
Don’t be a tattle tale: Preventing
leakages through data dependencies
on access control protected data

Primal Pappachan, Shufan Zhang, Xi He, Sharad Mehrotra
Pennsylvania State University, University of Waterloo, University of California, Irvine

What is a Tattle-Tale?

2

Tattle-Tale in Databases

3

[State = CA, Role] à [SalPerHr]

Eid EName Zip State Role WorkHrs SalPerHr

34 Tina 45678 WA Student 20 40

56 Bobby 54321 CA Faculty 40 200

78 Dale 53567 CA Faculty 40 200

12 Khan 54321 CA Staff 30 70

t1

t2

t3

t4

Tattle-Tale in Databases

4

Eid EName Zip State Role WorkHrs SalPerHr

34 Tina 45678 WA Student 20 40

56 Bobby 54321 CA Faculty 40 200

78 Dale 53567 CA Faculty 40 200

12 Khan 54321 CA Staff 30 70

Using [State = CA, Role] à [SalPerHr] and Dale’s SalPerHr
Bobby’s SalPerHr can be inferred

t1

t2

t3

t4

Our Goal
Detect and prevent leakages due to data

dependencies by hiding “minimal” number of cells

5

Eid EName Zip State Role WorkHrs SalPerHr

34 Tina 45678 WA Student 20 40

56 Bobby 54321 CA Faculty 40 200

78 Dale 53567 CA Faculty 40 200

12 Khan 54321 CA Staff 30 70

Hide Bobby’s State for protecting his SalPerHr

t1

t2

t3

t4

[State = CA, Role] à [SalPerHr]

Our Goal
Detect and prevent leakages due to data

dependencies by hiding “minimal” number of cells

6

Eid EName Zip State Role WorkHrs SalPerHr

34 Tina 45678 WA Student 20 40

56 Bobby 54321 CA Faculty 40 200

78 Dale 53567 CA Faculty 40 180

12 Khan 54321 CA Staff 30 70

Additionally hide Bobby’s Zip for protecting his State

t1

t2

t3

t4

Zipà State

Extent of Leakage

7

• Tested on Tax dataset which contains address and tax information of individuals
• 14 attributes and 10 associated dependencies

• E.g., if two persons live in the same state, the one earning a lower salary has a lower tax
rate

• Salary attribute marked as sensitive and tested against a real-world adversary
• Holoclean [VLDB2017] which is a state-of-the-art tool for inferring missing data.

Able to reconstruct the actual values of sensitive cells 100%
of the time highlighting the importance of preventing

leakages through dependencies

Prior Work

8

None of the prior works have studied leakage on sensitive data due to data
dependencies with strong security guarantees and practical utility.

Design time prevention
[Delugach&Hinke, TKDE'96],
[Yip&Levitt, CSF'98], etc.

Query time prevention Poor data availability.
[Brodsky et al, TKDE'00]

Weak security model.

Perfect secrecy on views
[Miklau & Suciu, SIGMOD'04]

Not practical for query answering

Randomized algorithms (DP/OSDP)
[Kotsogiannis et al, ICDE'20]

Suppresses too many cells.

Main Contributions

9

Formalizing leakage attack based on two types of data dependencies
• Denial Constraints
• Function-based Constraints

Defining a security model
• Tattle-Tale Condition for Leakage Detection
• Full Deniability
• Relaxation of the assumptions in the model

Developing algorithmic solutions to implement security model
• With focus on Utility, Efficiency, and Convergence
• Optimizations to improve performance
• Evaluated on 2 different datasets
• End-to-end System implementation in MySQL

*Covered in this presentation
**Refer to the full paper

Formalizing Leakage Attacks
Access Control Policies mark cells in the database as sensitive

10

Formalizing Leakage Attacks
Data Dependencies causes the leakage

Expressed in the form of Denial Constraints (DCs)
𝛿!~: ∀𝑡# , 𝑡$¬ (𝑡#[𝐴] = 𝑡$ 𝐴 ⋀(𝑡# 𝐵 ≠ 𝑡$[𝐵]))

11

Formalizing Leakage Attack

12

1 2 1 3

c1 c3 c4 c6

2

c2

2

c5

A1 A1A2 A2A3 A3

* * * ** *

𝑉! c1 c3 c4 c6c2 c5

Adversary Infers
𝑐" = {1, 2, 3}

1 3 1 *2 2

𝑉# c1 c3 c4 c6c2 c5

Adversary Infers
𝑐" = {1, 2, 3}

Base view

𝑡! 𝑡"

∀𝐴#𝐷𝑜𝑚 𝐴# = {1, 2, 3}

Formalizing Leakage Attack

13

1 2 1 3

c1 c3 c4 c6

2

c2

2

c5

A1 A1A2 A2A3 A3

* * * ** *

𝑉! c1 c3 c4 c6c2 c5

𝛿~: 𝐴# → 𝐴2
𝛿#: ¬ 𝑐# = 𝑐3 ∧ 𝑐2 ≠ 𝑐"

Adversary Infers
𝑐" = {1, 2, 3}

1 3 1 *2 2

𝑉# c1 c3 c4 c6c2 c5

Adversary Infers
𝑐" = {3}

Base view

Formalizing Leakage Attack

14

1 2 1 3

c1 c3 c4 c6

2

c2

2

c5

A1 A1A2 A2A3 A3

* * * ** *

𝑉! c1 c3 c4 c6c2 c5

𝛿~: 𝐴# → 𝐴2
𝛿#: ¬ 𝑐# = 𝑐3 ∧ 𝑐2 ≠ 𝑐"

Adversary Infers
𝑐" = {1, 2, 3}

𝑉4

* 3 1 *2 2

c1 c3 c4 c6c2 c5

Adversary Infers
𝑐" = {1, 2, 3}

I 𝒄𝒊 𝑽`, 𝜹) = I 𝒄𝒊 𝑽𝟎, 𝜹)
∀𝒄𝒊 ∈ 𝑪𝑺, ∀𝜹 ∈ 𝑺𝜟Base view

View 𝑉! achieves Full Deniability
i.e., adversary is unable to infer

nothing more than the base view 𝑉"

What caused leakage?

15

¬(1 = 1 ⋀(3 ≠ ∗)

True ?????

Truth value of the last predicate must
be False in a clean database

∴ c# = {3}
Remember that, in the base view we

had 𝑐#= {1, 2, 3}

Shared View

1 3 1 *2 2
𝑉$

Tattle-Tale is True when all the other
predicates, except the one with the

sensitive cell, evaluate as True

𝛿$: ¬ 𝑐$ = 𝑐% ∧ 𝑐& ≠ 𝑐#

What prevented leakage?

16

¬(∗ = 1 ⋀(3 <∗)
????? ?????

Either of the predicates could be False

𝑐# = 1, 2, 3
Same as in the base view

Shared View

* 3 1 *2 2
𝑉!

Tattle-Tale is False when at least
1 other predicate evaluate as

False or Unknown.

𝛿$: ¬ 𝑐$ = 𝑐% ∧ 𝑐& ≠ 𝑐#

Security model

Full deniability is achieved for a shared view if for all
the hidden cells in that view and their dependency

instantiations, Tattle-Tale Condition is False.

17

The Tail of Tattle-Tales!

18

𝑐$

𝑐! 𝑐"

𝑐# 𝑐$ 𝑐%

𝑐" 𝑐& 𝑐$ 𝑐!' 𝑐!! 𝑐!$

….

𝑐%… …

….

𝑐(

𝑐(

….

… … … 100s of sensitive cells

Lots and lots of hidden cells

Millions of cuesets𝑐$ 𝑐(

Our approach

19

Inference Detection

Inference Protection

Tattle-Tale
Condition?

False

True

Input: Database 𝑫,
Set of Sensitive/Hidden

Cells, Set of data
dependencies,

Dependency Instantiation

Output: View V
that achieves full

deniability

Step 1: Instantiations…!

20

Dependency Instantiation • For each hidden cell, instantiate all
the dependencies

• Challenge: In the worst, there are
|𝐷|! instantiations for each
sensitive cell

• Solution: We converted
dependency instantiation
operation into an efficient join
query to reduce the complexity.

𝛿#: ¬(𝑐# = 𝑐3 ⋀ 𝑐4 = 𝑐6 ⋀(𝑐2 < 𝑐")
𝛿4: ¬(𝑐7 = 𝑐3 ⋀ 𝑐8 = 𝑐6 ⋀(𝑐9 < 𝑐")

.

.

.

.
𝛿 :" : ¬(……… . ⋀ ……… . . ⋀(. . … < 𝑐")

Step 2: Who are the Tattle-Tales?

21

Tattle-Tale
Condition?

False

True

Dependency Instantiation

𝛿$: ¬(𝑐$ = 𝑐% ⋀ 𝑐! = 𝑐' ⋀(𝑐& < 𝑐#)
¬(∗ = 1 ⋀ 2 = 2 ⋀(3 <∗)

• Check for each hidden cell and
their dependency instantiations

• Termination Condition: If it
returns False for all hidden cells
and their dependency
instantiations, then the view has
achieved Full Deniability.

Step 2: Who are the Tattle-Tales?

22

Tattle-Tale
Condition?

False

True

Dependency Instantiation • Check for each hidden cell and
their dependency instantiations

• Termination Condition: If it
returns False for all hidden cells
and their dependency
instantiations, then the view has
achieved Full Deniability.

• If it returns True for at least 1 of
them, then there is leakage

𝛿$: ¬(𝑐$ = 𝑐% ⋀ 𝑐! = 𝑐' ⋀(𝑐& < 𝑐#)
¬(1 = 1 ⋀ 2 = 2 ⋀(3 <∗)

Step 3: Cue them up!

23

Tattle-Tale
Condition?

False

True

Dependency Instantiation

Inference Detection

• Outputs cuesets for sensitive cells
which satisfy the Tattle-Tale

𝑐$∗

𝑐! 𝑐" 𝑐" 𝑐& 𝑐$ 𝑐" 𝑐!' 𝑐!$

𝑐%∗

….

𝑐$ 𝑐(

Step 4: Hide yo cells!

24

False

True

Dependency Instantiation

Inference Detection

Inference Protection

• Choose cells to hide from the
cuesets

• Random Hiding leads to poor
utility (Baseline)

𝑐$∗

𝑐! 𝑐" 𝑐" 𝑐& 𝑐$ 𝑐" 𝑐!! 𝑐!$

𝑐%∗

….

𝑐$ 𝑐(

Tattle-Tale
Condition?

Step 4: Hide yo cells, hide yo cells!

25

False

True

Dependency Instantiation

Inference Detection

Inference Protection

• Choose cells to hide from the
cuesets

• Challenge: Selecting minimal
cells to hide is NP-Hard.

• Use a greedy heuristic based on
Minimum Subset Cover

• Run the approach again for
newly hidden cells

Tattle-Tale
Condition?

Experimental Setup
Datasets: Tax dataset [1], (larger) Hospital dataset [2]
Dependencies: Using a data profiling tool [2]. 11 dependencies on
Tax dataset and 14 dependencies on Hospital dataset
Baselines:
• Random Hiding for Inference Protection
• Oblivious of Tattle-Tale for Inference Detection

End-to-end implementation of the system with steps done at pre-processing
Source code available on Github

26[1] Chu et al. 2013 Discovering Denial Constraints [2] Metanome

Scan me for source code!

https://hpi.de/naumann/projects/data-profiling-and-analytics/metanome-data-profiling.html

Impact of dependencies

27

Number of Sensitive Cells

N
um

be
r o

f H
id

de
n

Ce
lls If a sensitive cell

participates in more
dependencies, number of hidden
cells increases!

Utility Impact

28

Number of Sensitive Cells

N
um

be
r o

f H
id

de
n

Ce
lls

Number of hidden cells increases
linearly with our approach

Number of hidden cells increases
exponentially when Random
hiding used for Inference
Protection!

Performance Impact

29

Number of Sensitive Cells

Ti
m

e
ta

ke
n

in
 S

ec
on

ds

What happens if when compared
against the baselines?

Overhead minimal in our
approach

High overhead when Tattle-Tale
condition not used for generating
cuesets

Performance Impact

30

Number of Sensitive Cells

Ti
m

e
ta

ke
n

in
 S

ec
on

ds

What happens if when size of the
database is increased?

Our approach scales linearly with
respect to size of the database

Takeaways
• Formalized a new type of leakage attacks based on dependencies
such as Denial Constraints and Function-based Constraints
• Defined a new security model of Full Deniability (FD) and Tattle-
Tale Condition for achieving FD
• Implemented algorithmic solutions for achieving FD on a given
view
• Several new research directions
• Leakage with soft dependencies
• Combining FD with randomized response methods such as DP, OSDP to

release non-sensitive data partially

31

