
DProvSQL: Privacy Provenance Framework for Differentially
Private SQL Engine

Shufan Zhang

University of Waterloo

Waterloo, Canada

shufan.zhang@uwaterloo.ca

Runchao Jiang

Meta Platforms

USA

runchaojiang@fb.com

Xi He

University of Waterloo

Waterloo, Canada

xi.he@uwaterloo.ca

ABSTRACT
Recent years have witnessed the adoption of differential privacy

(DP) in practical database query systems. Such systems, like Pri-

vateSQL and FLEX, allow data analysts to query sensitive data while

providing a rigorous and provable privacy guarantee. However, ex-

isting systems may use more privacy budgets than necessary in

certain cases where different data analysts with different privilege

levels ask a similar or even the same query. In this work, we pro-

pose DProvSQL, a fine-grained privacy provenance framework that

tracks the privacy loss to each single data analyst and we build algo-

rithms that make use of this framework to maximize the number of

queries that could be answered. Preliminary empirical results show

that our approach can answer 6x more queries than the baseline

approach on average meanwhile the answer from our approach is

1.5x to 5.6x more accurate.

1 INTRODUCTION
Data collected by companies and organizations can contain sensi-

tive information. With the growing attention on data privacy and

the development of privacy protection regulations such as GDPR

[12], companies wish to allow external and internal data analysts to

make use of the data without compromising the privacy of data con-

tributors. To address the privacy issues, differential privacy (DP) [4]

has been considered as a promising and the de facto standard for

privacy-preserving data analysis these days. In the framework of

DP theory, privacy is parameterized by a variable 𝜖 (or (𝜖, 𝛿) in
approximate-DP), called the privacy budget, which controls the

privacy protection level over the data. By carefully injecting con-

trollable noise, researchers or algorithm designers can prove the

output of an algorithm (or mechanism, using DP terminology) can

only reveal bounded information of any individual in the dataset,

and thus this mechanism satisfies the notion of DP.

Recent years have witnessed the adoption of DP from a pure

theoretical perspective to practical systems [10]. A plethora of

systems are proposed and developed to enforce DP for database

management and SQL queries in real-world, including PINQ [9],

FLEX [7], PrivateSQL [8], GoogleDP [1], and Chorus [6]. Despite

these significant efforts made in existing DP systems, these systems

regard the data analysts as a unified entity querying and obtaining

the results from the system. Thus the privacy analysis is stark and

not personalized as per data analyst.We argue that data analysts can

have different privilege levels in practical scenarios on accessing the

query results, which requires a system to enforce a finer-grained

privacy tracking. We illustrate this problem as below.

Motivating Example.We consider a protected database (Fig. 1) in

a corporation that records the data of its employees. This database

contains sensitive information about the employees, such as salary

Figure 1: The Employee Table

and age. Other attributes, like department and state, are less sensi-

tive and considered public information. Two queriers, A, which is

an internal application in the company, and B, who represents an

external application outside the company, ask the following aggre-

gation query about the average salary of employees with age less

than 30 for each department:

SELECT AVERAGE(salary) FROM employee
WHERE age < 30
GROUP BY department;

In this example, the average salary is sensitive information and

the query result should be protected with DP. The queriers, ap-

plication A and application B, cannot access the raw data in the

employee table but they are able to learn some noisy answers of

the aggregation query. These two applications differ in their privi-

lege of accessing the database and the query results — the internal

application (i.e., A) can have a higher privilege level than the ex-

ternal application (i.e., B). In terms of DP, the privacy leakages to

A and B through the noisy answers are different, and the internal

application A should be able to see more accurate results.

This use case is common in practice for tech companies who

need to use sensitive data for internal applications like anomaly de-

tection and also would like to invite external researchers to analyze

their data but with more noise. However, the existing DP systems

do not provide tools to distinguish these queriers and track their

perspective privacy loss. A naive tracking and answering of each

querier’s queries independent of the others can waste privacy bud-

gets, i.e., fewer queries can be answered accurately under a given

total privacy budget. Additionally, if we assume (all or a subset

of) data analysts can communicate with each other and collude,

we would like to control the overall privacy loss. This is due to

the underlying privacy implication, where the compromised data

analysts asking the same query are able to infer a more accurate

result of sensitive data, according to the sequential composition

theorem of DP [4]. As one can see, this process is not convenient

nor secure as those systems are not dedicatedly designed for the

use case that we are showing.

To tackle with these challenges, we propose DProvSQL, a new
privacy provenance framework for DP SQL engine that fits in the

1

https://orcid.org/0000-0002-1825-0097


Shufan Zhang, Runchao Jiang, and Xi He

multi-analysts scenario. Instead of answering queries from each

data analyst independently, DProvSQL generate DP synopses for

a set of views, so that the queries can be answered based on these

synopses and these synopses can be dynamically updated according

to data analysts’ requests. Furthermore,DProvSQL enables a privacy
provenance table that enforces a fine-grained privacy provenance

as per each data analyst and per view. The privacy provenance table

is associated with privacy constraints so that constraint-violating

queries will be rejected. Making use of this privacy provenance

framework, we build the mechanisms, maintaining global (viz., as

per view) and local (viz., as per analyst) DP synopses (i.e., material-

ized results for views) to answer as many query presented to the

system as possible. Our preliminary empirical results show a sig-

nificant improvement over the baseline method where queries are

answered independently, in terms of the number of queries being

answered and the minimum expected error among the answers.

2 BACKGROUND
We consider the database instance 𝐷 that stores sensitive data

with a set of schema/relations R = {𝑅1, . . . , 𝑅𝑙 }. The domain of all

database instances is denoted by D. We introduce and summarize

the related definitions about differential privacy as follows.

Definition 2.1 (Differential Privacy (DP)). We say that a random-

ized algorithm 𝑀 : D → O satisfies (𝜖, 𝛿)-differential privacy, if
for any two databases 𝐷 and 𝐷 ′ that differ in only 1 tuple, and

all 𝑂 ⊆ O, we have Pr[M(𝐷) ∈ 𝑂] ≤ 𝑒𝜖 Pr[M(𝐷 ′) ∈ 𝑂] + 𝛿,
where the probability is taken over the randomness used by the

mechanismM.

Definition 2.2 (𝑙2-Global Sensitivity). For a function 𝑞 : D → R𝑑
and all𝐷, 𝐷 ′ ∈ D, the 𝑙2 global sensitivity of this function is defined

as Δ𝑞 = max𝐷,𝐷′:𝑑 (𝐷,𝐷′)<=1 ∥𝑞(𝐷) −𝑞(𝐷 ′)∥2,where 𝑑 (·, ·) denotes
the number of tuples that 𝐷 and 𝐷 ′ differ.

Definition 2.3 (Analytic Gaussian Mechanism [2]). Let 𝑞 : D →
R𝑑 be an arbitrary 𝑑-dimensional function. The analytic Gaussian

mechanismM(𝑥) = 𝑞(𝑥) + 𝜂 where 𝜂 ∼ N
(
0, 𝜎2

)
is (𝜖, 𝛿)-DP if

and only if ΦN
(
Δ2𝑞
2𝜎 −

𝜖𝜎
Δ2𝑞

)
− 𝑒𝜖ΦN

(
−Δ2𝑞

2𝜎 −
𝜖𝜎
Δ2𝑞

)
≤ 𝛿.

Definition 2.4 (Data Utility). For a query 𝑞 : D → R𝑑 and a

mechanismM : D → R𝑑 , the data utility of mechanismM is

measured as the expected squared error, 𝑣 = E[𝑞(𝐷) − M(𝐷)]2.
For the (analytic) Gaussian mechanism, the expected squared error

equals to its variance, that is, 𝑣 = 𝜎2.

3 PROBLEM SETUP
We consider the multi-analysts setting, where there are multiple

data analysts A = {𝐴1, . . . , 𝐴𝑚} who want to ask queries on the

database 𝐷 . The data curator who manages the database wants to

ensure that the sensitive data is properly and privately shared with

the data analysts 𝐴1, . . . , 𝐴𝑚 . In our threat model, the data analysts

can adaptively select and submit arbitrary queries to the system

to infer sensitive information about individuals in the protected

database. In addition, in our multi-analysts model, data analysts

may submit the same query and collude to leak more information

about the sensitive data.

Differing from prior work [6, 8], these analysts have different

privilege levels. We would like to define the privacy per analyst

provenance framework as a DP variant that guarantees different

levels of privacy loss to the analysts.

Definition 3.1 (Multi-analyst DP). We say a randomized mecha-

nismM : D → (O1, . . . ,O𝑚) satisfies [(𝐴1, 𝜖1, 𝛿1), ..., (𝐴𝑚, 𝜖𝑚, 𝛿𝑚)]-
multi-analyst-DP if for any two databases 𝐷 and 𝐷 ′ that differ in
only 1 tuple, any 𝑖 ∈ [𝑚], and all 𝑂𝑖 ⊆ O𝑖 , we have

Pr[M(𝐷) ∈ 𝑂𝑖 ] ≤ 𝑒𝜖𝑖 Pr[M(𝐷 ′) ∈ 𝑂𝑖 ] + 𝛿𝑖 ,

where 𝑂𝑖 are the output released to the 𝑖th analyst.

Themulti-analyst DP framework supports the composition across

different algorithms, indicated by the following theorem.

Theorem 3.2. Given two mechanismsM1 : D → (O1, . . . ,O𝑚)
that satisfies [(𝐴1, 𝜖1, 𝛿1), ..., (𝐴𝑚, 𝜖𝑚, 𝛿𝑚)]-multi-analyst-DP, and
M2 : D → (O′

1
, . . . ,O′𝑚) that satisfies [(𝐴1, 𝜖

′
1
, 𝛿 ′

1
), ..., (𝐴𝑚, 𝜖 ′𝑚, 𝛿 ′𝑚)]-

multi-analyst-DP, then the mechanismM1 ◦M2 gives the [(𝐴1, 𝜖1 +
𝜖 ′
1
, 𝛿1 +𝛿 ′

1
), ..., (𝐴𝑚, 𝜖𝑚 +𝜖 ′𝑚, 𝛿𝑚 +𝛿 ′𝑚)]-multi-analyst-DP guarantee.

Under this new multi-analyst DP framework, several research

questions are raised and motivate our work.

Question 1: worst-case privacy analysis across analysts. If the
data analysts do not collude, we can use sequential composition

(Theorem 3.2) to track the privacy loss to each data analyst for

all queries this analyst asks. However, if all or a subset of data

analysts collude or are compromised by an adversary, how to design

algorithms to account the privacy loss to the colluded analysts?

When all the analysts are compromised by an adversary, the

privacy loss to this adversary is upper bounded by (∑ 𝜖𝑖 ,
∑
𝛿𝑖 ) and

it is lower bounded by (max 𝜖𝑖 ,max𝛿𝑖 ), where (𝜖𝑖 , 𝛿𝑖 ) is the privacy
loss to the 𝑖th analyst. In this paper, we would like to design an

algorithm that achieves the lower privacy bound.

Question 2: dynamic budget allocation across views. Prior
works for DP query answering [5, 8] often assume the availability

of a representative workload that can capture the queries interested

by the data analysts in the future. Given such a representative

workload, a system [8] can select a set of views 𝑉1,𝑉2, . . . ,𝑉𝑙 such

that each query in this workload can be answered with a linear

query on a single view, and then generate a DP synopsis for each

of the selected view. Given a total privacy budget, prior work [8]

splits the privacy budget equally or proportional to the sensitivity

of the view to achieve equal accuracy rate. However, some views

may require higher accuracy than the others, depending on the

requests of the data analysts. Therefore, it is important to design

an algorithm that can dynamically allocate privacy budgets to the

given views and update their corresponding DP synopses overtime.

Definition 3.3 (View and query answerability [8]). Given a data-

base instance 𝐷 , a materialized (histogram) view V(𝐷) (or 𝑉 ) is a
set of results of counting query about some specific domain values

over some attributes in the database instance. For a query 𝑞 over the

database instance 𝐷 , if there exists a query 𝑞′ over the histogram
view𝑉 such that 𝑞(𝐷) = 𝑞(V(𝐷)), we say the query 𝑞 is answerable
over the view 𝑉 .

2



DProvSQL: Privacy Provenance Framework for Differentially Private SQL Engine

Figure 2: The Privacy Provenance Table: Data Structure

4 SYSTEM OVERVIEW
To support the multi-analysts use case and to answer the aforemen-

tioned research questions, we identify the following three principles

for a differentially private SQL query system and propose a system

DProvSQL that follow these principles.

Principle 1: fine-grained privacy provenance.The system should

be able to track the privacy budget allocated as per each data ana-

lyst and per each view in a fine-grained way. The system should

additionally enable a mechanism to compose privacy loss across

data analysts and the queries they ask.

Principle 2: view-based privacy management. The queries are
answered based on differentially private views/synopses in the

system. View is the minimum data object that we keep track of its

privacy loss and the views can be updated dynamically if higher

data utility is required. The privacy budgets spent on different views

during the updating process depend on the incoming queries.

Principle 3: maximum query answering. The system should be

tuned to answer as many queries as possible, without violating the

privacy constraint specified by the data curators as per data analyst

and per view based on their privilege levels.

4.1 Privacy Provenance Table
To meet the first two principles, we propose a privacy provenance

table for DProvSQL, which is inspired by the access matrix model in

access control literature [11], to track the privacy loss per analyst

and per view, and further bound the privacy loss. Particularly, in our

model, the state of the overall privacy loss of the system is defined

as a triplet (A,V, 𝑃), whereA denotes the set of data analysts and

V represents the list of query-views maintained by the system. We

denote by 𝑃 the privacy provenance table, defined as follows.

Definition 4.1 (Privacy Provenance Table). The privacy prove-

nance table 𝑃 is a matrix that tracks the privacy loss of the database

as per each data analyst in A and each query-view in V . Each

row of 𝑃 corresponds to a data analyst and each column of 𝑃 corre-

sponds to a query-view. Each entry of the matrix 𝑃 [𝐴𝑖 ,𝑉𝑗 ]. records
the current cumulative privacy loss, on view 𝑉𝑗 to analyst 𝐴𝑖 .

The table also includes a set of row/column/table privacy con-

straints, Φ. A row constraint for 𝑖th row, denoted by 𝜙𝐴𝑖
, refers to

the total privacy loss to an particular data analyst 𝐴𝑖 (according to

his/her privilege level) while a column constraint for the 𝑗th col-

umn, denoted by 𝜙𝑉𝑗
refers to as the allowed maximum privacy loss

to a specific view 𝑉𝑗 . We use the table constraint over 𝑃 , denoted
by 𝜙𝑃 , to specify the overall privacy loss that is allowed for the

protected database. The privacy constraints can be correlated. The

internal restriction over these constraints indicates that the entry

privacy loss cannot exceed row and column constraints while the

row/column constraints cannot exceed the overall table constraint.

Example 4.2. Figure 2 shows an example of the privacy prove-

nance table. We consider a histogram view 𝑉1 is a 3-way marginal

table over attributes (age, gender, and education). The queries 𝑞1
and 𝑞2 can be transformed into 𝑞1 and 𝑞2 that are answerable us-

ing 𝑉1. Three data analysts 𝐴1, 𝐴2 and 𝐴3 with different privilege

levels are recorded in privacy provenance table and we track every

privacy budget spent over time on the views.

To meet the third principle, we formulate the maximum query
answering problem based on the privacy provenance table.

Problem 1. Given a privacy provenance table (A,V, 𝑃), at each
time, a data analyst 𝐴𝑖 ∈ A submits the query with a utility require-
ment (𝑞𝑖 , 𝑣𝑖 ), where the transformed 𝑞𝑖 ∈ V , how to answer as many
queries as possible without violating the row/column/table privacy
constraints in 𝑃 while meeting the utility requirement per query?

WLOG, we assume the utility requirements per query requested

by the same data analyst never decreases. That is, for the same

query, the data analyst is only interested in a more accurate result.

We will discuss the other cases in our full paper.

4.2 DP Mechanism Design
DP Synopses. To solve the maximum query answering problem,

for each view 𝑉 ∈ V , DProvSQL maintains a global DP synopsis
with a cost of (𝜖, 𝛿), denoted by 𝑉 𝜖,𝛿 (𝐷) or 𝑉 𝜖

, where 𝐷 is the

database instance. For simplicity, we drop 𝛿 by considering the

same value for all 𝛿 and 𝐷 . For this veiw, DProvSQL also maintains

a local DP synopsis for each analyst 𝐴𝑖 ∈ A, denoted by𝑉 𝜖′
𝐴𝑖
, where

the local synopsis is always generated from the global synopsis

𝑉 𝜖
of the view 𝑉 by adding more noise. Hence, we would like to

ensure 𝜖 > 𝜖 ′. This local DP synopsis 𝑉 𝜖′
𝐴𝑖

will be used to answer

the queries asked by the data analyst 𝐴𝑖 .

First, we introduce our additive Gaussian Mechanism (additive

GM) that releases a local DP synopsis 𝑉 𝜖′
𝐴𝑖

from a given global

synopsis 𝑉 𝜖
, where 𝑉 𝜖

is generated by a Gaussian mechanism.

Given the privacy guarantee 𝜖 (and 𝛿) and the sensitivity of the

view, the Gaussian mechanism can calculate a proper variance 𝜎 for

adding noise and ensuring DP. The additive GM calculates 𝜎 and 𝜎 ′

based on 𝜖 and 𝜖 ′ respectively, and then generates the local synopsis
𝑉 𝜖′
𝐴𝑖

by injecting independent noise drawn from N(0, 𝜎 ′2 − 𝜎2) to
the global synopsis 𝑉 𝜖

. As the global synopsis is hidden from all

the analysts, the privacy loss to the analyst 𝐴𝑖 is 𝜖
′
. Even if all

the analysts collude, the maximum privacy loss is bounded by the

budget spent on the global synopsis.

Second, when the global DP synopsis 𝑉 𝜖
is not sufficiently accu-

rate to handle a local synopsis, DProvSQL spends additional privacy
budget Δ𝜖 to update the global DP synopsis to 𝑉 𝜖+Δ𝜖

. We still con-

sider Gaussian mechanism, which generates an intermediate DP

synopsis𝑉 Δ𝜖
with a budget Δ𝜖 . Then we combine the previous syn-

opses with this intermediate synopsis with a weight proportional to

their budget. That is, for the𝑛-th release,𝑉 ′ =
∑𝑛−1
𝑖=1 𝑤𝑖𝑉

𝜖𝑖 +𝑤𝑛𝑉
Δ𝜖

3



Shufan Zhang, Runchao Jiang, and Xi He

where

∑𝑛
𝑖=1𝑤𝑖 = 1 and 𝑣 =

∑𝑛−1
𝑖=1 𝑤2

𝑖
𝜎2
𝑖
+𝑤2

𝑛𝜎
2
(whose closed-form

solution is𝑤𝑖 = 𝑣/𝜎2
𝑖
, i.e.𝑤𝑖 ∝ 𝜖𝑖 ).

When a local DP synopsis 𝑉 𝜖′
𝐴𝑖

is not sufficiently accurate to

handle a query, but the budget 𝜖 ′ is still smaller than the budget

for the global synopsis, DProvSQL generates an intermediate local

synopsis 𝑉 Δ𝜖
𝐴𝑖

from the global synopsis using additive GM. Then it

combines𝑉 Δ𝜖
𝐴𝑖

with the previous local synopsis in a similar way for

the global synopses, which leads to a new local synopsis 𝑉 𝜖′+Δ𝜖
𝐴𝑖

.

Algorithm Overview. Algorithm 1 summarizes how DProvSQL
uses the DP synopses to answer incoming queries. At the system

setup phase (line 1-2), the system (or data curator) initializes the

privacy provenance table by setting the privacy budget as per entry

as 0 and the row/column/table constraints Φ. The system initializes

empty global/local synopses for each view. The data analyst speci-

fies a query 𝑞𝑖 with its desired utility requirement 𝑣𝑖 (line 4). Once

the system receives the request, it selects the suitable view to an-

swer this query (line 5) and uses the function privacyTranslate()

to find the minimum privacy budget 𝜖𝑖 for 𝑉 to meet the utility

requirement of 𝑞𝑖 (line 6). Then, DProvSQL checks if answering 𝑞𝑖
with budget 𝜖𝑖 will violate the privacy constraints Φ (Line 7).

If this sanity check passes and the required privacy budget 𝜖𝑖 is

greater than the current privacy budget 𝜖 used by the global synop-

sis𝑉 𝜖
(line 8), there is no way to update the local synopsis from the

global synopsis to answer this query accurately. Thus, DProvSQL
will update the global synopsis to the larger privacy budget 𝑉 𝜖𝑖

(line 9). Then, DProvSQL will update the local synopsis based on

the present global synopsis to 𝑉
𝜖𝑖
𝐴𝑖

(line 10) and the corresponding

entry in the privacy provenance table, 𝑃 [𝐴𝑖 ,𝑉 ] = 𝜖𝑖 (line 11). Last,

DProvSQL uses the updated local synopsis to answer query 𝑞𝑖 and

returns the answer to the data analyst (line 12). If the sanity check

fails, DProvSQL rejects the query (line 14). We will elaborate the

details in our full paper, but the privacy guarantees are as follows.

Theorem 4.3. Given the privacy provenance table and its con-
straint specifications, Φ = {𝜙𝐴𝑖

|𝐴𝑖 ∈ A} ∪ {𝜙𝑉𝑗
|𝑉𝑗 ∈ V} ∪ {𝜙𝑃 },

Algorithm 1 ensures [. . . , (𝐴𝑖 , 𝜙𝐴𝑖
, 𝛿), . . .]-multi-analyst-DP; it also

ensures 𝜙𝑉𝑗
-DP for view 𝑉𝑗 ∈ V and overall 𝜙𝑃 -DP if all the data

analysts collude.

5 PRELIMINARY RESULTS
As a proof of concept, we implement our approach and present the

preliminary empirical results on Adult dataset [3]. We set up three

data analysts, two of which has low privilege level (row constraints

𝜙𝐴1
= 𝜙𝐴2

=1, ) and the other one with high privilege level (𝜙𝐴3
=4).

For simplicity, we assume all data analysts ask the same query:

SELECT COUNT(*) FROM adult
WHERE age >= 39 AND education = “Bachelors”
GROUP BY age, education, gender;

The data analysts keep on submitting this query with higher accu-

racy requirement (specified by the expected squared error, starting

from 40, each time decreasing by 1) over time. In our approach, we

build a 3-way contingency table over attributes age, gender, and

education as a view to answer the query, with a column constraint

𝜙𝑉 = 4. We enable the column constraints over different analysts

while the row constraint is naturally enforced since we only have

a single view in the preliminary experiments. We compare our

Algorithm 1: System Overview

Input: Analysts A B 𝐴1, . . . , 𝐴𝑛 ; Database instance 𝐷 ;

Privacy provenance table 𝑃 .

1 Data curator sets up the privacy provenance table 𝑃 with

row/column/table constraints Φ.
2 Initialize all the synopses for 𝑉 ∈ V
3 repeat
4 Receive (𝑞𝑖 , 𝑣𝑖 ) from data analyst 𝐴𝑖

5 Select 𝑉 ∈ V to answer query 𝑞𝑖

6 𝜖𝑖 ← privacyTranslate(𝑞𝑖 , 𝑣𝑖 ,𝑉 )

7 if constraintCheck(𝑃,𝐴𝑖 ,𝑉 , 𝜖𝑖 ,Φ) then
8 if 𝜖𝑖 > 𝜖 for global synopsis 𝑉 𝜖 then
9 Update global synopsis to 𝑉 𝜖←𝜖𝑖

with 𝐷

10 Update local synopsis to 𝑉
𝜖′←𝜖𝑖
𝐴𝑖

with 𝑉 𝜖

11 Update privacy provenance table 𝑃 [𝐴𝑖 ,𝑉 ] ← 𝜖𝑖

12 Answer 𝑞𝑖 with 𝑉
𝜖′
𝐴𝑖

and return answer 𝑟𝑖 to 𝐴𝑖

13 else
14 reject the query 𝑞𝑖

15 end
16 until No more queries sent by analysts

Table 1: The comparison between our approach and baseline
approach (in terms of the number of queries being answered
and the minimum expected error of answers).

Analyst 1 Analyst 2 Analyst 3

Baseline 2 (𝑣=39) 2 (𝑣=39) 7 (𝑣=34)

Our Approach 15 (𝑣=26) 15 (𝑣=26) 35 (𝑣=6)

approach to a baseline, which regard each query from analysts as

a separated query and answer it independently. We measure the

number of queries that the system could support for each data

analyst until no more queries can be handled without violating the

privacy constraints, and the minimum expected error among all

queries returned to each data analyst. As shown in Table 1, our

approach can answer 6x more queries than the baseline on average

meanwhile the answer from our approach is 1.5x to 5.6x more accu-

rate. Our approach performs significantly better than the baseline,

because in the baseline, every query-answering is independent,

whereas the usage and management of global/local DP synopses in

our approach enables correlated DP noise to the query results. Our

mechanism can therefore avoid wasting budget and hence answer

more queries accurately.

6 CONCLUDING REMARKS
We propose DProvSQL, a privacy provenance framework for dif-

ferentially private SQL engine that tracks the privacy loss to each

supported data analyst. DProvSQL can avoid wasting privacy bud-

gets on the same query asked by different data analysts and prevent

risky queries that exceed the privilege level as per data analyst.

The prototype of DProvSQL can be extended and further developed

to support a variety of queries including (cross-relation) JOINs,

and different types of complicated DP mechanisms, so that the

fully-functioning system can be useful in the industry and in other

real-world scenarios.

4



DProvSQL: Privacy Provenance Framework for Differentially Private SQL Engine

REFERENCES
[1] Kareem Amin, Jennifer Gillenwater, Matthew Joseph, Alex Kulesza, and Sergei

Vassilvitskii. 2022. Plume: Differential Privacy at Scale. arXiv preprint
arXiv:2201.11603 (2022).

[2] Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian mechanism for

differential privacy: Analytical calibration and optimal denoising. In International
Conference on Machine Learning. PMLR, 394–403.

[3] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[4] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
[5] Moritz Hardt and Guy N Rothblum. 2010. A multiplicative weights mechanism

for privacy-preserving data analysis. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science. IEEE, 61–70.

[6] Noah Johnson, Joseph P Near, Joseph M Hellerstein, and Dawn Song. 2020.

Chorus: a programming framework for building scalable differential privacy

mechanisms. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P).

IEEE, 535–551.

[7] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differen-

tial privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018),
526–539.

[8] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: a differentially private

sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.
[9] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. 19–30.

[10] Joseph P Near and Xi He. 2021. Differential Privacy for Databases. Foundations
and Trends® in Databases 11, 2 (2021), 109–225.

[11] Pierangela Samarati and Sabrina Capitani de Vimercati. 2000. Access control:

Policies, models, and mechanisms. In International School on Foundations of
Security Analysis and Design. Springer, 137–196.

[12] Paul Voigt and Axel Von dem Bussche. 2017. The EU general data protection

regulation (GDPR). A Practical Guide, 1st Ed., Cham: Springer International
Publishing 10 (2017), 3152676.

5

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Background
	3 Problem Setup
	4 System Overview
	4.1 Privacy Provenance Table
	4.2 DP Mechanism Design

	5 Preliminary Results
	6 Concluding Remarks
	References

