Page 127: The **explicit ordering** semantic option is *not* the ordering semantics of Stateflow. The “implicit ordering of parallel states” in Stateflow is tightly related to the semantics of events in Stateflow. This thesis does not consider the semantics of events in Stateflow. The Explicit Ordering is meant to be an example of how “Execution of small steps is ordered syntactically.” (page 71) However, it resembles the ordering semantics of Stateflow in that the syntactic order is based on a clock-wise ordering of control states.

Page 219: Sentence

“The semantics of synchronization and priority are considered in line 1a. Line 10 in Figure 7.4 is the definition of the merge operator, denoted by “⊗”, which is similar to the definitions of the merge operators in Figure 4.8 and Figure 4.10, except that the **Source/Destination Orthogonal** and the **Non-Preemptive** semantics are hard-coded as consistency criteria in the last two conjuncts.” must be changed to,

“The semantics of synchronization and priority are considered in line 1a. Line 10 in Figure 7.4 is the definition of the merge operator, denoted by “⊗”, which is similar to the definition of the merge operator in Section 4.4.3, on page 108, except that the **Source/Destination Orthogonal** and the **Non-Preemptive** semantics are hard-coded as consistency criteria.”

Page 220: Line “10” in Figure 7.4 must be changed to,

\[
10. T \otimes T' = \{ (T_1 - T'_1) \cup T'' | T_1 \subseteq T \land T'_1 \subseteq T' \land (T_1 \cup T'_1) \subseteq T' \land \\
(\forall t': (T_1 \cup T') \cdot t' \in (T' - T'') \Leftrightarrow \exists t \in (T_1 - T'_1 \cup T'') . \\
(t \not\perp t') \land \neg ((t \perp t') \lor (t' \not\perp t)) \} \\
(\forall t : (T_1 \cup T') \cdot t \in T'_1 \Leftrightarrow \exists t' \in T'' . \\
(t \not\perp t') \land \neg ((t \perp t') \lor (t' \not\perp t)) \}.
\]