w) is in L'

Thm: Type checking is solvable in polynomial-time

Key construction: Summarization
Decision Problem: Equivalence

Functional Equivalence;
Given SSTs S and S' over same input/output alphabets, check whether they define the same transductions.

Thm: Equivalence is solvable in PSPACE
 (polynomial in states, but exponential in no. of string variables)

Open problem: Lower bound / Improved algorithm
Expressiveness

Thm: A string transduction is definable by an SST iff it is regular

1. SST definable transduction is MSO definable
2. MSO definable transduction can be captured by a two-way transducer (Engelfriet/Hoogeboom 2001)
3. SST can simulate a two-way transducer

Evidence of robustness of class of regular transductions

Closure properties with effective constructions

1. Sequential composition: \(f_1(f_2(w)) \)
2. Regular conditional choice: if \(w \) in \(L \) then \(f_1(w) \) else \(f_2(w) \)
From Two-Way Transducers to SSTs

Two-way transducer A visits each position multiple times.
What information should SST S store after reading a prefix?

For each state q of A, S maintains summary of computation of A started in state q moving left till return to same position:
1. The state $f(q)$ upon return
2. Variable x_q storing output emitted during this run
Challenge for Consistent Update

Map $f : Q \rightarrow Q$ and variables x_q need to be consistently updated at each step.

If transducer A moving left in state u on symbol a transitions to q, then updated $f(u)$ and x_u depend on current $f(q)$ and x_q.

Problem: Two distinct states u and v may map to q.

Then x_u and x_v use x_q, but assignments must be copyless!

Solution requires careful analysis of sharing (required value of each x_q maintained as a concatenation of multiple chunks).
Decidable Class of List-processing Programs

function delete
 input ref curr;
inout data v;
output ref result;
output bool flag := 0;
local ref prev;

 while (curr != nil) & (curr.data = v) {
 curr := curr.next;
 flag := 1;
 }

result := curr;
prev:= curr;
if (curr != nil) then {
 curr := curr.next;
 prev.next := nil;
 while (curr != nil) {
 if (curr.data = v) then {
 curr := curr.next;
 flag := 1;
 } else {
 prev.next := curr;
 prev := curr;
 curr := curr.next;
 prev.next := nil;
 }
 }
}

Decidable Analysis:
1. Assertion checks
2. Pre/post condition
3. Full functional correctness
Talk Outline

✓ Machine model: Streaming String Transducers

込 DReX: Declarative language for string transformations

❑ Regular Functions: Beyond strings to strings
Search for Regular Combinators

- **Regular Expressions**
 - Basic operations: ε, a, Union, Concatenation, Kleene-**
 - Additional constructs (e.g. Intersection): Trade-off between ease of writing constraints and complexity of evaluation

- **What are the basic ways of combining functions?**
 - Goal: Calculus of regular functions

- **Partial function from Σ^* to Γ^***
 - $\text{Dom}(f)$: Set of strings w for which $f(w)$ is defined
 - In our calculus, $\text{Dom}(f)$ will always be a regular language
Base Functions

- For a in Σ and γ in Γ^*, a / γ
 - If input w equals a then output γ, else undefined

- For γ in Γ^*, ε / γ
 - If input w equals ε then output γ else undefined
Choice

- **f else g**
 - Given input w, if w in Dom(f), then return $f(w)$ else return $g(w)$

- **Analog of union in regular expressions**
 - Asymmetric (non-commutative) nature ensures that the result $(f$ else $g)(w)$ is uniquely defined

- **Examples:**
 - $Id1 = (a / a)$ else (b / b)
 - $Del_{\alpha}1 = (a / \varepsilon)$ else $Id1$
Concatenation and Iteration

- **split** \((f, g)\)
 - Given input string \(w\), if there exist unique \(u\) and \(v\) such that \(w = u.v\) and \(u \in \text{Dom}(f)\) and \(v \in \text{Dom}(g)\) then return \(f(u).g(v)\)
 - Similar to “unambiguous” concatenation

- **iterate** \((f)\)
 - Given input string \(w\), if there is unique \(k\) and unique strings \(u_1, \ldots, u_k\) such that \(w = u_1.u_2\ldots u_k\) and each \(u_i \in \text{Dom}(f)\) then return \(f(u_1)\ldots f(u_k)\)

- **left-split** \((f, g)\)
 - Similar to split, but return \(g(v).f(u)\)

- **left-iterate** \((f)\)
 - Similar to iterate, but return \(f(u_k)\ldots f(u_1)\)
Examples

- \(\text{Id1} = (a / a) \text{ else } (b / b) \)
- \(\text{Del}_a1 = (a / \varepsilon) \text{ else Id1} \)

- \(\text{Id} = \text{iterate (Id1)} : \text{maps } w \text{ to itself} \)
- \(\text{Del}_a = \text{iterate (Del}_a1) : \text{Delete all } a \text{ symbols} \)
- \(\text{Rev} = \text{left-iterate (Id1)} : \text{reverses the input} \)
- \(\text{If } w \text{ ends with } b \text{ then delete } a \text{'s else reverse} \)
 \(\text{split (Del}_a, b / b) \text{ else Rev} \)
- \(\text{Map } u#v \text{ to } v.u \)
 \(\text{left-split (split (Id, # / \varepsilon), Id)} \)
Function Combination

- **combine** \((f, g)\)
 - If \(w\) in both \(\text{Dom}(f)\) and \(\text{Dom}(g)\), then return \(f(w).g(w)\)

- **combine(\(\text{Id}, \text{Id}\))** maps an input string \(w\) to \(w.w\)

- **Needed for expressive completeness**

- **Reminiscent of Intersection for languages**
Document Transformation Example

Does not seem expressible with combinators discussed so far…
Cannot compute this by splitting document in chunks, transforming them separately, and combining the results
Chained Iteration

\textbf{chain (f, r)} : Given input string \(w \), if there is unique \(k \) and unique strings \(u_1, \ldots, u_k \) such that \(w = u_1.u_2\ldots u_k \) and each \(u_i \) in \(\text{Dom}(r) \) then return
\[f(u_1u_2).f(u_2u_3)\ldots f(u_{k-1}u_k) \]

Thm: A partial function \(f : \Sigma^* \rightarrow \Gamma^* \) is regular iff it can be constructed using base functions, choice, split, left-split, combine, chain, and left-chain.
Towards a Prototype Language

- **Goal:** Design a DSL for regular string transformations

- **Allow “symbolic” alphabet**
 - Symbols range over a “sort”
 - Base function: $\varphi(x) / \gamma$
 - Set of allowed predicates form a Boolean algebra
 - Inspired by Symbolic Automata of Veanes et al

- **Given a program P and input w, evaluation of $P(w)$ should be fast!**
 - Natural algorithm is based on dynamic programming: $O(|w|^3)$
Consistency Rules

- In f else g, Dom(f) and Dom(g) should be disjoint.

- In combine(f, g), Dom(f) and Dom(g) should be identical.

- In split(f, g), for every string w, there exists at most one way to split w = u.v such that u in Dom(f) and v in Dom(g).

- Similar rules for left-split, iterate, chain, and so on.
DReX: Declarative Regular Transformations

- Syntax based on regular combinators + Type system to enforce consistency rules

- Thm: Restriction to consistent programs does not limit the expressiveness (DReX captures exactly regular functions)

- Consistency can be checked in poly-time in size of program

- For a consistent DReX program P, output $P(w)$ can be computed in single-pass in time $O(|w|)$ (and poly-time in $|P|$)
 - Intuition: To compute $\text{split}(f,g)(w)$, whenever a prefix of w matches $\text{Dom}(f)$, a new thread is started to evaluate g. Consistency is used to kill threads eagerly to limit the number of active threads
DReX Prototype Status

- Prototype implementation
 - Type checking
 - Linear-time evaluation

- Evaluation
 - How natural is it to write consistent DReX programs?
 - How does type checker / evaluator scale?

- Ongoing work
 - Syntactic sugar with lots of pre-defined operations
 - Support for analysis (e.g. equivalence checking)

Try it out at www.drexonline.com
Talk Outline

✓ Machine model: Streaming String Transducers

✓ DReX: Declarative language for string transformations

วล Regular Functions: Beyond strings to strings
Maps a string over \{C,S,M\} to a cost value:

- Cost of a coffee is 2, but reduces to 1 after filling out a survey until the end of the month

Can we generalize expressiveness using SST-style model?
Potential application: Quantitative queries for data streams
Cost Register Automata (CRA) Example

Filling out a survey gives discount for all coffees during that month
Output = minimum number of coffees consumed during a month

Updates use two operations: increment and min

Can we define a general notion of regularity parameterized by operations on the set of costs?
Cost Model

Cost Grammar G to define set of terms:

- **Inc**: $t := c \mid (t+c)$
- **Plus**: $t := c \mid (t+t)$
- **Min-Inc**: $t := c \mid (t+c) \mid \text{min}(t,t)$
- **Inc-Scale**: $t := c \mid (t+c) \mid (t*d)$

Interpretation [] for operations:

- Set D of cost values
- Mapping operators to functions over D

Example interpretations for the Plus grammar:

- Set N of natural numbers with addition
- Set Γ^* of strings with concatenation
Regular Function

Definition parameterized by the cost model \(C=(D,G,[]) \)

A (partial) function \(f: \Sigma^* \rightarrow D \) is regular w.r.t. the cost model \(C \) if there exists a string-to-tree transformation \(g \) such that

1. for all strings \(w \), \(f(w)=[g(w)] \)
2. \(g \) is a regular string-to-tree transformation
Regular String-to-tree Transformations

- Definition based on MSO (Monadic Second Order Logic) - definable graph-to-graph transformations (Courcelle)

- Studied in context of syntax-directed program transformations, attribute grammars, and XML transformations

- Operational model: Macro Tree Transducers (Engelfriet et al)

- Recent proposal: Streaming Tree Transducers (ICALP 2012)
MSO-definable String-to-tree Transformations

- **MSO over strings**
 \[\Phi ::= a(x) \mid X(x) \mid x = y + 1 \mid \sim \Phi \mid \Phi \& \Phi \mid \text{Exists } x. \Phi \mid \text{Exists } X. \Phi \]

- **MSO-transduction from strings to trees:**
 1. **Number k of copies**
 For each position \(x \) in input, output-tree has nodes \(x_1, \ldots, x_k \)
 2. **For each symbol a and copy c, MSO-formula \(\Phi_{a,c}(x) \)**
 Output-node \(x_c \) is labeled with \(a \) if \(\Phi_{a,c}(x) \) holds for unique \(a \)
 3. **For copies c and d, MSO-formula \(\Phi_{c,d}(x,y) \)**
 Output-tree has edge from node \(x_c \) to node \(x_d \) if \(\Phi_{c,d}(x,y) \) holds
Example Regular Function

Cost grammar Min-Inc: $t := c \mid (t+c) \mid \text{min}(t,t)$

Interpretation: Natural numbers with usual meaning of + and min

$\Sigma = \{C, M\}$

$f(w) =$ Minimum number of C symbols between successive M's

Input $w = \text{ } C \text{ } C \text{ } M \text{ } C \text{ } C \text{ } C \text{ } C \text{ } M$

Tree:

Value = 2
Properties of Regular Functions

Known properties of regular string-to-tree transformations imply:

- If f and g are regular w.r.t. a cost model C, and L is a regular language, then “if L then f else g” is regular w.r.t. C.

- Reversal: define $\text{Rev}(f)(w) = f(\text{reverse}(w))$.

 If f is regular w.r.t. a cost model C, then so is $\text{Rev}(f)$.

- Costs grow linearly with the size of the input string:

 Term corresponding to a string w is $O(|w|)$.
Regular Functions over Commutative Monoid

Cost model: D with binary function $+$
Interpretation for $+$ is commutative, associative, with identity 0

Cost grammar $G(+)$: $t := c \mid (t+t)$

Cost grammar $G(+c)$: $t := c \mid (t+c)$

Thm: Regularity w.r.t. $G(+)$ coincides with regularity w.r.t. $G(+c)$

Proof intuition: Show that rewriting terms such as $(2+3)+(1+5)$ to $(((2+3)+1)+5)$ is a regular tree-to-tree transformation, and use closure properties of tree transducers
Additive Cost Register Automata

- DFA + Finite number of registers, initialized to 0
- Registers updated using assignments $x := y + c$
- Each final state labeled with output term $x + c$

Thm: For a commutative monoid $(D,+,0)$, a function $f: \Sigma^* \rightarrow D$ is definable using an ACRA iff it is regular w.r.t. grammar $G(+)$.
Decision Problems for ACRAs

- **Min-Cost**: Given an ACRA M, find $\min \{ M(w) \mid w \in \Sigma^* \}$
 - Solvable in Polynomial-time
 - Shortest path in a graph with vertices (state, register)

- **Equivalence**: Do two ACRAs define the same function
 - Solvable in Polynomial-time
 - Based on propagation of linear equalities in program graphs

- **Register Minimization**: Given an ACRA M with k registers, is there an equivalent ACRA with $< k$ registers?
 - Algorithm polynomial in states, and exponential in k
Emerging Theory of Regular Functions

- A few classes that have been (partially) studied
 - Finite strings to finite strings
 - Finite strings to commutative monoid
 - Infinite strings to infinite strings
 - Finite strings to semiring \((\mathbb{N}, +, \min)\)
 - Finite strings to discounted costs
 - Finite trees to finite trees

- Many open problems (and unexplored classes)
 - Decidability of equivalence of functions from \(\Sigma^*\) to \((\mathbb{N}, +, \min)\)
 - Theory of congruences
 - Learning algorithms...
Conclusions

- Streaming String Transducers and Cost Register Automata
 - Write-only machines with multiple registers to store outputs

- DReX: Declarative language for string transformations
 - Robust expressiveness with decidable analysis problems
 - Prototype implementation with linear-time evaluation
 - Ongoing work: Analysis tools

- Emerging theory of regular functions
 - Some results, new connections
 - Many open problems and unexplored directions