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Abstract. Stability is a common tool to verify the validity of sample
based algorithms. In clustering it is widely used to tune the parameters of
the algorithm, such as the number k of clusters. In spite of the popularity
of stability in practical applications, there has been very little theoreti-
cal analysis of this notion. In this paper we provide a formal definition
of stability and analyze some of its basic properties. Quite surprisingly,
the conclusion of our analysis is that for large sample size, stability is
fully determined by the behavior of the objective function which the
clustering algorithm is aiming to minimize. If the objective function has
a unique global minimizer, the algorithm is stable, otherwise it is un-
stable. In particular we conclude that stability is not a well-suited tool
to determine the number of clusters - it is determined by the symme-
tries of the data which may be unrelated to clustering parameters. We
prove our results for center-based clusterings and for spectral clustering,
and support our conclusions by many examples in which the behavior of
stability is counter-intuitive.

1 Introduction

Clustering is one of the most widely used techniques for exploratory data analy-
sis. Across all disciplines, from social sciences over biology to computer science,
people try to get a first intuition about their data by identifying meaningful
groups among the data points. Despite this popularity of clustering, distress-
ingly little is known about theoretical properties of clustering (von Luxburg and
Ben-David, 2005) In particular, the problem of choosing parameters such as the
number k of clusters is still more or less unsolved.

One popular method for model selection in clustering has been the notion of
stability, see for instance Ben-Hur et al. (2002), Lange et al. (2004). The intu-
itive idea behind that method is that if we repeatedly sample data points and
apply the clustering algorithm, then a “good” algorithm should produce clus-
terings that do not vary much from one sample to another. In other words, the
algorithm is stable with respect to input randomization. As an example, stabil-
ity measurements are often employed in practice for choosing the number, k, of



clusters. The rational behind this heuristics is that in a situation where k is too
large, the algorithm “randomly” has to split true clusters, and the choice of the
cluster it splits might change with the randomness of the sample at hand, result-
ing in instability. Alternatively, if we choose k too small, then we “randomly”
have to merge several true clusters, the choice of which might similarly change
with each particular random sample, in which case, once again, instability oc-
curs. For an illustration see Figure 1.

The natural framework for a discussion of stability is that of sample-based
algorithms. Much like statistical learning, this framework assumes that there
exist some fixed but unknown probability distribution of the data, and the algo-
rithm gets an i.i.d. random sample as input and aims to approximate a solution
that is optimal w.r.t. that data distribution. In this paper we focus on clustering
algorithms which choose their clustering based on some objective function which
they minimize or maximize. The advantage of such cost-based clusterings is that
they enjoy an explicit notion of the quality of a clustering. Popular examples in
this class are center based and algorithms and spectral clustering.

For such algorithms there are two different sources of instability. The first
one is based on the structure of the underlying space and has nothing to do with
the sampling process. If there exist several different clusterings which minimize
the objective function on the whole data space, then the clustering algorithm
cannot decide which one to choose. The clustering algorithm cannot resolve this
ambiguity which lies in the structure of the space. This is the kind of instability
that is usually expected to occur when stability is applied to detect the correct
number of clusters. However, in this article we argue that this intuition is not
justified and that stability rarely does what we want in this respect. The reason
is that for many clustering algorithms, this kind of ambiguity usually happens
only if the data space has some symmetry structure. As soon the space is not
perfectly symmetric, the objective function has a unique minimizer (see Figure
1) and stability prevails. Since we believe that most real world data sets are not
perfectly symmetric, this leads to the conclusion that for this purpose, stability
is not the correct tool to use.

A completely different notion of instability is the one based on the sampling
process. As we can only evaluate the objective function on the given sample
points, the variance in the sampling process leads to variance in the values of
the empirically computed objective function, which in turn results in variance
in the choice of the clusterings. This is the kind of stability that has been stud-
ied extensively in supervised learning (Bousquet and Elisseeff, 2002, Kutin and
Niyogi, 2002, Rakhlin and Caponnetto, 2005). A similar effect happens if we do
not have the computational power to exactly compute the global minimum of
the objective function, as it for example is the case for the highly non-convex k-
means objective function. This type of instability typically diminishes as sample
sizes grow. Alternatively, one can reduce this type of instability to the previous



Fig. 1. The left two panels show situations where the constructed clustering (depicted
by the dashed line) is highly instable, either because the chosen number of clusters is
too small or too large. Note that both figures depict very symmetric situations. The
right two panels show situations where clustering algorithms return stable results even
though they construct a wrong number of clusters. Note that those two figures are not
symmetric.

case by considering the set of ε-minimizers of the objective function (Rakhlin
and Caponnetto, 2005). The set of ε-minimizers of a function is the set of all
clusterings for which the quality function is at most ε from the minimal value. If
we now know that we only have enough sample points to estimate the objective
function up to precision ε, then the instability in the algorithm consists in “ran-
domly” picking one of the clusterings in the set of ε-minimizers. In this paper
we mainly focus on the first kind of stability. Therefore, we mainly consider the
asymptotic behavior of stability as sample sizes grow to infinity.

In this work we analyze the behavior of stability of a large abstract family of
clustering algorithms - algorithms that are driven by an objective function (or
’risk’) that they aim to minimize. We postulate some basic abstract requirements
on such algorithms (such as convergence in probability to a minimum risk solu-
tions as cluster sizes grow to infinity), and show that for algorithms satisfying
these requirements, stability is fully determined by the symmetry structure of
the underlying data distribution. Specifically, if the risk has a unique minimizer
the algorithm is stable, and if there exist a non-trivial symmetry of the set of
risk-minimizing solutions, stability fails. Since these symmetry parameters are
independent of the number of clusters, we can easily prove that in many cases
stability fails to indicate the correct (or even a reasonable) number of clusterings.
Our results apply in particular to two large families of clustering algorithms, cen-
ter based clustering and spectral clustering.

We would like to stress that our findings do not contradict the stability results
for supervised learning. The main difference between classification and clustering
is that in classification we are only interested in some function which minimizes
the risk, but we never explicitly look at this function. In clustering however,
we do distinguish between functions even though they have the same risk. It is
exactly this fundamental difference which makes clustering so difficult to analyze.



After formulating our basic definitions in Section 2, we formulate an intuitive
notion of risk minimizing clustering in Section 3. Section 4 presents our first
central result, namely that existence of a unique risk-minimizer implies stability,
and Section 5 present the complementary, instability result, for symmetric data
structures. We end in section 6 by showing that two popular versions of spectral
clustering display similar characterizations of stability in terms of basic data
symmetry structure. Throughout the paper, we demonstrate the impact of our
results by describing simple examples of data structures for which stability fails
to meet ’common knowledge’ expectations.

2 Definitions

In the rest of the paper we use the following standard notation. We consider a
data space X endowed with probability measure P . If X happens to be a metric
space, we denote by ` its metric. A sample S = {x1, ..., xm} is drawn i.i.d from
(X, P ).

Definition 1 (Clustering). A clustering C of a set X is a finite partition
C : X → N. The sets Ci := {x ∈ X; C(x) = i} are called clusters. We introduce
the notation x ∼C y if C(x) = C(y) and x �C y otherwise. In case the
clustering is clear from context we drop the subscript and simply write x ∼ y or
x � y.

Definition 2 (Clustering algorithm). Any function A, that for any given
finite sample S ⊂ X computes a clustering of X, is called a clustering algorithm.

Note that by default, the clustering constructed by an algorithm is only defined
on the sample points. However, many algorithms such as center-based clusterings
or spectral clustering have natural extensions of the clustering constructed on
the sample to the whole data space X. For details see section 6.

Notation 1 For a finite sample (a multiset), S, let PS be the uniform probability
distribution over S.

Definition 3 (Clustering distance). Let P be family of probability distribu-
tions over some domain X. Let S be a family of clusterings of X. A clustering
distance is function d : P × S × S → [0, 1] satisfying for any P ∈ P and any
C1,C2,C3 ∈ S

1. dP (C1,C1) = 0
2. dP (C1,C2) = dP (C2,C1) (symmetry)
3. dP (C1,C3) ≤ dP (C1,C2) + dP (C2,C3) (triangle inequality)

We do not require that a clustering distance satisfies that if dP (C1,C2) = 0
then C1 = C2. As a prototypic example we consider the Hamming distance (or
pair-counting distance):



Definition 4 (Hamming distance). For two clusterings C1,C2 of (X, P ), the
Hamming distance is defined as

dP (C1,C2) = Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C2 y)] ,

where ⊕ denotes the logical XOR operation.
It can easily be checked that dP indeed is a clustering distance. The first two
properties trivially hold, and the triangle inequality follows from

dP (C1,C3) = Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C3 y)]

= Pr
x∼P
y∼P

[((x ∼C1 y)⊕ (x ∼C2 y))⊕ ((x ∼C2 y)⊕ (x ∼C3 y))]

≤ Pr
x∼P
y∼P

[(x ∼C1 y)⊕ (x ∼C2 y)] + Pr
x∼P
y∼P

[(x ∼C2 y)⊕ (x ∼C3 y)]

= dP (C1,C2) + dP (C2,C3).

Proposition 5. The Hamming distance dP satisfies

dP (C,D) ≤ 1−
∑

i

∑
j

(Pr[Ci ∩Dj ])
2

Proof. This follows by straight forward transformations:

dP (C,D) = 1− Pr
x∼P
y∼P

[(x ∼C y) ∧ (x ∼D y)]− Pr
x∼P
y∼P

[(x �C y) ∧ (x �D y)]

≤ 1− Pr
x∼P
y∼P

[(x ∼C y) ∧ (x ∼D y)]

= 1−
∑

i

∑
j

Pr
x∼P
y∼P

[(x, y ∈ Ci) ∧ (x, y ∈ Dj)]

= 1−
∑

i

∑
j

(Pr[Ci ∩Dj ])
2 ut

Now we define the fundamental notion of this paper:

Definition 6. Let P be probability distribution over X. Let d be a clustering
distance. Let A be clustering algorithm. The stability of the algorithm A for the
sample size m with respect to the probability distribution P is

stab(A,P, m) = E
S1∼P m

S2∼P m

dP (A(S1), A(S2)).

The stability of the algorithm A with respect to the probability distribution P is

stab(A,P ) = lim sup
m→∞

stab(A,P, m).

We say that algorithm A is stable for P , if stab(A,P ) = 0.

Note that the algorithm A which for any input only produces the clustering
consisting of one cluster X, is stable on any probability distribution P . More
generally, any A which is a constant function is stable.



3 Risk optimizing clustering algorithms

A large class of clustering algorithms choose the clustering by optimizing some
risk function. The large class of center based algorithms falls into this category,
and spectral clustering can also be interpreted in this way.

Definition 7 (Risk optimization scheme). A risk optimization scheme is
defined by a quadruple (X, S,P, R), where X is some domain set, S is a set of
legal clusterings of X, and P is a set of probability distributions over X, and
R : P × S → R+

0 is an objective function (or risk) that the clustering algorithm
aims to minimize.

Denote opt(P ) := infC∈S R(P,C). For a sample S ⊆ X, we call R(PS ,C)
the empirical risk of C. A clustering algorithm A is called R-minimizing, if
R(PS , A(S)) = opt(PS), for any sample S.

Generic examples are center based algorithms such as k-means and k-medians.
Those clusterings pick a set of k center points c1, ..., ck and then assign each
point in the metric space to the closest center point. Such a clustering is a k-cell
Voronoi diagram over (X, `). To choose the centers, k-means minimizes the risk
function

R(P,C) = E
x∼P

min
1≤i≤k

(`(x, ci))2 | Vor(c1, c2, . . . , ck) = C

while k-medians algorithm minimizes

R(P,C) = E
x∼P

min
1≤i≤k

`(x, ci) | Vor(c1, c2, . . . , ck) = C

Usually, risk based algorithms are meant to converge to the true risk as
sample sizes grow to infinity.

Definition 8 (Risk convergence). Let A be an R-minimizing clustering al-
gorithm. We say that A is risk converging, if for every ε > 0 and every δ ∈ (0, 1)
there is m0 such that for all m > m0

Pr
S∼P m

[R(P,A(S)) < opt(P ) + ε] > 1− δ

for any probability distribution P ∈ P.

For example, in the case of k-mean and k-medians on bounded subset of Rd

with Euclidean metric, Ben-David (2004) has shown that they both minimize
risk from samples.

4 Stability of risk minimizing algorithms

In this section we investigate the stability of risk optimizing clustering algo-
rithms. We will see that their stability solely depends on the existence of a
unique minimizer of the risk function. In this section we fix a risk minimization
scheme (X, S,P, R).



Definition 9. Let d be a clustering distance. We say that a probability distri-
bution P has unique minimizer C∗ if

(∀η > 0) (∃ε > 0) (R(P,C) < opt(P ) + ε =⇒ dP (C∗,C) < η) .

More generally, we say a probability distribution P has n distinct minimizers, if
there exists C∗1,C

∗
2, . . . ,C

∗
n such that dP (C∗i ,C

∗
j ) > 0 for all i 6= j, and

(∀η > 0) (∃ε > 0) (R(P,C) < opt(P ) + ε =⇒ (∃ 1 ≤ i ≤ n) dP (C∗i ,C) < η) .

Note that there is a technical subtlety here; the definition does not require
that there is only a single clustering with the minimal cost, but rather that for
any two optima C∗1,C

∗
2, dP (C∗1,C

∗
2) = 0. Technically, we can overcome this dif-

ference by forming equivalence classes of clusterings, saying that two clusterings
are equivalent if their clustering distance is zero. Similarly, n distinct optima
correspond n such equivalence classes of optimal clusterings.

Theorem 10 (Stability theorem). If P has unique minimizer C∗, then any
R-minimizing clustering algorithm which is risk converging is stable on P .

Proof. Let A be a risk converging R-minimizing clustering algorithm. Suppose
we are given ζ > 0 and want to show that for large enough m is stab(A,P, m) < ζ.
Let us pick δ ∈ (0, 1) and η > 0, both small enough so that

2(η + δ) < ζ. (1)

Let C∗ be the unique minimizer, then for η there is some ε > 0 such that

R(P,C) < opt(P ) + ε =⇒ dP (C,C∗) < η. (2)

Since A is risk converging, there is m0 such that for all m > m0

Pr
S∼P m

[R(P,A(S)) ≥ opt(P ) + ε] < δ. (3)

Combining (2) and (3), for m > m0 we have

Pr
S∼P m

[dP (A(S),C∗) ≥ η] ≤ Pr
S∼P m

[R(P,A(S)) ≥ opt(P ) + ε] < δ. (4)

Finally, for m > m0 we bound the stability as

stab(A,P, m) = E
S1∼P m

S2∼P m

dP (A(S1), A(S2))

≤ E
S1∼P m

S2∼P m

[dP (A(S1),C∗) + dP (C∗, A(S2))]

= 2 E
S∼P m

dP (A(S),C∗)

≤ 2
(
η · Pr

S∼P m
[dP (A(S),C∗) < η] + 1 · Pr

S∼P m
[dP (A(S),C∗) ≥ η]

)
≤ 2

(
η + Pr

S∼P m
[R(P,A(S)) ≥ opt(P ) + ε]

)
≤ 2(η + δ)
< ζ.

ut



Note that this result applies in particular to the k-means and the k-median
clustering paradigms (namely, to clustering algorithms that minimize any of
these common risk functions).

4.1 Unexpected behaviors of stability

As a first example to the surprising consequences of Theorem 10, consider the
uniform distribution over the unit interval [0, 1]. It is not hard to figure out that,
for any number of clusters, k, both k-medians and k-means have exactly one risk
minimizer—the clustering

C(x) = i, x ∈
[
i− 1

k
,

i

k

)
.

Therefore, from the stability theorem, it follows that both k-medians and k-
means clustering are stable on the interval uniform distribution for any value of
k. Similarly consider the stability of k-means and k-medians on the two rightmost
examples on the Figure 1. The rightmost example on the picture has for k = 3
unique minimizer as shown and therefore is stable, although the correct choice of
k should be 2. The second from right example has, for k = 2, a unique minimizer
as shown, and therefore is again stable, although the correct choice of k should
be 3 in that case. Note also that in both cases, the uniqueness of minimizer is
implied by the asymmetry of the data distributions. It seems that the number of
optimal solutions is the key to instability. For the important case of Euclidean
space Rd we are not aware of any example such that the existence of two optimal
sets of centers does not lead to instability. We therefore conjecture:

Conjecture 11 (Instability). If P has multiple minimizers then any R-minimizing
algorithm which is risk converging is unstable on P .

While we cannot, at this stage, prove the above conjecture in the generality,
we can prove that a stronger condition, symmetry, does imply instability for
center based algorithms and spectral clustering algorithms.

5 Symmetry and instability

In this subsection we define a formal notion of symmetry for metric spaces with a
probability distribution. We prove that if there are several risk minimizers which
are “symmetric” to each other, then risk minimizing algorithms are bound to be
unstable on this distribution. Before we can formulate claim precisely we need
introduce some further notation and definitions.

Definition 12 (Measure-preserving symmetry). Let P be a probability dis-
tribution over (X, `). A function g : X → X, is called P -preserving symmetry
of (X, `) if,

1. For any P -measurable set A ⊆ X, Pr[A] = Pr[g(A)].



2. Prx∼P
y∼P

[`(x, y) = `(g(x), g(y))] = 1.

Note 1: For any finite sample S (a multi-set), if g is an isometry on S then g
is also an Ŝ-preserving symmetry, where Ŝ is any discrete distribution on S. In
what follows we adopt the following notation: If g : X → X, then for set A ⊂ X
by g[A] = {g(x) | x ∈ A}. For a probability distribution P let Pg be defined by
Pg[A] = P [g−1(A)] for every set A whose pre-image is measurable. If g is one-
to-one then for a clustering C : X → N we define g[C] by (g[C])(x) = C(g−1(x)),
or in other words that the clusters of g[C] are images of clusters of C under g.1

Definition 13 (Distance-Distribution dependent risk). We say that a risk
function R is ODD if it depends only on distances and distribution. Formally,
R is ODD if for every probability distribution P , every P -preserving symmetry
g, and every clustering C

R(P,C) = R(P, g(C)).

Note 2: For any finite sample S, if g is an isometry on S and R is ODD, then
for every clustering C, R(PS ,C) = R(PS , g(C)) = R(g(PS), g(C)). This follows
from Note 1 and the definition of R being ODD.

Definition 14 (Distance-Distribution dependent clustering distance).
We say that a clustering distance d is ODD if it depends only on distances and
distribution. Formally, d is ODD if for every probability distribution P , every
P -preserving symmetry g, and any two clusterings C1,C2

dP (C1,C2) = dP (g(C1), g(C2)).

Note that every natural notion of distance (in particular the Hamming dis-
tance and information based distances) is ODD.

Theorem 15 (Instability from symmetry). Let R be an ODD risk function,
and d an ODD clustering distance. Let P be probability distribution so that for
some n, P has n distinct minimizers, and let g be a P -symmetry such that for
every R-minimizer C∗, dP (C∗, g(C∗)) > 0, then any R-minimizing clustering
algorithm which is risk convergent is unstable on P .

Proof. Let the optimal solutions minimizing the risk be {C∗1,C∗2, . . . ,C∗n}. Let
r = min1≤i≤n dP (C∗i , g(C∗i )). Let ε > 0 be such that

R(P,C) < opt(P ) + ε =⇒ (∃ 1 ≤ i ≤ n) dP (C∗i ,C) < r/4

(the existence of such an ε is implied by having n distinct minimizers for P ). Let
T = {S ∈ Xm | R(P,A(S)) < opt(P ) + ε}. By the risk-convergence of A, there
exist some m0 such that for all m > m0, P (T ) > 0.9.

1 We can also handle the case where g fails to be one-to-one on a set of probability of
zero. For the sake of clarity we omit this technicality.



For 1 ≤ i ≤ n, let Ti = {S ∈ T | dp(C∗i , A(S)) ≤ r/4}. Clearly, there
exist some i0 for which P (Ti0) ≥ 0.9/n. Since g is a symmetry, and R is ODD,
g(S) ∈ T for every sample S ∈ T .

Since dP (C∗i0 , g(C∗i0)) ≥ r, and, for all S ∈ Ti0 , dP (C∗i0 , A(S)) ≤ r/4, and dP

is ODD, we get that for all S ∈ Ti0 , dP (g(C∗i0), A(g(S))) ≤ r/4. The triangle
inequality for dP implies now that for every S ∈ Ti0 and every S′ ∈ g[Ti0 ],
dP (A(S), A(S′)) ≥ r/2. Finally, since g is a P -symmetry, one gets P (g[Ti0 ]) ≥
0.9/n.

We are now in a position to lower-bound the stability for all m ≥ m0:

stab(A,P, m) = E
S∼P m

S′∼P m

dP (A(S), A(S′))

≥ r

2
Pr

S∼P m

S′∼P m

[
dP (A(S), A(S′)) ≥ r

2

]
≥ r

2
Pr

S∼P m

S′∼P m

[S ∈ Ti0 ∧ S′ ∈ g[Ti0 ]]

=
r

2
Pr

S∼P m
[S ∈ Ti0 ] Pr

S′∼P m
[S′ ∈ g[Ti0 ]]

≥ r(0.9)2

2n2

Therefore the stability at infinity, stab(A,P ), is positive as well, and hence A is
unstable on P . ut
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Fig. 2. The densities of two “almost the same” probability distributions over R are
shown. (a) For k = 3, are the k-means and k-medians unstable. (b) For k = 3, are the
k-means and k-medians stable.

For example, if X is the real line R with the standard metric `(x, y) = |x−y|
and P is the uniform distribution over [0, 4] ∪ [12, 16] (see Figure 2a), then
g(x) = 16−x is a P -preserving symmetry. For k = 3, both k-means and k-median
have exactly two optimal triples of centers (2, 13, 15) and (1, 3, 14). Hence, for
k = 3, both k-means and k-medians are unstable on P .

However, if we change the distribution slightly, such that the weight of the
first interval is little bit less than 1/2 and the weight of the second interval is
accordingly a little bit above 1/2, while retaining uniformity on each individual



interval (see Figure 2b), there will be only one optimal triple of centers, namely,
(2, 13, 15). Hence, for the same value, k = 3, k-means and k-medians become
stable. This illustrates again how unreliable is stability as an indicator of a
meaningful number of clusters.

6 Stability of spectral clustering

In this section we show similar stability results for spectral clustering. Namely,
we show that the existence of a unique minimizer for the associated risk implies
stability, and that the existence of non-trivial symmetries implies instability. We
consider two variants of spectral clustering, the standard one, and a less stan-
dard version related to kernel k-means.

Assume we are given n data points x1, ..., xm and their pairwise similari-
ties s(xi, xj). Let W denote the similarity matrix, D the corresponding degree
matrix, and L the normalized graph Laplacian L = D−1(D − W ). One of the
standard derivations of normalized spectral clustering is by the normalized cut
criterion (Shi and Malik, 2000). The ultimate goal is to construct k indica-
tor vectors vi = (v1

i , ..., vm
i )t with vj

i ∈ {0, 1} such that the normalized cut
Ncut = tr(V tLV ) is minimized. Here V denotes the m × k matrix containing
the indicator vectors vi as columns. As it is NP hard to solve this discrete op-
timization problem exactly, we have to resort to relaxations. In the next two
subsections we investigate the stability of two different spectral clustering algo-
rithms based on two different relaxations.

6.1 Stability of the standard spectral clustering algorithm

The “standard relaxation” as used in Shi and Malik (2000) is to relax the integer
condition vj

i ∈ {0, 1} to vj
i ∈ R. It can be seen that the solution of the relaxed

problem is then given by the first k eigenvectors v1, ..., vk of the matrix L. To
construct a clustering from those eigenvectors we then embed the data points xi

into the k-dimensional Euclidean space by Tv : xi 7→ zi := (v(i)
1 , ..., v

(i)
k ). Then

we apply the standard k-means clustering algorithm to the embedded points
z1, ..., zm to obtain the final clustering C into k clusters. This algorithm can-
not easily be cast into a problem where we minimize one single cost function.
Instead we proceed in two stages. In the first one we minimize the eigenvector
cost function tr(V tLV ), and in the second one the standard k-means objective
function on the embedded points zi.

To discuss the distance between spectral clusterings based on different sam-
ples, we first have to extend a clustering constructed on each sample to the
whole data space X. For spectral clustering there exists a natural extension
operator as follows (see von Luxburg et al. (2004) for details). We extend an
eigenvector vi of eigenvalue λi to a function f̂i : X → R by defining f̂i(x) =



(
∑m

j=1 s(x, xj)v
(j)
i )/(m(1−λi)). Next we extend the embedding Tv : {x1, .., xm} →

Rk to an embedding Tf̂ : X → Rk by Tf̂ : x 7→ z := (f̂ (i)
1 , ..., f̂

(i)
k ). Note that

Tf̂ (xi) = Tv(xi). Now we perform k-means clustering on the images of the sample
points zi in Rk. Finally, this clustering is extended by the standard extension op-
erator for k-means, that is we assign all points z to the closest center ci, where
c1, ..., ck ∈ Rk are the centers constructed by k-means on the embedded data
points z1, ..., zm. Then we define the exended clustering on X by setting x ∼C y
if the images of x and y are in the same cluster in Rk.

Theorem 16 (Stability of normalized spectral clustering). Let the data
space X be compact, and the similarity function s be non-negative, symmetric,
continuous, and bounded away from 0. Assume that the limit clustering based
on L is unique (that is, the first k eigenfunctions f1, ..., fk of the limit oper-
ator L are unique and the k-means objective function applied to Tf (X) has
a unique minimizer). Let C and D be the extensions of the spectral cluster-
ings computed from two independent samples x1, ..., xm and x′1, ..., x

′
m. Then

limm→∞ dP (C,D) = 0 in probability.

Proof. (Sketch) The proof is based on techniques developed in von Luxburg et al.
(2004), to where we refer for all details. The uniqueness of the first eigenfunctions
implies that for large enough m, the first k eigenvalues of L have multiplicity
one. Denote the eigenfunctions of L by fi, the eigenvectors based on the first
sample by vi, and the ones based on the second sample by wi. Let f̂i and ĝi

the extensions of those eigenvectors. In von Luxburg et al. (2004) it has been
proved that ‖f̂i − fi‖∞ → 0 and ‖ĝi − fi‖∞ → 0 almost surely. Now denote
by Tf̂ the embedding of X to Rk based on the functions (f̂i)i=1,...,k, by Tĝ

the one based on (ĝi)i=1,...,k, and by Tf the one based on (fi)i=1,...,k. Assume
that we are given a fixed set of centers c1, ..., ck ∈ Rk. By the convergence of the
eigenfunctions we can conclude that sups=1,...,k | ‖Tf̂ (x)−cs‖−‖(Tf (x)−cs‖ | →
0 a.s.. In particular, this implies that if we fix a set of centers c1, ..., ck and
cluster the space X based on the embeddings Tf̂ and Tf , then the two resulting
clusterings C and D of X will be very similar if the sample size m is large.
In particular, supi=1,...,k P (Ci4Di) → 0 a.s., where 4 denotes the symmetric
difference between sets. Together with Proposition 5, for a fixed set of centers this
implies dP (C,D) → 0 almost surely. Finally we have to deal with the fact that
the centers used by spectral clustering are not fixed, but are the ones computed
by minimizing the k-means objective function on the embedded sample. Note
that the convergence of the eigenvectors also implies that the k-means objective
functions based ẑi and zi, respectively, are uniformly close to each other. As a
consequence, the minimizers of both functions are uniformly close to each other,
which by the stability results proved above leads to the desired result. ut



6.2 Stability of the kernel-k-means version of spectral clustering

In this subsection we would like to consider another spectral relaxation. It
can be seen that minimizing Ncut is equivalent to solving a weighted kernel-
k-means problem with weight matrix 1/nD and the kernel matrix D−1WD−1

(cf. I. Dhillon, 2005). The solution of this problem can also be interpreted as
a relaxation of the original problem, as we can only compute a local instead of
the global minimum of the kernel-k-means objective function. This approximate
solution usually does not coincide with the solution of the standard relaxation
presented in the last section.

Theorem 17 (Stability of kernel-k-means spectral clustering). Let the
data space X be compact, and the similarity function s be non-negative, sym-
metric, continuous, and bounded away from 0. If there exists a unique optimizer
of the kernel-k-means objective function, then the kernel-k-means relaxation of
spectral clustering is stable.

Proof. First we need to show that the sample based objective function converges
to the true objective function. This is a combination of the results of von Luxburg
et al. (2004) and those above. In von Luxburg et al. (2004) it has been proved
that the sample based degree function converges to a continuous function d on
the space X. This implies that the weights used in the weight matrix W = D
converge. Then we can apply the same techniques as in the standard k-means
setting to show the convergence of the weighted kernel-k-means objective func-
tion and the stability of the algorithm. ut

6.3 Symmetry leads to instability of spectral clustering

As it is the case for center based clustering, symmetry is one of the main reasons
why standard spectral clustering can be instable. In this section we would like
to briefly sketch how this can be seen. Symmetry of graphs is usually described
in terms of their automorphism groups (see Chan and Godsil (1997) for an
overview). An automorphism of an undirected graph G with vertices x1, ..., xm

and edge weights w(xi, xj) is a surjective mapping φ : {1, ...,m} → {1, ...,m}
such that w(xφ(i), xφ(j)) = w(xi, xj) for all i, j. The set of all automorphisms of
a graph forms a group, the automorphism group Aut(G). It is a subgroup of the
symmetric group Sm. It is easy to see that if v = (v1, ..., vm)t is an eigenvector of
L with eigenvalue λ, and φ a graph automorphism, then φ(v) := (vφ(1), ..., vφ(m))
is also an eigenvector of L with eigenvalue λ. If v and φ(v) are linearly inde-
pendent, then the eigenvalue λ will have geometric multiplicity larger than 1.
This immediately leads to ambiguity: from the point of view of spectral cluster-
ing, all vectors in the eigenspace of λ are equally suitable, as all of them have
the same Rayleigh coefficient. But different eigenvectors can lead to different
clusterings. As a very simple example consider the graph with 4 vertices con-
nected as a square. The Laplacian L of this graph has the eigenvalues 0, 1, 1, 2
and the eigenvectors v1 = (1, 1, 1, 1), v2 = (1, 0,−1, 0), v3 = (0, 1, 0,−1), and



v4 = (−1, 1,−1, 1). The eigenspace of the second eigenvalue thus consists of all
vectors of the form (a, b,−a,−b). The spectral embedding based on this eigen-
vector maps the data points to R by x1 7→ a, x2 7→ b, x3 7→ −a, and x4 7→ −b.
The centers construcuted by k-means are then either ±(a + b)/2 or ±(a− b)/2,
depending on whether a and b have the same sign or not. In the first case, the re-
sulting clustering is {x1, x2}, {x3, x4}, in the second case it is {x1, x3}, {x2, x4}.
Thus we obtain the two completely symmetric solutions of spectral clustering
which we would expect from the square symmetry of the data points.

Now let us consider the underlying data space X. The role of automorphisms
is now played by measure preserving symmetries as defined above. Assume that
(X, P ) possesses such a symmetry. Of course, even if X is symmetric, the simi-
larity graph based on a finite sample drawn from X usually will not be perfectly
symmetric. However, if the sample size is large enough, it will be “nearly sym-
metric”. It can be seen by perturbation theory that the resulting eigenvalues
and eigenvectors will be “nearly” the same ones as resulting from a perfectly
symmetric graph. In particular, which eigenvectors exactly will be used by the
spectral embedding will only depend on small perturbations in the sample. This
will exactly lead to the unstable situation sketched above.

7 Conclusions

Stability is being widely used in practical applications as a heuristics for tun-
ing parameters of clustering algorithms, like the number of clusters, or various
stopping criteria. In this work, we have set forward formal definitions for sta-
bility and some related clustering notions and used this framework to provide
theoretical analysis of stability. Our results show that stability is determined
by the structure of the set of optimal solutions to the risk minimization ob-
jective. Namely, the existence of a unique minimizer implies stability, and the
existence of a symmetry permuting such minimizers implies instability. These
results indicate that, contrary to common belief (and practice), stability does
NOT reflect the validity or meaningfulness of the choice of the number of clus-
ters. Instead, the parameters it measures are rather independent of clustering
parameters. Furthermore, our results reduce the problem of stability estimation
to concrete geometric and optimization properties of the data distribution. In
this paper we prove these results for a wide class of center based and spectral
clustering algorithms.

It would be interesting to investigate similar questions with respect to other
popular clustering paradigms. Another intriguing issue is to try to figure out
what features of real life data make stability successful as a clustering validation
tool in practice. As shown in this paper, by our results and examples, stability is
not the right tool for such purposes. The success of stability in choosing number
of clusters should be viewed as an exception rather than the rule.
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