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1 INTRODUCTION

O RGANIZATIONS today collect data about individuals that
could be used to infer their habits, religious affiliations, and

health status — properties that we typically consider as sensitive.
New regulations, such as the European General Data Protection
Regulation (GDPR) [2], the California Online Privacy Protection
Act (CalOPPA) [3], and the Consumer Privacy Act (CCPA) [4],
have made it mandatory for organizations to provide appropriate
mechanisms to enable users’ control over their data, i.e., (how—
why— for how long) their data is collected, stored, shared, or
analyzed. Fine Grained Access Control Policies (FGAC) supported
by databases is an integral technology component to implement
such user control. FGAC policies enable data owners/administra-
tors to specify which data (i.e., tables, columns, rows, and cells
) can/cannot be accessed by which querier (individuals posing
queries on the database) and is, hence, sensitive [5] for that querier.
Traditionally, Database Management Systems (DBMS) implement
FGAC by filtering away data that is sensitive for a querier and
computing the query on only the non-sensitive part of the data.
Such a strategy is implemented using either query rewriting [6],
[7] or view-based mechanisms [8]. It is well recognized that
restricting query computation to only non-sensitive data may
not prevent the querier from inferring sensitive data based on
semantics inherent in the data [9], [10]. For instance, the querier
may exploit knowledge of data dependencies to infer values of
sensitive data as illustrated in the example below.

Example 1. Consider an Employees table (Figure 1) and an
FGAC policy by a user Bobby to hide his salary per hour
(SalPerHr) from all the queries by other users. If the semantics of
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the data dictates that any two employees who are faculty should
have the same SalPerHr, then hiding SalPerHr of Bobby would
not prevent its leakage from a querier who has access to Carrie’s
SalPerHr.

In general, leakage may occur from direct/indirect inferences
due to different types of data dependencies, such as conditional
functional dependencies (CFD) [11], denial constraints [12], ag-
gregation constraints [13], and/or function-based constraints that
exist when dependent data values are derived/computed using
other data values as shown below.

Example 2. Consider the Employee and Wage tables shown in
Table 1. Let Danny specify FGAC policies to hide his SalPerHour
in Employee Table and Salary in Wage Table. Suppose there exists
a constraint that employees with role Staff cannot have a higher
salary per hour than a faculty in the state of California. Using
Bobby’s salary per hour that is leaked in Example 1, the new
constraint about the staff salary, and the function-based constraint
between that Salary and the fields function of WorkHrs and
SalPerHr, information about the salary and the salary per hour
of Danny will be leaked even though they are sensitive.

To gain insight into the extent to which leakage could occur
due to data semantics, we conducted a simple experiment on a
synthetic dataset [12], [14] that contains the address and tax infor-
mation of individuals. The tax data set consists of 14 attributes and
has associated with it 10 data dependencies, an example of which
is a denial constraint “if two persons live in the same state, the
one earning a lower salary has a lower tax rate”. An adversary can
use the above dependency to infer knowledge about the sensitive
cells. Suppose the salary attribute of an individual is sensitive and
therefore hidden. If the disclosed data contains information about
another individual who lives in the same state and has a lower tax
rate, an adversary can infer the upper bound of this individual’s
salary using the dependency. To demonstrate this leakage, we
considered an attribute with a large number of data dependencies
defined on them (e.g., state) to be sensitive, and thus, replaced
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Fig. 1. Employee and Wages Table

its values by NULL. We then used state-of-the-art data-cleaning
software, Holoclean [15], as a real-world attacker to reconstruct
the NULL values associated with the sensitive cells. Holoclean
was able to reconstruct the actual values of the state 100% of the
time highlighting the importance of preventing leakage through
data dependencies on access control protected data.

Prior literature has studied the challenge of controlling infer-
ences about sensitive data using data dependencies and called
it the “inference control problem” [9]. Existing techniques used
to protect against inferences can be categorized based on when
the leakage prevention is applied [16]. In the first category,
inference channels between sensitive and non-sensitive attributes
are detected and controlled at the time of database design [17],
[18]. A database designer uses methods in this category to detect
and prevent inferences by upgrading classification of inferred
attributes. However, they result in poor data availability if a
significant number of attributes are marked as sensitive to prevent
leakages. The second category of work includes detection and
control at the time of query answering. Works such as [16], [19]
determine if answers to the query could result in inferences about
sensitive data using data dependencies, and reject the query if such
an inference is detected. Such query control approaches can lead to
the rejection of many queries when there is a non-trivial number of
sensitive cells and background knowledge. Another limitation of
the prior work is the weak security model used in determining how
to process queries. All prior work on inference control considers
a query answer to leak sensitive data if the answer can be used to
reconstruct the exact value of a sensitive object. Leakages that do
not reveal the exact value but, perhaps, limit the values a sensitive
object may take are not considered as leakage. For instance, in
Example 2 above, since the constraints do not reveal Danny’s exact
salary but only that it is below $200 per hour, prior works will
not consider it to be a leakage even though the querier/adversary
could eliminate a significant number of possible domain values
based on the data constraints. As we explain in detail in Section 9,
the existing solutions to the inference control cannot be easily
generalized to prevent such leakages.

In this paper, we study the problem of answering user queries
under a new, much stronger model of security — viz., full denia-
bility. Under full deniability, any new knowledge learned about the
sensitive cell through data dependencies is considered as leakage.
Thus, eliminating a domain value as a possible value an attribute /
cell can take violates full-deniability. One can, of course, naively,
achieve full deniability by hiding the entire database. Instead, our
goal is to identify the minimal additional non-sensitive cells that
must be hidden so as to achieve full deniability. In addition, we
require the algorithm that identifies data to hide in order to achieve
full deniability to be efficient and scalable to both large data sets
and to a large number of constraints.

We study our approach to ensuring full deniability during
query processing under two classes of data dependencies1:

• Denial Constraints (DCs): that are general forms of data
dependencies expressed using universally quantified first-order
logic. They can express commonly used types of constraints
such as functional dependencies (FD) and conditional func-
tional dependencies (CFD) and are more expressive than both

• Function-based Constraints (FCs): that establish relationships
between input data and the output data it is derived from, using
functions. Such constraints arise naturally when databases
store materialized aggregates or when data sensor data, col-
lected over time (e.g., from sensors), is enriched (using appro-
priate machine learning tools) to higher level observations.

To achieve full deniability, we first develop a method for
Inference Detection, that detects, for each sensitive cell, the non-
sensitive cells that could result in a violation of full deniability.
The candidate cells identified by Inference Detection are passed
to the second function, Inference Protection that minimally selects
the non-sensitive data to hide to prevent leakages. Our technique
is geared towards maximizing utility when preventing inferences
for a large number of sensitive cells and their dependencies. After
hiding additional cells, Inference Detection is invoked repeatedly
to detect any indirect leakages on the sensitive cells through
the new set of hidden cells and their associated dependencies.
These methods are invoked cyclically until no further leakages are
detected either on the sensitive cells or any additional cells hidden
by Inference Protection. Using these two different methods, we are
able to achieve the security, utility, and performance objectives of
our solution.

The main contributions in our paper are:

• A security model, entitled full deniability to protect against
leakage of sensitive data due to data semantics in the form of
Denial Constraints and Function-based Constraints.

• Identification of conditions under which full deniability can
be achieved and efficient algorithms for inference detection
and protection to achieve full deniability while only minimally
hiding additional non-sensitive data.

• A relaxed k-percentile deniability model, relaxations of secu-
rity assumptions, and algorithms to achieve these relaxations.

• A prototype middleware (∼10K LOC) that works alongside
DBMS to ensure full deniability given a set of dependencies
and policies.

• Experimental results on two different data sets show that our
approach is efficient and only minimally hides non-sensitive

1. Other data dependencies such as Join dependencies (JD) and Multivalued
dependencies are not common in a clean, normalized database and therefore
not interesting to our problem setting.
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cells while achieving full deniability.

Paper Organization. We introduce the notations used in the paper
and describe access control policies and data dependencies in
Section 2. In Section 3, we present the security model — full
deniability — proposed in this work. In Section 4, we describe
how the leakage of sensitive data occurs through dependencies
and introduce function-based constraints. We present in Section 5,
the algorithms for inference detection and protection along with
optimizations to improve utility. In Section 6, we extend the full
deniability model to k-percentile deniability and in Section 7 we
relax the security assumptions in our model. In Section 8, we
present results from an end-to-end evaluation of our approach with
two different data sets and different baselines. In Section 9 we go
over the related work and we conclude the work by summarizing
our contributions, and possible future extensions in Section 10.

Comparison to Conference Version. In this version, new con-
tents include 1) novel algorithms for improving scalability and
utility, i.e., a binning-then-merging algorithm to scale up infer-
ence protection and algorithms to achieve a weaker k-deniability
security notion; 2) a detailed study of relaxing the assumptions
w.r.t adversary presented in the preliminary version along with
modified algorithms to achieve full deniability under new settings;
3) more ablation experiments for evaluating performance and util-
ity under different settings; 4) expanded related work along with
more details on the datasets and models used for experiments.

2 PRELIMINARIES

Consider a database instance D consisting of a set of relations
R. Each relation R ∈ R = {A1, A2, . . . , An} where Aj is an
attribute in the relation. Given an attribute Aj in a relation R we
use Dom(Aj) to denote the domain of the attribute and |Dom(Aj)|
to denote the number of unique values in the domain (i.e. the
domain size)2. A relation contains a number of indexed tuples, ti
represents the ith tuple in the relation R, and ti[Aj ] refers to the
jth attribute of this tuple.

We will use the cell-based representation of a relation to
simplify notation when discussing the fine-grained access control
policies and data dependencies. Figure 1 shows two tables, the
Employee table with cells c1 to c28 and the Wages table with cells
c29 to c40. Note that in the cell-based notation each table, row,
column corresponds to a set of cells. For instance, the second
tuple/row of Wages table is the set of cells {c32, c33, c34} and
the column for attribute Zip in the Employee table is the set
{c3, c10, c17, c24}. Each cell has an associated value. For instance,
the value of cell c11 is “CA”.

2.1 Access Control Policies

Data sharing is controlled using access control policies, or simply
policies. We classify users U as data owners, who set the access
control policies, and as queriers, who pose queries on the data.
Ownership of data is specified at tuple level and a data owner
of a tuple may specify policies marking one or more cells (ci)
in the tuple t as sensitive against queries by other users. When
another user queries the database, the returned data has to be
policy compliant (i.e., policies relevant to the user are applied

2. We say the domain size in the context of an attribute with discrete domain
values and for continuous attributes we discretize their domain values into a
number of non-overlapping bins.

to the query results). We assume queries have associated metadata
that contains information about the querier3.

Query model. The SELECT-FROM-WHERE query posed by a
user U is denoted by Q. In our model, we consider that queries
have associated metadata which consists of information about
the querier and the context of the query. This way, we assume
that for any given query Q, it contains the metadata such as the
identity of the querier (i.e., Qquerier) as well as the purpose of
the query (i.e., Qpurpose). For example, Qquerier=“John” and
Qpurpose=“Analytics”.

Policy model. A policy P is expressed as <OC, SC, AC>,
where AC corresponds to the action, i.e., either deny or allow,
SC corresponds to the subject condition i.e, the user to whom
the policy applies (e.g., the identity of the querier, or the group
for which the policy applies, in case queriers are organized into
groups), and OC corresponds to a set of object conditions that
identifies the cells on which the policy is to be enforced. Each
object condition OCi is represented using the following 3-tuple:
{R, σ, Φ} where R is the relation, σ and Φ are the selection and
projection conditions respectively that together select the cells that
are sensitive. The application of a policy is done by a function over
the database that returns NULL for a cell if it is disallowed by the
policy or the original cell value if it is allowed. This is modelled
after FGAC policy models used in previous works [7], [21]. We
denote the set of cells identified by OCi as COCi .

Definition 1 (Sensitive Cell). Given a policy P =<OC, SC, AC>,
we say that a cell c is sensitive to a user U if c ∈ COCi

where
OCi ∈ OC, U = SC.querier, and AC = deny. After applying
P , c is replaced with NULL. The set of cells sensitive to the user
U is denoted by CS

U or simply CS when the context is clear.

Example 3. An example policy from scenario in Section 1 is
<{Employee, EName = “Carrie Sea”, SalPerHr}, {“John Doe”,
}, {deny}>. The policy specifies that the salary information
(SalPerHr) of Employee Carrie (EName = “Carrie Sea”) in the
Employee table should be denied (i.e., it is sensitive) to the Querier
= “John Doe” .

2.2 Data Dependencies
The semantics of data is expressed in the form of data dependen-
cies, that restrict the set of possible values a cell can take based
on the values of other cells in the database. Several types of data
dependencies have been studied in the literature such as foreign
keys, functional dependencies (FDs), and conditional functional
dependencies (CFDs), etc. We consider two types of dependencies
as follows:

Denial Constraints (DC) are first-order formulas of the form
∀ ti, tj , . . . ∈ D, δ : ¬(Pred1∧Pred2∧ . . .∧PredN ) where Predi
is the ith predicate in the form of tx[Aj ]θty[Ak] or tx[Aj ]θconst
with x, y ∈ {i, j, . . .}, Aj ,Ak ∈ R, const is a constant, and
θ ∈ {=, >,<, ̸=,≥,≤}. DCs are quite general — they can
model dependencies such as FDs & CFDs and are flexible enough
to model much more complex relationships among cells. Data
dependencies in the form of DCs have been used in recent prior
literature for data cleaning [22], [23], query optimization [24], and
secure databases [16], [25]. Moreover, systems, such as [12], have

3. In general, policies control access to data based not just on the identity of
the querier, but also on purpose [20]. Thus, metadata associated with the query
will also contain purpose in addition to the querier identity.
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been designed to automatically discover DCs in a given database.
This is the type of DCs considered throughout the paper. We used
a data profiling tool, Metanome [26] to identify the complete set
of denial constraints.

Function-based Constraints (FCs) capture the relationships be-
tween derived data and its inputs. As described in Example 2, the
Salary in the Wages table (see Table 1) is a attribute derived using
WorkHrs and SalPerHr i.e., Salary := fn(WorkHrs, SalPerHr).
In general, given a function fn with r1, r2, . . . , rn as the input
values and si as the derived or output value, the FC can be
represented by fn(r1, r2, . . . , rn) = si.

3 FULL DENIABILITY

In this section, we discuss the assumptions in our setting and
present the concept of view of a database for the querier and
formalize an inference function with respect to the view and
data dependencies. We formally define our security model —
Full Deniability — based on the inference function and use it
to determine the leakage on sensitive cells.

3.1 Assumptions
We will assume that tuples (and cells in tuples) are independently
distributed except for explicitly specified dependencies that are
either learnt automatically or specified by the expert. The database
instance is assumed to satisfy the data dependencies. The querier,
who is the adversary in our setting, is assumed to know the
dependencies and can use them to infer the sensitive data values.
This assumption leads to a stronger adversary than the standard
adversary considered by many algorithms for differential privacy
or traditional privacy notions like k-anonymity or access controls,
which assumes the adversary knows no tuple correlations (or
tuples are independent). A querier is free to run multiple queries
and can attempt to make inferences about sensitive data based on
the results of those queries. Two queriers, however, do not collude
(i.e., share answers to the queries). We note that if such collusions
were to be allowed, it would void the purpose of having different
access control policies for different users.

As queriers are service providers or third parties who are
interested in obtaining user data to provide a service and therefore
we assume that queriers and data owners do not overlap. We also
assume that a querier cannot apriori determine if a cell is sensitive
or not (i.e., they do not know the access control policies). To see
why this is important, consider a FD defined on the Employee
table (in Fig. 1) Zip→State. Suppose c11(State = “CA”) is
sensitive based on the policy and in order to prevent inferences
using the FD, let c24 be hidden. If the querier has knowledge that
c24 is hidden due to our approach (and hence know that c11 was
sensitive), they can deduce that c25 and c11 have the same value.

3.2 Querier View
For each querier, given the set of policies applicable to the querier,
the algorithm first determines which cell is sensitive to them. Such
cells are set to NULL in the view of the database shared with the
querier. As noted in the introduction, if only the sensitive cells are
set to NULL and all the non-sensitive cells retain their true values,
the querier may infer information about the sensitive cells through
the various dependencies defined on the database. It is necessary,
therefore, to set some of the non-sensitive cells to NULL in order to
prevent leakages due to dependencies. Henceforth, we will refer

to the cells, both sensitive and non-sensitive, whose values will
be replaced by NULL as hidden cells, denoted by CH . We now
present the concept of a querier view on top of which queries are
answered.

Definition 2 (Querier View). The set of value assignments for a
set of cells C in a database instance D with respect to a querier is
denoted by V(C) or simply V when the set of cells is clear from
the context. The value assignment for a cell could be either the
true value of this cell in D or NULL value (if it is hidden).

We also define a concept of the base view of database for a
querier, denoted by V0. In V0, all the cells in D are set to be
NULL. We consider the information leaked to the querier based
on computing the query results over the base view V0 as the least
amount of information revealed to the querier. For instance, the
base view may provide querier with information about number of
tuples in the relation, but, by itself it will not reveal any further
information about the sensitive cells, despite what dependencies
hold over the database. Our goal in developing the algorithm to
prevent leakage would be to determine a view V for a querier
that hides the minimal number of cells, and yet, leaks no further
information than the base view. Next, we define an inference
function that captures what the querier can infer about a sensitive
cell in a view using dependencies.

3.3 Inference Function
Dependencies such as denial constraints are defined at schema
level, such as the dependency δ on Table 1:

δ : ∀ti, tj ∈ Emp¬(ti[State] = tj [State] ∧ ti[Role] = tj [Role]

∧ ti[SalPerHr] > tj [SalPerHr]).

Given a database instance D, the schema level dependencies
can be instantiated using the tuples. If the Employee Table has 4
tuples, then there are

(4
2

)
= 6 number of instantiated dependencies

at cell level. For example, one of the instantiated dependencies for
δ is

δ̃ : ¬((c11 = c18) ∧ (c12 = c19) ∧ (c14 > c21)) (1)

where {c11, c18, c12, c19, c14, c21} correspond to t2[State],
t3[State], t2[Role], t3[Role], t2[SalPerHr], and
t3[SalPerHr] in the Employee Table respectively. From
now on, we use S∆ to denote the full set of instantiated
dependencies for the database instance D at cell level. We use
Preds(δ̃), Preds(δ̃ , c), and Preds(δ̃\c) to represent the set of
predicates in the instantiated dependency δ̃ , the set of predicates
in δ̃ that involves the cell c, and the set of predicates in δ̃ that
do not involve the cell c respectively. We also use Cells(δ̃)
and Cells(Pred) to represent the set of cells in an instantiated
dependency and a predicate respectively. For each instantiated
dependency δ̃ ∈ S∆, when every cell ci ∈ Cells(δ̃) is assigned
with a value xi ∈ Dom(ci), denoted by δ̃(. . . , ci = xi, . . .),
the expression associated with an instantiated dependency can be
evaluated to either True or False. Note that since the database is
assumed to satisfy all the dependencies, all of the instantiated
dependencies must evaluate to True for any instance of the
database.

We use the notation I(c | V) to denote the set of values
(inferred by the querier) that the cell c can take given the view V
but without any knowledge of the set of dependencies. Likewise,
I(C | V) denote the cross product of the inferred value sets for
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cells in the cell set C, i.e., I(C | V) = ×c∈CI(c | V). Clearly, if
in a view, a cell is assigned its original/true value (and not NULL)
then I(c | V) consists of only its true value. We will further
assume that:

Assumption 1. Let V be a view and c be a cell with value NULL
assigned to it in V. I(c | V) = Dom(c). That is, a querier without
knowledge of dependencies, cannot infer any further information
about the value of the cell beyond its domain.

Knowledge of the dependencies can, however, lead the querier
to make inferences about the value of the cell. The following
example illustrates that the querier may be able to eliminate some
domain values as possible assignments of Dom(c).

Example 4. Let c14 in Table 1 be sensitive for a querier and let
the view V be the same as the original table with c14 replaced with
NULL. Furthermore, let δ̃ (Eqn. (1)) (that refers to c14) hold. If the
querier is not aware of this dependency δ̃ , the inferred value set
for c14 is the full domain, i.e., I(c14 | V) = Dom(c14). However,
knowledge of δ̃ leads to the inference that c14 ≤ 200 since the
other two predicates (c11 = c18, c12 = c19) are True.

Definition 3 (Inference Function). Given a view V and an instan-
tiated dependency δ̃ for a cell ci ∈ Cells(δ̃), the inferred set of
values for ci by δ̃ is defined as

I(ci|V, δ̃):= {xi | ∃(. . . , xi−1, xi+1, . . .)

∈ I(Cells(δ̃)\{ci} | V)
s.t. δ̃(. . . , ci = xi, . . .) = True} (2)

where xi ∈ Dom(ci).
Given a view V and a set of instantiated dependencies S∆ =

{. . . , δ̃ , . . .}, the inferred value for a cell c is the intersection of
the inferred values for ci over all the dependencies, i.e.,

I(ci|V, S∆) :=
⋂

δ̃∈S∆

I(ci|V, δ̃) (3)

3.4 Security Definition

We can now formally define the concept of full deniability of a
view. Note that given a view V and a set of dependencies S∆, the
following always holds: I(c|V, S∆) ⊆ I(c|V0, S∆). We say that a
V achieves full deniability if the two set are identical i.e., the query
results does not enable the querier to infer anything further about
the database than what the querier could infer from the V0 (which,
as mentioned in Sec. 3.2, is the least amount of information leaked
to the querier).

Definition 4 (Full Deniability). Given a set of sensitive cells CS

in a database instance D and a set of instantiated dependencies
S∆, we say that a querier view V achieves full deniability if for
all c∗ ∈ CS ,

I(c∗|V, S∆) = I(c∗|V0, S∆). (4)

4 FULL DENIABILITY WITH DATA DEPENDENCIES

In this section, we first identify conditions under which denial
constraints could result in leakage of sensitive cells (i.e., violation
of full deniability) and further consider leakages due to function-
based constraints (discussed in Section 2).

4.1 Leakage due to Denial Constraints
An instantiated denial constraint consists of multiple predicates in
the form of δ̃ = ¬(Pred1 ∧ . . . ∧ PredN ) where each predicate
is either PredN = c θ c′ or PredN = c θ const. A valid value
assignment for cells in C(δ̃) has at least one of the predicates in
δ̃ evaluating to False so that the entire dependency instantiation
δ̃ evaluates to True. Based on this observation, we identify a
sufficient condition to prevent a querier from learning about a
sensitive cell c∗ ∈ CS in an instantiated DC δ̃i with value
assignments.

As shown in Example 4, for an instantiated DC δ̃ with
cell value assignments, when all the predicates except for the
predicate containing the sensitive cell (Pred(δ̃\c∗)) evaluates to
True, a querier can learn that the remaining predicate Pred(δ̃ , c∗)
evaluates to False even though c∗ is hidden. Thus, it becomes
possible for the querier to learn about the value of a sensitive cell
from the other non-sensitive cell values. We can prevent such an
inference by hiding additional non-sensitive cells.

Example 5. Suppose, in Example 4, we hide the non-sensitive cell
(e.g., c11) in addition to c14 (i.e., replace it with NULL). Now, the
querier will be uncertain of the truth value of c11 = c18, and as a
result, cannot determine the truth value of the predicate c14 > c21
containing the sensitive cell. Since the predicate, c14 > c21 could
either be true or false, the querier does not learn anything about
the value of the sensitive cell c14.

We can formalize this intuition into a sufficient condition that
identifies additional non-sensitive cells to hide which we refer to
as the Tattle-Tale Condition (TTC) 4 in order to prevent leakage
of sensitive cells, as follow:

Definition 5 (Tattle-Tale Condition). Given an instantiated DC δ̃ ,
a view V, a cell c ∈ Cells(δ̃), and Preds(δ̃\c) ̸= ϕ

TTC(δ̃ ,V, c) =

True, ∀ Predi ∈ Preds(δ̃\c),
eval(Predi,V) = True

False, otherwise
(5)

where eval(Pred,V) refers to the truth value of the predicate Pred
in the view V using the standard 3-valued logic of SQL i.e., a
predicate evaluates to true, false, or unknown (if one or both cells
are set to NULL). The predicates only compare between the values
of two cells or the value of a cell with a constant.

Note that TTC(δ̃ ,V, c) is True if and only if all the predicates
except for the predicate(s) containing c (Preds(δ̃ , c)) evaluate to
True in which case, the querier can infer that the one of the
predicates containing c must be false and, as a result, could
exploit the knowledge of the predicate(s) to restrict the set of
possible values that c could take. This leads us to a sufficient
condition to achieve full deniability as captured in the following
two theorems. In proving the theorems, we will assume that none
of the predicates in the denial constraints are trivial That is, there
always exist a domain value for which the predicate can be true
or false. This also means that in the base view V0 (where all
cells are hidden), for any cell ci ∈ cells(δ̃) and for any predicate
Pred ∈ Preds(δ̃ , c), there exists a possible assignment for ci in
I(ci | V0, δ̃) such that eval(Pred,V0) returns False. The proof is
inclduded in the appendix.

Theorem 1. Given an instantiated DC δ̃ , a view V, and a sensitive
cell c∗ ∈ Cells((δ̃)) whose value is hidden in this view. If the

4. Tattle-Tale refers to someone who reveals secret about others
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Tattle-Tale Condition TTC(δ̃ ,V, c∗) evaluates to False, then the
set of inferred values for c∗ from V is the same as that from the
base view V0 (where all the cells are hidden), i.e., I(c∗|V, δ̃) =
I(c∗|V0, δ̃).

Corollary 1. Given a set of instantiated DCs S∆, a view V, and
a sensitive cell c∗ whose value is hidden in this view. If for each of
the instantiations δ̃i ∈ S∆, TTC(δ̃i,V, c∗) evaluates to False then
the set of inferred values c∗ from the V is same as that from the
base view V0 i.e., I(c∗ | V, S∆) = I(c∗ | V0, S∆).

Proof. From Theorem 1, we know that for each δ̃i ∈ S∆ when the
TTC is False, we have I(c∗|V, δ̃i) = I(c∗|V0, δ̃i). As each indi-
vidual set based on individual dependency instantiation are equal
in both the released view and base view, the joint set of values in
both views computed by the intersection of all the sets should
also be equal i.e.,

⋂
δ̃i∈S∆

I(c∗|V, δ̃i) =
⋂

δ̃i∈S∆
I(c∗|V0, δ̃i).

According to Equation 3, this joint set is the final inferred set
of values for c∗ based on S∆ in a given view and as they are equal
we have I(c∗ | V, S∆) = I(c∗ | V0, S∆).

If the dependency δ̃ only contains a single predicate, the Tattle-
Tale condition evaluates to True even in V0 when all the cells
are hidden TTC(δ̃ ,V0, ci) =True in the cases of Pred(ci) and
therefore it is not possible to prevent querier from learning about
the truth value of the sensitive predicate.

4.2 Selecting Cells to Hide
As shown in Theorem 1, the Tattle-Tale condition evaluating
to False is the sufficient condition of achieving full deniability
requirement. TTC(δ̃ ,V, c) evaluates to False when one of the
following holds: (i) none of the predicates involve the sensitive
cell i.e., Preds(δ̃ , c∗) = ϕ (trivial case); (ii) one of the other
predicates in Preds(δ̃\c∗) evaluates to False in V; or (iii) one of
the other predicates in Preds(δ̃\c∗) involve a hidden cell in V and
thus evaluates to Unknown.

We define cuesets5 as the set of cells in an instantiated DC that
can be hidden to falsify the Tattle-Tale condition.

Definition 6 (Cueset). Given an instantiated DC δ̃ , a cueset for a
cell c ∈ cells(δ̃) is defined as

cueset(c, δ̃) = Cells(Preds(δ̃\c)). (6)

If δ̃ only contains a single predicate, we consider the remaining
cell in the cueset(c, δ̃) = cj given that Pred(c) = ciθcj .

Example 6. In the instantiated DC from Example 4, the cueset
for c14 based on δ̃4 is cueset(c14, δ̃4) = {c4, c11, c5, c12}.

We could falsify the Tattle-Tale condition w.r.t. a given cell
c and dependency δ̃ by hiding any one of the cells in the cueset
independent of their values in V. The cuesets for a cell c is defined
for a given dependency instantiation. We can further define cueset
for c for given a set of instantiated DCs S∆ by simply computing
the cueset(c, δ̃) for each instantiated dependency in the set δ̃ ∈
S∆. In order to prevent leakage of c through δ̃ , we will hide one of
the cells in the cueset(c, δ̃) corresponding to each of dependency
instantiations δ̃ ∈ S∆.

This alone, however, might not still falsify the tattle-tale
condition to achieve full-deniability. Leakage can occur indirectly
since the value of the cell, say cj chosen from the cueset(c∗, δ̃i)

5. These cells give a cue about the sensitive cell to the querier.

to hide (in order to protect leakage of a sensitive cell c∗) could,
in turn, be inferred due to additional dependency instantiation, say
δ̃j . If this dependency instantiation does contain c∗ (as in that case
c∗ is already hidden and therefore it cannot be used to infer any
information about cj), such a leakage can, in turn, lead to leakage
of c∗ as shown in the following example.

Achieving full deniability for the sensitive cells requires us
to recursively select cells to hide from the cuesets of not just
sensitive cells, but also, from the cuesets of all the hidden cells.
This recursive hiding of cells terminates when the cueset of a
newly hidden cell includes an already hidden cell. The following
theorem states that after the recursive hiding of cells in cuesets has
terminated, the querier view achieves full deniability. The proof is
included in the appendix.

Theorem 2 (Full Deniability for a Querier View). Let S∆ be
the set of dependencies, CS be the sensitive cells for the querier
and CS ⊆ CH be the set of hidden cells resulting in a V for
the querier. V achieves full deniability if ∀ci ∈ CH , ∀δ̃ ∈ S∆,
∀ non-empty cueset(ci, δ̃) ∈ cuesets(ci, S∆), there exists a
cj ∈ CH such that cj ∈ cueset(ci, δ̃).

4.3 Leakage due to Function-based Constraints
To study the leakages due to function-based constraints (FCs), we
define the property of invertibility associated with functions.

Definition 7 (Invertibility). Given a function fn(r1, r2, . . . ,
rn) = si, we say that fn is invertible if it is possible to
infer knowledge about the inputs (r1, r2, . . . , rn) from its out-
put si. Conversely, if si does not lead to any inferences about
(r1, r2, . . . , rn), we say that it is non-invertible

The Salary function, in Example 2, is invertible as given the
Salary of an employee, a querier can determine the minimum value
of SalPerHr for that employee given that the maximum number
of work hours in a week is fixed. Complex user-defined functions
(UDFs) (e.g., sentiment analysis code which outputs the sentiment
of a person in a picture), oblivious functions, secret sharing,
and many aggregation functions are, however, non-invertible.
Instantiated FCs can be represented similar to denial constraints.
For example, an instantiation of the dependency δ : Salary :=
fn(WorkHrs, SalPerHr) is: δ̃ : ¬(c6 = 20∧c7 = 40∧c31 ̸= 800)
where c6, c7, c31 corresponds to Alice’s WorkHrs, SalPerHr and
Salary respectively.

For instantiated FCs, if the sensitive cell corresponds to an
input to the function, and the function is not invertible, then
leakage cannot occur due to such an FC. Thus, the TTC(c∗, δ̃ ,V)
returns False when the function is non-invertible. For all other
cases, the leakage can occur in the exact same way as in denial
constraints. We thus, need to to ensure the Tattle-Tale Condition
for all the instantiations of a FC evaluates False.

Cueset for Function-based Constraints. The cueset for a FC δ̃ is
determined depending on whether the derived value (si) or input
value ({. . . , rj , . . .}) is sensitive and the invertibility property of
the function fn.

cueset(c, δ̃) =


{ci} ∀ci ∈ {. . . , rj , . . .}, if c = si
{si} fn is invertible and if c ∈ {. . . , rj , . . .}
ϕ fn is non-invertible and if c ∈ {. . . , rj , . . .}

As the instantiation for FC is in DC form and their Tattle-
Tale Conditions and cueset determination are almost identical, in
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Algorithm 1: Full Algorithm
Input: User U, Data dependencies S∆, A view of the

database V
Output: A secure view VS

1 CS = SensitivityDetermination(U, V)
2 CH = CS , VS = V
3 cuesets = InferenceDetect(CH , S∆,V)
4 while cuesets ̸= ϕ do
5 for cs ∈ cuesets do
6 if cs.overlaps(CH ) then
7 cuesets.remove(cs)
8 end
9 toHide = InferenceProtect (cuesets)

10 CH .addAll(toHide)
11 cuesets = InferenceDetect(toHide, S∆,V)
12 end
13 for ci ∈ CH do
14 Replace ci.val in VS with NULL
15 end
16 return VS

the following section we explain the algorithms for achieving full
deniability with DCs as extending it to handle FCs requires only
a minor change (disregard cuesets when one of the input cell(s) is
sensitive and function is non-invertible).
Remark. We extend the invertibility notion to a more general
model, i.e., (m,n)-invertibility, that can capture the partial leak-
age due to function-based constraints. The details for this notion
and computing partial leakage according to (m,n)-invertibility
can be found in supplementary materials.

5 ALGORITHM TO ACHIEVE FULL DENIABILITY

In this section, we present an algorithm to determine the set of
cells to hide to achieve full-deniability based on Theorem 2. Full-
deniability can trivially be achieved by sharing the base view V0

where all cell values are replaced with NULL. Our goal is to ensure
that we hide the minimal number of cells possible while achieving
full deniability.

5.1 Full-Deniability Algorithm
Our approach (Algorithm 1) takes as input a user U, a set of
schema level dependencies S∆, and a view of the database V (ini-
tially set to the original database). The algorithm first determines
the set of sensitive cells CS (Sensitivity Determination function
for U and V). Sensitivity determination identifies the policies
applicable to a querier using the subject conditions in policies
and marks a set of cells as sensitive thus assigning them with
NULL in the view. The set of sensitive cells are added into a set of
hidden cells (hidecells) which will be finally hidden in the secure
view (VS) that is shared with the user U. Next, the algorithm
generates the cuesets for cells in hidecells using S∆ and V
(Inference Detection, line 3). Given the cuesets, the algorithm
chooses a set of cells to hide such that the selected cells cover
each of the cuesets (Inference Protection). This process of cueset
identification protection continues iteratively as new hidden cells
get added. The algorithm terminates when for all of the cuesets
there exists a cell that is already hidden. Finally, we replace the
value of hidecells in VS (initialized to V) with NULL and return

Algorithm 2: Inference Detection

Input: A set of sensitive cells CS , Schema-level data
dependencies S∆, A view of the database V

Output: A set of cuesets cuesets
1 Function InferenceDetect(CS , S∆, V):
2 cuesets = { }
3 for c∗ ∈ CS do
4 SS∆

= { } ▷ Set of instantiated dependencies.
5 for δ ∈ S∆ do
6 SS∆ = SS∆ ∪ DepInstantiation(δ, c∗, V)
7 end
8 for δ̃ ∈ SS∆ do
9 if |Preds(δ̃)| = 1 then

10 cueset = {ck} ▷ Note: Pred(c∗) = c∗θck
11 else if TTC(δ̃ ,V, c∗) = False then
12 continue
13 else
14 cueset = cells(Preds(δ̃\c))
15 end
16 cuesets.add(cueset)
17 end
18 end
19 return cuesets

this secure view to the user (lines 13-16). The following theorem
states that the algorithm successfully implements the recursive
hiding of cells in CH which is required for generating a querier
view that achieves full deniability (as discussed in Theorem 2).

Theorem 3. When Algorithm 1 terminates, ∀ci ∈ CH , ∀δ̃ ∈
S∆, for all cueset(ci, δ̃) that is non-empty, there exists cj ∈
cueset(ci, δ̃) such that cj ∈ CH (i.e., Algorithm 1 has recursively
hidden ≥ 1 cell from all the non-empty cuesets of cells in CH).

Proof. By contradiction, we suppose there exists a cueset cs ∈
cueset(ci, δ̃) in which no cell is not hidden. This means the
cueset cs has no overlap with the hidden cell set CH . Then
by lines 6-7 in Algorithm 1, the cueset cs exists in the cueset
list cueset(ci, δ̃), which indicates that the While loop will not
terminate. This contradicts the pre-assumed condition.

5.2 Inference Detection
Inference detection (Algorithm 2) takes as input the set of sensitive
cells (CS), the set of schema-level dependencies (S∆), and a
view of the database (V) in which sensitive cells are hidden by
replacing with and others are assigned the values corresponding to
the instance. For each sensitive cell c∗, we consider the given set of
dependencies S∆ and instantiate each of the relevant dependencies
δ using the database view V (lines 5-7). The DepInstantiation
function returns the corresponding instantiated dependency δ̃ . For
each such dependency instantiation, if it is a dependency contain-
ing a single predicate i.e., δ̃ = ¬(Pred) where Pred = c∗θck,
we add the non-sensitive cell (ck) to the cueset (lines 9-10). If the
dependency contains more than a single predicate, we determine
if there is leakage about the value of the sensitive cell by checking
the Tattle-Tale Condition (TTC) for the sensitive cell c∗ (line 11)6.

6. While not shown in the algorithm for simplicity, when an input cell is
sensitive in an FC instantiation, if the FC is non-invertible we ignore its cuesets
as they are empty.
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If TTC(δ̃ ,V, c∗) evaluates to False, we can skip that dependency
instantiation as there is no leakage possible on c∗ due to it (line
12). However, if TTC(δ̃ ,V, c∗) evaluates to True, we get all the
cells except for Pred(c∗) (line 14)7. After iterating through all
the dependency instantiations for all the sensitive cells, we return
cuesets (line 19).

Note that in our inference detection algorithm, we did not
choose the non-sensitive cell c′ in Pred(c∗) = c∗θc′ as a
candidate for hiding. We illustrate below using a counter-example
why hiding c′ might not be enough to prevent leakages.

Example 7. Consider a relation with 3 attributes A1, A2, A3

and 3 dependencies among them (δ1 : A1 → A2, δ2 : A2 →
A3, δ3 : A1 → A3). Let there be two tuples in this relation
t1 : 1(c1), 2(c2), 2(c3) and t2 : 1(c4), 2(c5), 2(c6). Suppose c6
is sensitive. As leakage of the sensitive cell is possible through
the dependency instantiation δ̃2 : ¬((c2 = c5) ∧ (c3 = c6)),
c5 is hidden. In the next iteration of the algorithm, to prevent
leakages on the hidden cell c5 through dependency instantiation
δ̃1 : ¬((c1 = c4) ∧ (c2 = c5)), c2 is also hidden. Note that c2
is in the same predicate as c5 in δ̃1. However, the querier can still
infer the truth value of the predicate c2 = c5 as True based on the
two non-hidden cells, c1 and c4, and the dependency instantiation
δ̃3 : ¬((c1 = c4) ∧ (c3 = c6)). The querier also learns that
c3 = c6 evaluates to True in δ̃2 which leads to them inferring that
c6 = 2 (same as c3) and complete leakage.

To prevent any possible leakages on the sensitive cell c∗ and its
corresponding predicate Pred(c∗), we only consider the solution
space where a cell from a different predicate (Preds(δ̃\c∗)) is
hidden.

Query-based method. For each dependency and each sensitive
cell, inference detection instantiates the dependency to generate
|D| − 1 instantiations. The algorithm then iterates over each
instantiation and checks the Tattle-tale condition and if satisfied
generates a cueset. The inference detection algorithm will be time
and space-intensive given a substantial number of dependencies
and/or sensitive cells. To improve upon this, we propose a query-
based technique for implementing inference detection.

Instead of generating one instantiation per sensitive cell and
dependency, this method produces one query for all the sensitive
cells. First, this method retrieves the tuples containing sensitive
cells, sets the values of sensitive cells to NULL and stores them
in a temporary table called temp. Next, the Tattle-tale condition
check is turned into a join query between this temp table and the
original table.

The join condition in this query is based on the tuples being
unique (T1.tid ̸= T2.tid). Furthermore, this query checks for each
relevant attribute in the tuple whether it is sensitive i.e., it is set
to NULL in the temp table (T2.Zip is NULL), or whether the
corresponding predicate from the dependency evaluates to True
(T1.Zip=T2.Zip). The WHERE condition in this query is only
satisfied if all the predicates in a dependency instantiation except
for the sensitive predicate evaluate to True. Thus, the result of
this join query contains all instantiations for which the Tattle-tale
condition evaluates to True from which the cuesets can be readily
identified.

7. If we wish to relax the assumption that queriers and data owners do not
overlap stated in Section 3.1, we can do so here by only including the cells in
the cueset that do not belong to the querier. We show algorithms to achieve so
and prove the correctness of this modification in Section 7.

Algorithm 3: Inference Protection (MVC)
Input: Set of cuesets cuesets
Output: A set of cells selected to be hidden toHide

1 Function InferenceProtect(cuesets):
2 toHide = {}
3 while cuesets ̸= ϕ do
4 cuesetCells = Flatten(cuesets)
5 dict[ci, freqi] =

CountFreq(GroupBy(cuesetCells))
6 cellMaxFreq = GetMaxFreq(dict[ci, freqi])
7 toHide.add(cellMaxFreq)
8 for cs ∈ cuesets do
9 if cs.overlaps(toHide) then

10 cuesets.remove(cs)
11 end
12 end
13 return toHide

5.3 Inference Protection
After identifying the cuesets for each sensitive cell based on their
dependency instantiations, we now have to select a cell from each
of them to hide to prevent leakages. The first strategy for cell
selection, described in Algorithm 7, randomly selects a cueset and
a cell from it to hide (if no cells in it have been hidden already).
We use this approach as our first baseline (Random Hiding)
in Section 8. The second strategy for cell selection, described
in Algorithm 3 utilizes Minimum Vertex Cover (MVC) [27] to
minimally select the cells to hide from the list of cuesets. In this
approach, each cueset is considered as a hyper-edge and the cell
selection strategy finds the minimal set of cells that covers all
the cuesets. MVC is known to be NP-hard [28] and therefore we
utilize a simple greedy heuristic based on the membership count
of cells in various cuesets. Algorithm 3 takes as input the set of
cuesets and returns the set of cells to be hidden to prevent leakages.
First, we flatten all the cuesets into a list of cells and insert this list
into a dictionary with the cell as the key and their frequency count
as the value (lines 4-5). Next, we select the cell from the dictionary
with the maximum frequency and add it to the set of cells to be
hidden and remove any cuesets that contain this cell (lines 7-10).
These steps are repeated until all the cuesets are covered i.e., at
least one cell in it is hidden, and finally, we return the set of cells
to be hidden.

5.4 Convergence and Complexity Analysis
Algorithm 1 starts with s number of hidden cells. At each iteration,
we consider that each hidden cell (including cells that are hidden
in previous iterations) is expanded to f number of cuesets on
average by the Inference Detection algorithm (Algorithm 2).
Among the cuesets, the average number of cells that are hidden,
such that it satisfies full deniability, is given by f

m where m is
the coverage factor determined by minimum vertex cover (MVC).
Then, at the end of ith iteration, the number of average hidden
cells will be si = s( f

m )i, and the average number of cuesets will
be csi = sf( f

m )i−1. As si is bounded by the total number of
cells in the database, denoted by N , the number of iterations (T )
to converge is bounded by logf/m(N/s), when f > m (which
was verified in our experiments).

Given |∆| which is the number of schema-level dependencies,
we can estimate the time complexity with respect to I/O cost. At
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ith iteration of Algorithm 1, the I/O cost of (i) the dependency
instantiation is O(|∆|(N + si)) (where inference detection is
implemented using the query-based method given sufficient, i.e.
Θ(N), memory) and (ii) minimum vertex cover (MVC) with
an I/O cost of O(csi). Hence, the overall estimated I/O cost∑T

i=1O(|∆|(N +si))+O(csi) in which is equivalent to O(N)
given T ≤ logf/m(N/s) and thus is linear to the data size.

The cost of the dependency instantiation for the ith iteration
depends on the I/O cost of the join query which is O(N + si)
when given sufficient (i.e., Θ(N)) memory. This query is executed
|∆| times. Hence, the cost for the dependency instantiation is
O(|∆|(N + si)).

Hence, the total estimated I/O cost for T iterations can be
derived as follows given T ≤ logf/m(N/s).

T∑
i=1

(|∆|(N + si)) + ci

= |∆|(N + s
T∑

i=1

(f/m)i) + sf
T∑

i=1

(f/m)i−1

≤ |∆|(N + s(f/m)T+1) + sf(f/m)T

= |∆|(N + s(N/s)(f/m)) + sf(N/s)

= N |∆|(1 + f/m) + fN

We complement the complexity analysis with the required
sufficient memory storage discussion. For (i) dependency instanti-
ation, the join query between two tables of size N and si, we need
memory size Ω(N + si) = Ω(N) since si ≤ N . In (ii) the al-
gorithm of computing MVC, all cuesets are read into the memory,
which requires the memory size Ω(ci) = Ω(N ∗m) = Ω(N) for
constant m. Thus we need Ω(N) memory to finish all operations
in our system implementation, which is feasible in practice. We
also note that this complexity analysis only holds with Θ(N)
size of memory, in which case the cost of memory operations is
much cheaper than the overhead of I/O operations. Given Ω(N2)
memory, which can be impractical, all the operations can then
be finished within memory and the total computational cost is
bounded by O(N2), according to the following analysis.

If all operations are taken within memory, then the cost of
dependency instantiation is bounded by O(Nsi) and the compu-
tational cost of the MVC algorithm is bounded by O(c2i ). Then
we derive the following bound similarly.

T∑
i=1

(N |∆|si) + c2i

= N |∆|s
T∑

i=1

(f/m)i + s2f2
T∑

i=1

(f/m)2i−2

≤ N |∆|s(f/m)T+1 + s2f2(f/m)2T

= N |∆|s(N/s)(f/m) + s2f2(N/s)2

= N2|∆|(f/m) + f2N2

5.5 Wrapper for Scaling out Full-Deniability Algorithm

The complexity analysis above shows that, given sufficient mem-
ory, full deniability algorithm is linear to the size of the database.
On larger databases, the memory requirement becomes unsustain-
able due to the substantial number of dependency instantiations
and cuesets. We present a wrapper which partitions the database

Fig. 2. An Illustration of the Binning-then-Merging Algorithm (with bin-
ning size b = 7 and merging size m = 3).

Algorithm 4: Binning-then-Merging Scaler
Input: User U, Data dependencies S∆, A view of the

database V, Bin size b, Merge size m
Output: A secure view VS

1 Function BinningThenMerging(U, S∆, V, b, m):
2 V1, . . . ,Vk ← Binning(V, b) ▷ k := ∥V∥

b , no. of bins.
3 binQueue = [V1, . . . ,Vk]
4 mergeQueue = { }
5 while ∥binQueue∥ ≠ 1 or mergeQueue ̸= ∅ do
6 Vi ← binQueue.pop()
7 mergeQueue.push(runMain(U, S∆, Vi))
8 if ∥mergeQueue∥ ≥ m or ∥binQueue∥ = 0

then
9 Vj ←Merge(mergeQueue)

10 binQueue.push(runMain(U, S∆, Vj))
11 mergeQueue.clear()
12 end
13 return binQueue.pop()

in order so that our algorithm is able to run with a smaller memory
footprint.

The high-level idea of the wrapper algorithm is illustrated in
Figure 2. Algorithm 4 partitions the full database into a number
of bins, where b is the bin size parameter. It then calls the Full
Algorithm (presented in Section 5.1 and denoted by runMain()
in Algorithm 4) on each of these bins in order to generate a
view per bin that satisfies full deniability. As the full algorithm is
executed on smaller bins, the memory requirement is much lower
than the entire database. Next, it merges m number of these bins,
where m is the merge size parameter, and executes Full Algorithm
on the merged bins. The wrapper iterates over the merged bins
until there is only 1 bin left. It then executes Full Algorithm on
this last bin which is full database and the final view that satisfies
full deniability is returned. As each of the bins has achieved
full deniability, the number of relevant dependency instantiations
and cuesets will be much lower in the merged bin compared to
running the full algorithm on the entire database. The output view
generated by Algorithm 4 trivially satisfies full-deniability as the
Full Algorithm is executed on each of the individual bins as well
as the full database in the final step.
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6 WEAKER SECURITY MODEL

Achieving full deniability on a view can lead to hiding a number of
non-sensitive cells to prevent leakages. In this section we describe
how to relax full deniability to a weaker security model which
we call, k-percentile deniability, in order to potentially hide fewer
cells and thus improve utility.

6.1 k-Percentile Deniability
The weaker security notion of k-Percentile Deniability is defined
as follows.

Definition 8 (k-percentile Deniability). Given a set of sensitive
cells CS in a database instance D and a set of instantiated
dependencies S∆, we say that a querier view V achieves k-
percentile deniability if for all c∗ ∈ CS ,

|I(c∗|V, S∆)| ≥ (k · |I(c∗|V0, S∆)|) (7)

where 1
|I(c|V0,S∆)| ≤ k ≤ 1.

Note that if k = 1, then k-percentile deniability is the same as
full deniability, where the set of values inferred by the adversary
from view V is the same as the set from the base view. With k < 1,
it allows for a bounded amount of leakage. We also note that the
security models used in prior works is subsumed by the notion of
k-percentile deniability as defined above. For instance, the model
used in [16] ensures that the querier cannot reconstruct the exact
value of the sensitive cell using data dependencies, which can be
viewed as a special case of k-percentile deniability with the value
of k = 2

|I(c|V0,S∆)| , i.e., the number of values sensitive cell can
take is more than 1.

6.2 Algorithm to Achieve k-Percentile Deniability
In k-percentile deniability or simply k-den, we quantify the
leakage on the sensitive cell in a given view V and the set
of instantiated data dependencies S∆. Unlike in full deniability,
where any inference is considered as leakage, in k-den the decision
to hide additional cells is only made if the set of possible values
inferred by the querier is larger than the given threshold (k). In
every iteration, the output of the inference detection algorithm
could be illustrated as a tree rooted in the cell to be hidden, with
cuesets forming its fan-out. Given this tree structure, we can prune
some of the cuesets at the first level based on the k value.

The set of inferred values for a c∗ given by the I(c | V, S∆)
(defined in Section 3.3) can be represented as follows

I(c | V, S∆) =

{
minus set, Dom(c) is discrete
Dom(c)− [low, high] Dom(c) is continuous

(8)
When attribute for the cell c is discrete, the operator θ in

Pred(c) is limited to either ̸= or =. Therefore, we represent the
inferred set of values by a set, called minus set, containing the
values that cannot be assigned to the cell in the view V. On
the other hand, when the attribute for the cell c is continuous,
the operator θ could be one of the following: {>,≥, <,≤} and
therefore we use a range, denoted by (low, high) to represent the
set of values. The details of the algorithm to compute the set of
inferred values for a cell can be found in supplementary materials.

This function computes the exact leakage on a sensitive cell
with respect to various instantiated dependencies. We utilize this
to implement k-den where for each sensitive cell after we detect

the cuesets (line 3 in Algorithm 1), we compare the leakage on
a sensitive cell due to the instantiated dependencies (associated
with the cuesets). The k parameter, specified as a fraction of the
maximum domain size of a sensitive cell, provides a bound on the
acceptable leakage on a sensitive cell. If the sensitive cell c∗ has
a discrete domain and |c∗.minus set| ≤ |Dom(c∗)| × (1 − k)
evaluates to True, we do not hide any cells from any of its cuesets.
On the other hand, for a sensitive cell c∗ with a continuous domain
we check if high − low ≥ |Dom(c∗)| × (k) evaluates to True.
The difference between low and high gives the actual domain
size after taking into account leakages due to dependencies.

The algorithm to implement k-den only needs to hide non-
sensitive cells from the cuesets until the leakage is below the k
value for a sensitive cell. Algorithm 5 utilizes the previously de-
scribed tree representation of the output of the inference detection
with cuesets as fan-out from the hidden cells. At the first level
of this tree (i.e., for each sensitive cell), we calculate the set of
inferred values (using Equation 8), based on the cuesets in its
fan-out (lines 1-12). Since the pruning only happens at the first
level of the tree, the algorithm implements the full-deniability
algorithm at higher levels (i.e., > 1, lines 8-11). We sort the
cuesets in descending order of their set of inferred to values to
the parent sensitive cell and select cells to hide from them until
the k-deniability is met (lines 12-21). Note that this k-pruning
step is only executed in the first fan-out level – this ensures that
the final solution generated by k-deniability is an improvement
over the full deniability model.

Theorem 4. The algorithm to achieve k-percentile deniability
(i.e. algorithm 5) always performs as well as (or better than) the
algorithm to achieve full-deniability (i.e. algorithm 1).

Proof. We note that the KPrune algorithm implicitly simulates
the full-deniability algorithm. It does not immediately prune the
cuesets or the cells to hide from the fan-out tree generated by
the full-deniability algorithm (since this can change the result of
running the greedy minimum vertex cover). Instead, we collect
those cuesets that can be pruned but actually prune out them after
simulating the overall full-deniability algorithm. Therefore, the
KPrune algorithm won’t hide more cells than the algorithm to
achieve full-deniability.

In Section 8, we show through experiments that the algorithm
that achieves k-percentile deniability only marginally improves on
full deniability even with low values of k (i.e., complete leakage).
Therefore this approach is not useful in improving the utility in
realistic settings. It is possible that in more complex domains with
large number of sensitive cells, k-percentile deniability is more
effective and this needs to be studied further.

7 RELAXING SECURITY ASSUMPTIONS

In this section, we explore relaxing an important assumption stated
in Section 3.1 about the adversary, that the adversary cannot
apriori determine whether a cell is sensitive or not. There may
be scenarios where the adversary can accurately guess the relative
sensitivity of the attributes in a database schema. For example, in
an employee table Salary is more likely to be sensitive than Zip
Code and if both are hidden in a tuple the adversary can guess
that one was due to policy and the other due to the algorithm.
This situation can be handled by our algorithm with a slight
modification under the assumption that any tuple in the database
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Algorithm 5: KPrune: Achieving k-Deniability
Input: Last level hidden cells trueHide, Current level

hidden cells to prune toHide, Current level level,
Leakage parameter k

Output: An updated minimum set of hidden cells in this
level that satisfy k-deniability trueHide

1 Function KPrune(trueHide, toHide, level, k):
2 bestCuesets = {} ▷ Cuesets cannot be pruned.
3 for cell ∈ trueHide do
4 cellCuesets = cell.getCuesets()
5 cell.leakage = InferredValues(cell, cellCuesets)
6 if isDeniable(cell, k) then
7 continue
8 for cs ∈ cellCuesets do
9 if level > 1 then ▷ Simulate full-den.

10 bestCuesets.add(cs)
11 end
12 if level = 1 then ▷ KPrune condition.
13 cellCuesets.Sort(leakageToParent, ‘desc’)
14 while not isDeniable(cell, k) do
15 lcs = cellCuesets.head ▷ Max leakage.
16 bestCuesets.add(lcs)
17 cellCuesets.remove(lcs)
18 ▷ Recalculate the leakage of the cell.
19 cell.leakage = InferredValues(cell,

cellCuesets)
20 end
21 end
22 for bestCS ∈ bestCuesets do
23 ▷ Update trueHide based on the pruning.
24 trueHide = trueHide ∪ (toHide ∩

bestCS.cells)
25 end
26 return trueHide
27 Function isDeniable(cell, k):
28 if |Dom(c∗)| − |cell.leakage| ≥ k · |Dom(c∗)| then
29 return True ▷ Based on k-deniability.
30 return False

instance could contain a sensitive cell. This means that while the
adversary knows that salary is more likely to be sensitive, they do
not know salaries of exactly which employees are sensitive.

The key idea behind this modified algorithm is to hide the
sensitive cell in a tuple where only the non-sensitive cell is
hidden. From the previous example, we would also hide the Salary
attribute of a tuple (even when it is not sensitive) if our algorithm
chooses to hide Zip Code. Therefore the adversary cannot be
certain whether all the hidden cells under Salary attribute were
done so by policy or the algorithm. We slightly modify the
original Inference Protection algorithm (Algorithm 3) and propose
Algorithm 6 in order to handle this relaxed assumption.

First, the original Inference Detection algorithm (Algorithm 2)
identifies the cuesets based on dependency instantiations as an
input to the Inference Protection algorithm. Second, the original
Inference Protection algorithm will select at least 1 cell from each
cueset to hide. Third, the steps in the modified Inference Protection
Algorithm (lines 13-21) go through the set of hidden cells and for
each of them check if they belong to a non-sensitive attribute. If
it does, then add the cells under the sensitive attribute from the

Algorithm 6: Modified Inference Protection
Input: Map<sensitive cell c∗: Set of cuesets cuesets >,

A view of the database V
Output: A set of tuples to hide toHide

1 Function InferenceProtection∗(Map):
2 toHide = {} ▷ Return set initialization.
3 while Map.cuesets ̸= ϕ do
4 cuesetCells = Flatten(Map.cuesets)
5 dict[ci, freqi] =

CountFreq(GroupBy(cuesetCells))
6 cellMaxFreq = GetMaxFreq(dict[ci, freqi])
7 toHide.add(cellMaxFreq) ▷ Greedy heuristic.
8 for cs ∈ Map.cuesets do
9 if cs.overlaps(toHide) then

10 Map.cuesets.remove(cs)
11 end
12 end
13 additionalHiddenCells = {} ▷ Hiding additional cells.
14 for ch ∈ toHide do
15 tid = ch.getTupleID() ▷ Hidden cell’s tuple ID.
16 for c∗ ∈ Map.sensitiveCells do
17 sensitiveAttr = c∗.attributeID ▷ Sensitive cell’s

attribute.
18 additionalHiddenCells.add(V.get(tid,

sensitiveAttr))
19 end
20 end
21 toHide = toHide ∪ additionalHiddenCells
22 return toHide

corresponding tuple to the set of hidden cells.
We note that the assumption of equal likelihood of tuple

containing sensitive cell can be further relaxed by adopting a
probabilistic approach (motivated by OSDP [29]) in which certain
non-sensitive cells are randomly hidden to prevent adversary from
inferring if it was part of a sensitive cell’s cueset. However, such
an approach will be a non-trivial extension and is an interesting
future direction to explore. In supplementary materials (App. C.3),
we also discuss how to relax the assumption that adversaries and
data owners cannot overlap.

8 EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation results
for our proposed approach to implementing full-deniability. First,
we explain our experimental setup including details about the
datasets, dependencies, baselines used for comparison, evaluation
metrics, and system setup. Second, we present the experimental
results for each of the following evaluation goals: 1) comparing
our approach against baselines in terms of utility, performance,
and the number of cuesets generated; 2) evaluating the impact of
dependency connectivity; 3) testing the scalability of our system;
4) validating k-percentile deniability presented in Section 6 and
the modified inference protection algorithm in Section 7; 5)
evaluating the query-driven utility in a case study when query
workloads are presented; and 6) testing effectiveness against real-
world adversaries.
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8.1 Evaluation Setup

Datasets. We perform our experiments on 2 different datasets.
Some statistics of the datasets are summarized in the supplemen-
tary materials. The first one is Tax dataset [14], a synthetic dataset
with 10K tuples and 14 attributes, where 10 of them are discrete
domain attributes and the rest are continuous domain attributes.
Every tuple from the tax table specifies the tax information of an
individual with information such as name, state of residence, zip,
salary earned, tax rate, tax exemptions etc. The second dataset is
the Hospital dataset [12] which is a 100K dataset where all of the
15 attributes are discrete domain attributes. We select a subset of
this dataset (which includes the first 10K tuples of the dataset),
called Hospital10K, for the experiments included in the paper.
We then conduct a scalability experiment that makes use of the
binning-then-merging wrapper on the original Hospital dataset,
i.e. 100, to show the scalability of our system. It is also notable
that both datasets have a large domain size, as shown in Table 2.
The active domain size in the table refers to the domain of the
attributes participating in the data dependencies that we consider
in the experiments.
Data Dependencies. For both datasets, we identify a large number
of denial constraints by using a data profiling tool, Metanome
[26]. Many of the output DCs identified by Metanome were soft
constraints which are only valid for a small subset of the database
instance. After manually analyzing and pruning these soft DCs, we
selected 10 and 14 hard DCs for the Tax dataset and the Hospital
dataset respectively. We also added an FC based on the continuous
domain attribute named “tax” which is calculated as a function
“tax = fn(salary, rate)”. Since the Hospital dataset does not
have continuous domain attributes, we cannot create a function-
based constraint on it and just use the 14 DCs for evaluation.
If any of them were soft DCs, we updated/deleted the violating
tuples to turn them into hard DCs. The data dependencies used for
experiments can be found in supplementary materials.
Policies control sensitivity of cells. The number of sensitive cells
is equivalent to the number of policies and it helps us in precisely
controlling the number of sensitive cells in experiments using
policies. We randomly sample each policy by first sampling a tuple
ID among all the tuples and an attribute from a selected group of
attributes without replacement, until obtaining a certain number of
policies determined by a control parameter. For each experiment
(with the same set of control parameters), we generate 4 different
access control views with different policies to represent 4 users.
We execute our algorithm independently over these 4 views and
report the mean and standard deviation.
Metrics. We compare our approach against the baselines using the
following metrics: 1) Utility: measures the number of total cells
hidden; 2) Workload-driven utility, i.e., visibility percentage: mea-
sures the percentage of visible cells in queries from a workload;
3) Performance: measures the run time in seconds. Besides, we
study the fan-out of the number of cuesets, the attack precision of
real-world adversaries, and the distribution of the hidden cells in
access control and inference control views.
System Setup. We implemented the system in Java 15 and
build the system dependencies using Apache Maven. We ran
the experiments on a machine with the following configuration:
Intel(R) Xeon(R) CPU E5-4640 2.799 GHz, CentOS 7.6, with
RAM size 64GB. We chose the underlying database management
system MySQL 8.0.3 with InnoDB. For each testcase, we perform
4 runs and report the mean and standard deviation.

Fig. 3. (a) Data utility (b) Performance. Experiments done on Tax dataset
for Our Approach, Random Hiding, and Oblivious Cueset .

Fig. 4. (a) Data utility (b) Performance. Experiments on Hospital10K
dataset for Our Approach, and Oblivious Cueset .

Reproducibility. We open-source our codebase on GitHub8. This
codebase includes the implementation of our system as well
as scripts to set up databases, generate testcases, run end-to-
end experiments, and plot the empirical results. For experiment
reproducibility instructions please follow the guidelines in the
README file in the GitHub repository.
Baselines. In the following experiments, we test our approach
which implements Algorithm 1, denoted by Our Approach against
baselines. To the best of our knowledge, there exist no other
systems which solve the same problem and therefore we have
developed 2 different baseline strategies for comparison. In each
baseline method, we replace one of the key modules in our system,
determining cuesets and selecting cells to hide from the cueset,
with a naı̈ve strategy but without compromising the full deniability
of the generated querier view.

• Baseline 1: Random selection strategy for hiding (Random
Hiding): which replaces the minimum vertex cover approach
with an inference protection strategy that randomly selects
cells from cuesets to hide.

• Baseline 2: Oblivious cueset detection strategy (Oblivious
Cueset): which disregards Tattle-Tale Condition and uses an
inference detection strategy that creates as many dependency
instantiations as the number of tuples in the database for each
dependency and generates cuesets for all of them.

8.2 Experiment 1: Baseline Comparison

We compare our approach against the aforementioned baselines
and measure the utility as well as performance (see Figure 3(a)).
We increase the number of policies from 10 to 100 (step=10)
where each sensitive cell participates in at least 5 dependencies.
This ensures that there are sufficient inference channels through
which information about sensitive cells could be leaked. The
number of cells hidden by Our Approach increases linearly

8. https://github.com/zshufan/Tattle-Tale

https://github.com/zshufan/Tattle-Tale
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Fig. 5. (a) Number of cuesets generated in each invocation of Inference
Detection (b) Number of cells hidden in each invocation of Inference
Protection. Experiments run with 10 sensitive cells on Tax dataset.

w.r.t the increase in number of policies/sensitive cells compared
to Random Hiding (5.3×Our Approach) and Oblivious Cueset
(1.4×Our Approach). Random Hiding performs the worst because
it randomly hides cells without checking the membership count
of a cell in cuesets (as with using MVC in Algorithm 3). The
performance of Oblivious Cueset is better because it uses the
same inference protection strategy as Our Approach. However,
it generates a larger number of cuesets as it doesn’t check the
Tattle-Tale Condition for the dependency instantiations (like in
Algorithm 2) and therefore has to hide more cells to ensure full
deniability.

We also compare the performance (run time in seconds)
against number of policies of these 3 approaches (see Figure3(b)).
The run time of Our Approach is almost linear w.r.t the increase
of the number of policies. On the other hand, Oblivious Cueset
is exponential w.r.t number of policies, because it generates
O(|∆| × n2) cuesets where n denotes the number of tuples in D
and it is expensive to run inference detection on such a large num-
ber of cuesets. In Random Hiding, we restrict the execution to the
fifth invocation of the inference detection algorithm (Algorithm
2) i.e., if the execution doesn’t complete by then, we force stop
the execution. In order to study this further, we analyzed the total
number of cuesets generated by Random Hiding vs. Our Approach
(see Figure 5) in each invocation of Inference Detection. Due
to the usage of MVC optimization in Inference Protection, Our
Approach terminates after a few rounds where as with Random
Hiding the number of cuesets generated in each invocation keeps
increasing. We also note that Our Approach is more stable in
different test cases and has a lower standard deviation on number
of cuesets and hidden cells compared to Random Hiding.

We show the supplementary evaluation results on the Hos-
pital10K dataset. Figure 4 presents the end-to-end comparison
between Our Approach and Oblivious Cueset, and supports our
claim. In supplementary materials, we show experimental results
with more sensitive cells (i.e., access control policies). Interest-
ingly if the access control view is highly sensitive (e.g., 10%
cells of the view are marked as NULL) and the sensitive cells are
distributed over different columns, the sensitive cells can cancel
out the channels leading to inference to each other. Therefore, in
this case, our experimental results show that few additional cells
are required to hide to achieve inference control.

8.3 Experiment 2: Dependency Connectivity

In the next set of experiments, we study the impact of dependency
connectivity on the utility as well as performance. The relationship
between dependencies and attributes can be represented as a hy-
pergraph wherein the attributes are nodes and they are connected

Fig. 6. Data utility experiments run with sensitive cells selected from
(low, medium, high) dependency connectivity attributes in (a) Tax
dataset (b) Hospital10K dataset.

Fig. 7. Performance experiments run with sensitive cells selected
from (low, medium, high) dependency connectivity attributes in (a) Tax
dataset (b) Hospital10K dataset.

via data dependencies. We define the dependency connectivity of
a node, i.e., an attribute, in this graph based on the summation
of the degree (number of edges incident on the node) as well
as the degrees of all the nodes in its closure. Using dependency
connectivity, we categorize attributes on Tax dataset into three
groups: low, medium, and high where attributes in high, low, and
medium groups have the highest, lowest, and average dependency
connectivity respectively. In Tax dataset, the high group contains
3 attributes (e.g. State), while the medium group has 3 attributes
(e.g. Zip) and the low group includes 4 attributes (e.g. City).

The results (see Figure 6) show that when sensitive cells are
selected from attributes with higher dependency connectivity, Our
Approach hides more cells than when selecting sensitive cells with
lower dependency connectivity. The results are verified on both
the Tax dataset and Hospital10K dataset (as shown in Figure 6(a)
and Figure 6(b)). This is because higher dependency connectivity
leads to a larger number of dependency instantiations and therefore
a larger number of cuesets from each of which at least one cell
should be hidden. Figure 7 demonstrates the evaluation among the
dependency connectivity groups, on both datasets.

8.4 Experiment 3: Scalability Experiments

The results of the scalability experiments are shown in Figure
8. The y axis records the time consumption while the x axis
denotes the size of the database (spanning from 10K tuples to
100K tuples). We consider two different settings for selecting
sensitive cells, 1) randomly sample a fixed number of sensitive
cells regardless of the database size, and 2) incrementally sample
a fixed ratio of sensitive cells w.r.t the database size. The results
of these two settings are presented in Figure 8(a) and Figure 8(b),
resp. In both cases, we set the bin size as 10K tuples and the
merging size as 5. In the first setting, the number of sensitive cells
is set as 30 whereas, in the second setting, the ratio of sensitive
cells to the total number of cells is 30 cells per 10K tuples. We note
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Fig. 8. (a) The results for randomly sampling a fixed number of sensitive
policies (b) The results for incremental sampling a fixed ratio of sensitive
policies. Evaluation was done using the Binning-then-Merging Wrapper
Algorithm on the Hospital dataset.

that the starting point of the plot (x = 10K tuples) corresponds
to the experiments presented in Section 8 i.e., running our main
algorithm on the dataset of size 10K (as there is only 1 bin).
As shown in Figure 8, the time consumption scales near-linearly
(depending on the data itself) to the size of the datasets.

8.5 Experiment 4: k-Percentile Deniability
We implemented our system with a relaxed notion of security, k-
percentile deniability, where k is a relative parameter based on
the domain size of the sensitive cell. We analyze the utility of the
system when varying k and measure the utility. For the results
shown in Figure 9(a), the sensitive cell is selected from “State”
which is a discrete attribute with high dependency connectivity.
Clearly, when k = 0, i.e., full leakage, the unconstrained case
will only hide sensitive cells and when k = 1 i.e, full deniability,
the system hides the maximum number of cells. When k = 0.5,
i.e., the inferred set of values is half of that of the base view, the
system hides almost the same number of cells as k = 1 i.e., full
deniability. When k = 0.1, i.e, the inferred set of values is 1

10 of
that of the base view, our system hides≈ 15% fewer cells than the
one that implements full deniability. On the Hospital dataset, the
utility improvement was marginal with k set to the smallest value
possible (besides full leakage) i.e., k = 1

|Dom(c∗)| . The approach
that implements full deniability is able to provide high utility with
a stronger security model on both datasets compared to the one
that implements k-percentile deniability. We measure the runtime
performance of k-deniability for different k values and compare
the results with full-deniability. As shown in Figure 9(b), algo-
rithms to achieve k-deniability take longer time to complete than
the full-deniability algorithms, because k-deniability algorithms
reduce the fan-out of the cuesets in the first iteration, but more
iterations are thus taken to converge. For different tested k values,
the more we relax the k constraint, the less execution time the
algorithm will take, because fewer cuesets, thus a smaller fan-out,
are considered in calculating leakage.

8.6 Experiment 5: Modified Inference Protection
We compare the modified inference protection algorithm (Algo-
rithm 6) on the Tax dataset against the original inference protection
(Algorithm 3) to achieve full-deniability. As shown in Figure 10,
the price of relaxing the assumption comes at the cost of lower
utility (up to 1.3x cells hidden) and efficiency (2-3x seconds taken
to converge, with a non-linear growth).

8.7 Experiment 6: Case Study over Query Workloads
We further study how inference control algorithms can affect the
utilities of query workloads, especially when a large portion of
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the database view is marked as NULL by access control policies.
We first investigate the distribution of the hidden cells (NULL’s)
across the views. We take the run with the access control view with
1,000 policies and execute our approach (w. MVC) to generate
the inference control view and use these two views throughout
this case study. Since this study involves a large number of
sensitive cells, the baseline methods presented earlier, time out
before converging and we only compare the inference control view
based on our approach with the access control view. We present
in Figure 11 the heatmap, where a darker color represents more
cells hidden in this column, and the density distributions of data
that support the visualization. The distributions of NULL cells
are similar in both views – most additional hidden cells in the
inference control view are concentrated in the first 3 attributes that
are directly correlated with the access control policies. Some but
fewer additional cells from other columns are hidden as well in
the inference control view, while none of the cells are hidden from
the attributes not participating in dependencies.

Evaluating workload-driven utility metric. Next, we evalu-
ate the utility of the database views over two types of query
workloads: randomized range queries over one column and cross
columns. In particular, for the first case, we randomly generate
1,000 set queries per column with randomly sampled range specifi-
cations (w. 300-1100 cells, varying). For the cross-column queries,
we consider every possible pairwise combination of the attributes
and similarly generate 1,000 queries for each combination. The
range queries cover both attributes in each combination. As
mentioned, we consider visibility (i.e., percentage of non-NULL
cells in the query result) as the utility metric in this case study.

Figure 12 shows the empirical results. We take the workload
that executes 1,000 queries on the “Rate” column to present the
results in Figure 12(a) and (b) for access control and inference
control views, resp. We use histograms to show the number of
queries that has a certain percentage of visibility. As observed,
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Fig. 11. Distribution of NULL’s: (a) as policies in access control view; (b)
as hidden cells in the inference control view.

most queries remain high visibility (∼93-96% cells visible) in
both views, indicating good utility for downstream analytics.

We then present results for cross-column queries in Figure
12(c) and (d) as heatmaps. Each block in the heatmap represents
the average visibility percentage among 1,000 queries executed
over this attribute combination. While the overall visibility is over
95% for both views, a darker color in the heatmap suggests more
cells are visible from the query. The similarity between the two
heatmaps indicates that inference control does not affect the query-
driven utility much compared to the access control views.

8.8 Experiment 7: Case Study against Real-World Ad-
versaries

A potential limitation of our security model is based on the
assumption that no correlations exist between attributes and tuples
i.e., they are independently distributed other than what is explicitly
stated through dependencies (that is either learnt automatically or
specified by the expert). However, typically in databases, other
correlations do exist which can be exploited to infer the values
of the hidden cells. These correlations can be also learned by the
database designer using dependency discovery tools or data anal-
ysis tools. If the correlations are very strong (e.g. hard constraints
with no violations in the database), we call them out as constraints
and consider them in our algorithms. For weak correlations, or
soft constraints that only apply to a portion of the data, we do not
consider them. Otherwise, everything in the database will become
dependent, in which case our algorithm would be too conservative
and hide more cells than necessary based on these soft constraints.

Therefore, we study the effectiveness of Our Approach against
inference attacks, i.e., to what extent can an adversary reconstruct
the sensitive cells in a given querier view. We consider two
types of adversaries. The first type of adversary uses weighted
sampling where for each sensitive cell c∗, the adversary learns
the distribution of values in Dom(c∗) by looking at the values of
other cells in the view. The querier, then tries to infer the sensitive
cell value by sampling from this learned distribution. The second
type of adversary utilizes a state-of-the-art data cleaning system,
Holoclean [15], which compiles data dependencies, domain value
frequency, and attribute co-occurrence and uses them into training
a machine learning classifier. The adversary then leverages this
classifier to determine values of sensitive cells by considering
them as missing data in the database. The sensitive cell for this
experiment is selected from “State” which is a discrete attribute
with high dependency connectivity. We consider the 10 depen-
dencies and drop the FC because Holoclean doesn’t support it.
We increase the number of policies from 10 to 90 and input the
querier view (in which the values of hidden cells are replaced
with NULL) to both adversaries. We measure the effectiveness

by repair precision =
#correct repairs
#total repairs

(where a repair is an

adversary’s guess of the value of a hidden cell) and therefore
lower the repair precision of the adversary is, the more effective
Our Approach is.

The results “Holoclean (before)” in Figure 13 show that when
only sensitive cells are hidden, an adversary such as Holoclean,
is able to correctly infer the sensitive cells. When additional cells
are hidden by Our Approach, indicated by “Holoclean (after)”,
the maximum precision of Holoclean is 0.15. On the other hand,
the weighted sampling employed by the other type of adversary,
indicated by “Weighted Sampling (after)”, could reconstruct be-
tween 3% and 10% of the sensitive cells. Note that Holoclean uses
the learned data correlations (and attribute co-occurrence, domain
value frequency) in addition to the explicitly stated data depen-
dencies. However, it only marginally improves upon weighted
sampling given the view generated by Our Approach.

9 RELATED WORK

The challenge of preventing leakage of sensitive data from query
answers has been studied in many prior works on inference con-
trol [9]. Early work by Denning et al. [30] designed commutative
filters to ensure answers returned by a query are equivalent to
that which would be returned based on the authorized view for
the user. This work, however, did not consider data dependencies.
We categorize them based on when and how inference control is
applied and what security model is used.

Design-time Prevention Methods which mark attributes that lead
to inferences on sensitive data items as sensitive. Qian et al. [31]
developed a tool to analyze potential leakage due to foreign keys
in order to elevate the clearance level of data if such leakage is
detected. Delugachi et al. [17] generalized the work in [31] and
developed an approach based on analyzing a conceptual graph
to identify potential leakage from more general types of data
associations (e.g., part-of, is-a). Later works such as [32], however,
established that inference rules for detecting inferences at database
design time are incomplete and hence are not a viable approach for
preventing leakage from query answers. Design time approaches
for disclosure control have successfully been used in restricted
settings such as identifying the maximal set of non-sensitive data
to outsource such that it prevents inferences about sensitive data
[25], [33], [34], [35], however, do not extend to our setting.

Query-time Prevention Methods that reject queries which lead to
inferences on sensitive data items. Thuraisingham [19] developed
a query control approach in the context of Mandatory Access
Control (MAC) wherein policies specify the security clearances
for the users (subject) and the security classification/label for the
data. [19] presented an inference engine to determine if query
answers can lead to leakage (in which case the query is rejected).
While [19] assumed a prior existence of an inference detection
engine, Brodsky et al. [16] developed a framework, DiMon, based
on chase algorithm for constraints expressed as Horn clauses.
DiMon takes in current query results, the user’s query history,
and Horn clause constraints to determine the additional data that
may be inferred by the subject. Similar to [19], if inferred data
is beyond the security clearance of the subject then their system
refuses the query. Such work (that identifies if a query leaks/does
not leak data) differs from ours since it cannot be used directly
to identify a maximal secure answer that does not lead to any
inferences — the problem we study in this paper. Also, the above
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Fig. 12. Workload-driven utility: (a) Upper left: visibility percentage for queries in the workload over the access control view; (b) Bottom left: visibility
percentage for queries in the workload over the inference control view; (c) Middle: average visibility percentage in cross-column workload over the
access control view; (d) Right: average visibility percentage in cross-column workload over the inference control view.

Fig. 13. Against real-world adversaries: Reconstruction precision of
sensitive cells with two types of adversaries.

work on query control is based on a much weaker security model
compared to the full-deniability model we use. It only prevents an
adversary from reconstructing the exact value of a sensitive cell
but cannot prevent them from learning new information about the
sensitive cell.
Perfect Secrecy Models that characterizes inferences on any
possible database instance as leakage. The most relevant of these
works is from Miklau & Suciu [36] who study the challenge of
preventing information disclosure for a secret query given a set
of views. Our problem setting is different as we check for a given
database instance whether it is possible to answer the query hiding
as few cells as possible while ensuring full deniability. Applying
their approach to our problem setting will be extremely pessimistic
as most queries will be rejected on a database with a non-trivial
number of dependencies.
Randomized Algorithms for Inference Prevention that suppress
too many cells and does not look at dependencies as inference
channels The most relevant of these are Differential Privacy (DP)
mechanisms promise to protect against an adversary with any prior
knowledge and thus have wide applications nowadays [37], [38],
[39]. In our problem setting of access control, called the Truman
model of access control [8], the data is either hidden or shared
depending upon whether it is sensitive for a given querier. In such a
model, the expectation of a querier is that the result doesn’t include
any randomized answers. Weaker notions of DP such as One-sided
differential privacy (OSDP) [29] aims to prevent inferences on
sensitive data by using a randomized mechanism when sharing
non-sensitive data. However, such techniques offer only proba-

bilistic guarantees (and cannot implement security guarantees such
as full deniability), and therefore may allow some non-sensitive
data to be released even when their values could lead to leakage
of a sensitive cell. These techniques also lead to suppression of a
large amount of data (suppresses approx. 91% non-sensitive data
at ϵ = 0.1 and approx. 37% at ϵ = 1). The current model of
OSDP only supports hiding at the row level and is designed for
scenarios where the whole tuple is sensitive or not. It is non-
trivial to extend to suppress cells with fine-grained access control
policies considered in our setting. Furthermore, most DP-based
mechanisms (including OSDP) assume that no tuple correlations
exist even through explicitly stated data dependencies.
Inference Control in Other Access Control Settings. Among
these, [40] studies the problem of secure data outsourcing in
the presence of functional dependencies. Access control policies
are modelled using confidentiality constraints which define what
combination of attributes should not appear together in a parti-
tion. They use a graph-based approach built upon on functional
dependencies to detect possible inference channels. The goal is
to then derive optimal partitioning so as to prevent inferences
through these functional dependencies while efficiently answering
queries on distributed partitions. Vimercati et al [25] also studied
the problem of improper leakage due to data dependencies in data
fragmentation. Similar to [40], they mark attributes as sensitive
(using confidentiality constraints) and block the information flow
from non-sensitive attributes to sensitive attributes through depen-
dencies. In general, the works in this category look at sensitivity
at the level of attributes and not at the level of cells through fine-
grained access control policies, studied in our work. In our work,
we enforce fine-grained access control policies and allow minimal
hiding of additional cells to prevent inferences.

10 CONCLUSIONS AND FUTURE WORK

We studied the inference attacks on access control protected data
through data dependencies, DCs and FCs. We developed a new
stronger security model called full deniability which prevents a
querier from learning about sensitive cells through data dependen-
cies. We presented conditions for determining leakage on sensitive
cells and developed algorithms that uses these conditions to
implement full deniability. The experiments show that we are able
to achieve full deniability for a querier view without significant
loss of utility for two different datasets.

In future, extending the security model to not only consider
hard constraints explicitly specified in the form of denial con-
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straints but also soft constraints that exist as correlations between
data items poses a significant challenge. The invertibility model in
FCs could also be expanded to model the probabilistic relationship
between input and output cells, replacing the current deterministic
model. In addition to considering non-binary leakage as in k-
percentile deniability, one could release non-sensitive values ran-
domly (like in OSDP [29]) instead of hiding all of them to prevent
leakage. However, this requires addressing the challenges of any
inadvertent leakages through dependencies when sharing such
randomized data and also maintaining the validity of the database
w.r.t dependencies. We also envision our approach to preventing
inference control being relevant to other areas of access control
research (such as cryptographic models [41], and web applica-
tions [42]) and applications (such as Internet of Vehicles [43]).

SUPPLEMENTARY MATERIAL

Due to space constraints, we defer omitted proofs, algorithms,
discussions, and some experimental details to the supplementary
materials of this paper.
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TABLE 1
A Summary of Notations

Notation Definition
D A database instance
c A cell in a database relation
C,CH Set of cells, hidden cells
δ,∆ A schema level data dependency / set
δ̃ , S∆ An instantiated data dependency / set
Cells(δ̃) Cells involved in δ̃

Preds(δ̃) The set of predicates associated with a DC
Preds(δ̃ , c) The set of predicates in δ̃ that involves the cell c
Preds(δ̃\c) The set of predicates in δ̃ without the cell c
V(C) Set of value assignments for cells in C
I(c | V, δ̃) Inference function for the cell c

APPENDIX A
ADDITIONAL PROOFS

Proof of Theorem 1. Based on the definition in Section 3, we have
I(c∗|V, δ̃) ⊆ I(c∗|V0, δ̃). Next, we show that for any possible
value assignment to c∗ in the base view, x∗ ∈ I(c∗|V0, δ̃), x∗ is
also in I(c∗|V, δ̃) when the TTC is False. We prove this based
on the two cases when TTC(δ̃ ,V, c∗) evaluates to False (see
Equation 5).

Case 1: At least one of the predicates Predi in Preds(δ̃\c∗)
evaluate to False based on the true cell value assignments in V i.e.,
eval(Predi,V) = False. Therefore, the sensitive cell c∗ can take
any value x∗ ∈ I(c∗|V0, δ̃) to ensure δ̃ to be True, i.e. ¬(· · · ∧
False ∧ · · · ) = True always.

Case 2: At least one of the predicates Predi in Preds(δ̃\c∗)
evaluate to Unknown based on cj ∈ Cells(Predi) being hidden
in V. Based on the assumption stated earlier, we know that there
exists xj ∈ I(cj | V0, δ̃) ⊆ V(cj) that leads to Predi evaluating
to False. Hence, for any x∗ ∈ I(c∗|V0, δ̃), there exists xj ∈ I(cj |
V) for any cj ∈ Cells(δ̃)\{c∗} such that

δ̃(. . . , cj = xj , c
∗ = x∗, . . .)

= ¬(· · · ∧ Predi(cj = xj , . . .) ∧ · · · )
= ¬(· · · ∧ False ∧ · · · ) = True

Combining two cases proves the theorem.

Proof of Theorem 2. We prove this by induction on the number
of dependency instantiations n. Base case: When n = 0, then
there are no dependency instantiations that apply to ci ∈ CH

and hence in the shared querier V, there exists no possibility of
leakage for all ci. Induction step: Suppose the Theorem 2 is
True for n = k i.e., V achieves full deniability when there are k
dependency instantiations. Now we consider the case when there
exists n = k + 1 dependency instantiations. If δ̃k+1 does not
include any ci ∈ CH then by default V achieves full deniability.
Suppose δ̃k+1 includes a cell ci ∈ CH and there is leakage on ci
despite it being hidden because TTC(δ̃k+1, ci,V) is True. In the
rest of the proof we show that such a leakage is impossible.

If δ̃k+1 only contains a single predicate of the form
Pred(δ̃k+1) = ciθconst), then since ci is hidden, such a de-
pendency cannot cause leakage. On the other hand, if the single
predicate is of the form Pred(δ̃k+1) = ciθcj , then cueset(ci, δ̃)
contains cj . As a result, cj must also be hidden (by the property of
CH described in the theorem) and thus, again such a dependency
cannot lead to leakage. If additional predicate(s) exists in δ̃k+1

Fig. 14. System Architecture

Algorithm 7: Inference Protection (Random Hiding)
Input: Set of cuesets cuesets
Output: A set of cells selected to be hidden toHide

1 Function InferenceProtect(cuesets):
2 toHide = {} ▷ Return list initialization.
3 while cuesets ̸= ϕ do
4 cs = cuesets.getRandom()
5 if toHide ∩ cs then
6 cuesets.remove(cs)
7 else
8 toHide = toHide ∪ cs.getRandom()
9 end

10 end
11 return toHide

and TTC(δ̃k+1, ci,V) is True, it must be the case that all
the other predicates (Preds(c(δ̃k+1)\ci)) are True. Thus, by the
property of CH described in the theorem, there must exist another
cell cj from Preds(c(δ̃k+1)\ci) such that it is also hidden. As
TTC(δ̃k+1, ci,V) returned True even though cj from its cueset
is hidden, it must be the case, that there exists another dependency
instantiation for which tattle tale condition for such a cj holds.
But as the induction step established full deniability for all the
dependency instantiations up to k and therefore no leakage, it
cannot exist. Hence, the V achieves full deniability if CH satisfies
the condition in the theorem.

APPENDIX B
ADDITIONAL ALGORITHMS

Inference Protection based on Random Hiding: Algo 7.

Algorithm to compute the inferred set of values: Algo 8.
In Algorithm 8, we describe how to compute the set of inferred

values for a cell based on a given database view and set of
instantiated data dependencies. For each dependency instantiation,
we retrieve the predicate containing sensitive cell Pred(c∗). Based
on the operator θ 9 in this predicate, we either put the value
of non-sensitive cell ck in the given V to minus set (when
Dom(c∗) is discrete) or determine low and high (when Dom(c∗))
is continuous).

9. We consider “≤” and “<” (similarly “≥” and “>”) operators as identical
in the above algorithm for simplification.
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Algorithm 8: Computing Inferred Set of Values
Input: A target cell c∗, A database view V, Set of

instantiated data dependencies S∆

Output: Set of inferred values for c∗ based on V and S∆

1 Function InferredValues(c∗, V, S∆):
2 minus set = { }
3 low, high = min(Dom(c∗)), max(Dom(c∗))
4 for δ̃ ∈ S∆ do
5 c∗, op, ck = Pred(c∗, δ̃)
6 switch op do
7 case “≤” or “<” do
8 if low < ck.val then ▷ Value of ck in V
9 low = min(ck.val, high)

10 case “≥” or “>” do
11 if high > ck.val then
12 high = max(ck.val, low)
13 case “̸=” do
14 low = ck.val, high = ck.val
15 minus set= Dom(c∗) − ck.val
16 case “=” do
17 minus set=minus set ∪ ck.val
18 end
19 end
20 if Dom(c∗) is discrete then
21 return minus set
22 else ▷ Dom(c∗) is continuous
23 return Dom(c∗)− [low, high]
24 end

APPENDIX C
ADDITIONAL DISCUSSION

C.1 Security Against Attacks Based on Knowledge of
Algorithm

Unlike algorithms used for achieving differential privacy (e.g.,
adding laplace noise to query output), the algorithm (denoted by
FDA) used to generate a view with full deniability is deterministic,
and as a result, it could be vulnerable to attacks based on knowl-
edge of the algorithm. In particular, an adversary, with knowledge
of (a) the output of the FDA algorithm executed over the real
dataset, and (b) the FDA algorithm could reexecute FDA against
database instances that are consistent with the algorithm’s output
on the real data and compare the outputs to narrow down the set
of possible database instances that might correspond to the real
data. Such an attack has been referred to as reverse engineering
attack in [44]. Reverse engineering attacks that eliminate possible
database instance could, in turn, violate full deniability.

Our goal in this section is to show that reverse engineering
attack does not lead to elimination of any viable database instance
in FDA. In other words, let Da = {D1, . . . , Dn} be adversarial
apriori knowledge. That is, the adversary knows that the real
database, denoted by Dreal corresponds to one of these database
instances Di ∈ Da prior to observing the output of the FDA
algorithm. For an adversary with no knowledge of the actual
database, Da could be the set of all possible database instances
based on the schema that are consistent with the data dependen-
cies. Alternatively, it could be some subset of the above possible
instances.

Now consider the adversary with the knowledge of the out-
put of FDA on Dreal and a set of sensitive cells CS , i.e.,
FDA(Dreal,CS) = (D∗,CH), where D∗ is the output view
with full deniability, and CH is the set of hidden cells in D∗. Let
Dp ⊆ Da be the posterior knowledge of the adversary based on
the output of FDA, (D∗,CH) and the knowledge of the algorithm
FDA(·, ·). We want to show that any database instance Di ∈ Da

from the adversarial apriori knowledge is either (i) incompatible
with D∗, i.e., the values of the cells that are not hidden in
D∗ do not match with the values of corresponding cells in Di;
or (ii) undeniable, i.e., it cannot be eliminated in the posterior
knowledge, i.e., Di ∈ Dp.

For the first case, if a Di ∈ Da is incompatible with D∗, such
an elimination of a database instance from the posterior knowledge
does not constitute violation of full deniability since the adversary
can determine that Dreal ̸= Di based on simply the value of the
visible cells. For the second case, for a Di ∈ Da that is compatible
with D∗, if the adversary finds that it is impossible to generate the
output (D∗,CH) by running FDA on Di, then there is a leakage
as Di cannot be Dreal and should be eliminated from Dp. In
order to run FDA, the adversary needs to input a guessed database
instance and a set of sensitive cells which can only be a subset of
the hidden cells CH . To eliminate Di, the adversary needs to test
all possible subsets of CH . We would like to prove that such an
elimination is not possible and formalize the security guarantee as
follows.

Theorem 5. Let apriori knowledge of adversary be that Dreal is
one of the database instances in Da = {D1, . . . , Dn}. Let FDA
run on Dreal with a set of sensitive cells CS and output (D∗,CH ).
For all Di ∈ Da that is compatible with D∗, there exists a subset
of the hidden cells CH

j ⊆ CH such that running FDA(Di,CH
j )

returns (D∗,CH).

Proof. (Sketch) For any Di ∈ Da that is compatible with D∗,
we can show that FDA(Di,CH )=(D∗,CH). In particular, Di that
starts with CH as the sensitive cells and hence all hidden already
achieves full deniability. FDA does not need to hide more cells,
and thus the output is (D∗,CH).

Example 8. Consider running FDA on a real database Dreal =
{c1, . . . , c10} and a set of sensitive cells CS , and it results in a
view D∗ with hiding cells CH = {c1, c3, c4, c7}. The adversary
may try to test a database Di = {c′1, . . . , c′3, . . . , c′4, . . . , c′7} ∈
Da that is compatible with D∗, where c′1, c′3, . . . are values
guessed by the adversary for the hidden cells in D∗. The adversary
only knows that CS ⊆ CH . Hence, the adversary can guess a
subset CH

j ⊆ CH , e.g., CH
1 = {c1, c3}, as a possible sensitive

cell set input and run FDA over Di and CH
j . When CH

j = CH ,
FDA(Di,CH

j ) outputs (D∗,CH). Hence Di cannot be eliminated
from Dp.

C.2 Extending FC Constraints

We now describe a general model of Function-based Constraints
by extending the model to invertibility as follows for a a function
fn(r1, r2, . . . , rn) = si where r1, r2, . . . , rn are the general
representation for input values (e.g., WorkHrs) and si is the
general representation of the derived value or the output of the
function (e.g., Salary).



21

Definition 9 ((m,n)-Invertibility). For a function of the fol-
lowing form fn(r1, r2, . . . , rp) = si, given its output si and
any m − 1 out of p inputs, if we could find another function
fn′(rt, rt+1, . . . , rt+m−2; si) = {rk, rk+1, . . ., rk+n−1} that
disclose n of the rest input values, we say this function fn is
(m,n)-invertible; otherwise, we say this function is (m,n)-non-
invertible.

The previously mentioned Salary function is (2, 1)-invertible
as given any two of the three variables, the rest one could be
disclosed.

Definition 10 (Fully invertible). If a function f is (1, n)-invertible,
we say this function is fully invertible.

Cross product (Cartesian product) is an example of full in-
vertibility, since all the input values can be inferred if given the
result of cross product. That is to say, cross product is (1, n)-
invertible. Other examples of commonly used functions are user-
defined functions (UDFs) (e.g. oblivious functions, secret sharing),
and aggregation functions.
Computing Leakage for FCs. As for a (m,n)-invertible func-
tion, denoted by fn′(r1, r2, . . . rn) = {s1, s2, . . . , sm}, it can be
apparently observed that, given the m inputs, the function will lead
to the leakage towards n values. Take, for example, the Salary,
WorkHrs and the SalPerHr. Since as analyzed, the function to
calculate the salary is (2, 1)-invertible, it means that if taking any
two values of the three attributes, the adversary can fully convert
and leak the exact value of the remaining attribute. We call this
case full leakage from FC. However, a subset of the m input values
of an (m,n)-invertible function could also leak some information
about some disclosable values based on some domain knowledge.
As an example, suppose the adversary knows that the salary of
an employee is 8,000 but they do not know the exact WorkHrs
and SalPerHr. Even though, with some background knowledge,
for e.g., the information that no one could work more than 40
hours per week by law, the adversary could reduce the domain of
possibilities the SalPerHr value could take. We call this partial
leakage from FC. We leave further exploration of this extended
model as future work.

C.3 Adversary is A Data Owner
We stated in Section 3.1 that queriers and data owners are non-
overlapping parties. If we want to relax this assumption to consider
an adversary that is a querier and data owner, we can modify our
Inference Detection algorithm to only include cells that do not
belong to the querier in the cueset.

The proof sketch for correctness of this modified algorithm is
as follows. Theorem 2 in the paper (Full Deniability for a Querier
View) states that V achieves full deniability if for any cell ci
in the set of hidden cells, there exists another cell cj from ci’s
cueset that is also in the set of hidden cells. In the modified
algorithm, we have only updated Inference Detection (which
generates cuesets) and not Inference Protection (which hides cells
from the cuesets). Each of these modified cuesets contain at least
one cell as the dependencies are binary which leads to Inference
Protection successfully hiding a cell from these cuesets in the
next step. Therefore, based on Theorem 2 it satisfies the necessary
condition for achieving full deniability which is to have at least
one cell from each cueset be present in the set of hidden cells.
If in a dependency instantiation, both tuples belong to the querier
then it is possible its corresponding cueset is empty using this

modified algorithm. However in such a case, the sensitive cell in
the dependency instantiation already belongs to the querier so it is
not possible to prevent them from learning about it.

APPENDIX D
ADDITIONAL RELATED WORK

We demonstrate the difference between our full deniability model
and query-view security model proposed by [36] more concretely
using simple examples. Consider a relation schema R with three
attributes A,B,C and a functional dependency A → B, and a
secret query S that projects the B values of tuples which have
C = 5. Also, consider a view V that projects attribute A,B. This
view and secret query can be expressed in the data log notation
used by Miklau & Suciu as follows:

V (A,B) : R(A,B,−)
S(B) : R(−, B, c), c = 5

Based on the secret query and the above view definitions,
Miklau & Suciu [36] will determine that V violates perfect secrecy
since there exists a database for which the view may reveal
sensitive data. As an example, consider the instance of the table
R(A,B,C) = {< 1, 1, 5 >,< 1, 1, 6 >}. Note that the value of
B for the first tuple is sensitive since the corresponding value of
C is 5. Given the functional dependency, the view V (A,B) will
indeed leak the sensitive data.

In contrast to [36] which is motivated by determining if a
specific view definition could lead to leakage of sensitive data in
a data exchange scenario (i.e., if there can exist a database such
that the published view may leak information about the secret
in that database) our paper is motivated by access control. Our
goal is, for a given instance of the database, answer the query,
hiding as few cells as possible while ensuring full deniability for
sensitive cells (i.e., the adversary cannot eliminate any possible
value from the domain of the sensitive cell). In the example above,
we will allow a view V to be computed with some cells hidden
to ensure full deniability. In particular, a possible answer could
be V (A,B) : t1 : {< 1, NULL >, t2 :< NULL, 1 >} since
it allows full deniability of the sensitive cell t1[B]. As another
example, consider a different instance of D with R(A,B,C) =
{< 1, 1, 5 >,< 2, 1, 6 >}. For the above database, given a
query that projects attributes A,B, we will return the answer
V (A,B) : {t1 :< 1, NULL >, t2 :< 2, 1 >} since for
the above instance, the result of the query does not reveal any
information about the sensitive cell t1[B]. Thus, the work by
Miklau & Suciu [36], as mentioned above, does not address access
control but determining if view definitions violate perfect secrecy.
As a result, irrespective of the database instance, [36] will consider
the above view definition to be unsafe.

We note that we could implement access control using the
framework developed in their work. In particular, given a query V
and sensitive cells (expressed as a sensitive query), and constraints
encoded as prior knowledge of the adversary, we could check if
V violates the secrecy of S. If V does violate perfect secrecy,
access control can be implemented by preventing V to execute.
However, to the best of our knowledge, this is not the intended
use case for [36] since the resulting mechanism would be too
pessimistic for it to be useful. It would disallow a view (query) for
which there exists a database instance that could result in leakage.
We thus believe that [36] as described in their work is unsuitable
for access control and hence, consider their work to be addressing
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a different, though loosely related issue. The follow-up work to
[36] [45] relaxed the notion of perfect secrecy to make it more
practical. The original definition of perfect secrecy disallowed any
leakage, while the new definition allows for bounded leakages.
Furthermore, checking perfect secrecy is πP

2 -complete even for
simple databases which makes it computationally intractable.
However, none of the extensions addressed the challenge of access
control i.e., suppress as few cells as possible while answering a
query Q given a database D.. As such, extensions, along with
work by [36] is best suited for determining the safety of data
publishing and not access control.

APPENDIX E
ADDITIONAL EXPERIMENTAL DETAILS

E.1 Information of the Datasets for Evaluation
Some statistics of the datasets are summarized in Table 2. The
data dependencies used for experiments can be found in Table 3
(for the Tax dataset) and Table 4 (for the Hospital10K dataset). In
addition, we outline the schema information of the datasets below.
Schema Information. Every tuple (T ID) from the Tax table
specifies tax information of an individual with their first name
(FName), last name (LName), gender (Gender), area code for
phone number (AreaCode), phone number (Phone), city (City),
state of residence (State), zip (Zip), marital status (MaritalStatus),
Has Children (HasChild), salary earned (Salary), tax rate (Rate),
Single Exemption rate (SingleExemp), Married Exemption rate
(MarriedExemp), and Child Exemption rate (ChildExemp). As for
the Hospital table, each tuple has the information of hospitals,
which includes the provider number (ProviderNumber), the hospi-
tal name (HospitalName), city (City), state of the hospital (State),
zip (ZIPCode), county name (CountyName), phone number for
contact (PhoneNumber), the type of the hospital (HospitalType),
the owner of the hospital (HospitalOwner), emergency service
(EmergencyService), condition (Condition), measure code (Mea-
sureCode), measure name (MeasureName), the number of patient
samples (Sample), and the state average (StateAvg).

E.2 Experiments with Highly Sensitive Databases
First, we extend the experiments to the settings when more cells
are specified as sensitive via access control policies. The goal of
this experiment is to simulate the cases where the shared database
view is highly sensitive and contains a large number of sensitive
cells. In earlier presented experiments, we select 10 sensitive
cells and gradually increase the total number of sensitive cells
to 100 (step=10) and test how many additional cells are hidden
in the inference control views. In this experiment, we start with
100 sensitive cells and increase it up to 1000 with 10 different
experiments (step=100). We compare the number of hidden cells
in the inference control view and the access control view and plot
the results in Figure 15(a). Our inference control approach hides
1.5-2x cells compared to the access control view. The growth in
the number of hidden cells slows down with the increasing number
of sensitive cells.

In the second experiment (see Figure 15(b)), we start with
100 sensitive cells which are all selected from the same attribute
(per column). Similar to previous experiment, we perform 10
experiments (i.e., step=100) increasing number of sensitive cells
up to 1000. We notice that only a few additional cells need to
be hidden to achieve full deniability of the shared view. This is

because, the cuesets of sensitive cells are more likely to contain
other sensitive cells, as they are all selected from the same
attribute. Therefore, it is not required to hide additional cells to
prevent inferences.

E.3 Experiments with Sensitive Cells Selected from At-
tributes with Diverse Distributions
In Figure 6, we present the results of executing the inference
control algorithm over the Tax dataset and the Hospital10K
dataset. The standard deviation of the number of hidden cells
is different for these two datasets. This can be explained based
on the properties of the attribute from which the sensitive cells
are chosen such as the domain size of the attribute, and the
distribution of values from the domain in a given database in-
stance. Moreover, it is more likely for the values in the domain
of an attribute with a smaller domain size to be non-uniformly
repeated in a database instance than an attribute with larger
domain size10. In the experiment measuring impact of dependency
connectivity on hidden cells (Figure 6), we selected sensitive
cells by randomly sampling over a group of attributes in both
datasets. The Tax dataset contained predominantly large domain
attributes with uniform distribution of values from the domain
(such as Salary) whereas the Hospital dataset contained mostly
small domain attributes with non-uniform distribution of values
(such as CountryName, HospitalType). Thus, when selecting a
sensitive cell from an attribute with a smaller domain size (e.g.,
HospitalType from the Hospital dataset), the number of relevant
dependency instantiations and therefore number of cuesets are
going to be non-uniform, resulting in a larger standard deviation
across different experiments.

To validate this hypothesis, we design an experiment that
only selects sensitive cells from larger domain attributes and
small domain attributes on the Tax and Hospital datasets. For
the Tax dataset, the large and small domain attributes were
(SingleExemp), and (HasChild, MaritalStatus) respectively. For
the Hospital dataset, the large and small domain attributes were
(PhoneNumber, HospitalOwner), and (CountyName) respectively.
As shown in Figure 16 (a), and (b), the standard deviation with
respect to number of hidden cells is much higher when selecting
sensitive cells from smaller domain size attributes with non-
uniform distributions, in both datasets.

10. Note that the relation between domain size of the attributes and distri-
bution of values may not always be 1-to-1 as presented in this experiment. A
comprehensive study of domain size and value distribution on the impact of
hidden cells is interesting but goes beyond the scope of this paper. This would
require a complicated ablation study with a synthetic dataset with diverse
domain sizes, distributions, and fabricated dependencies. Our goal in this paper
is to study the impact of realistic dependencies as inference channels.
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TABLE 2
Statistics of the Datasets for Evaluation

Dataset # Tuples # Attributes # Discrete attributes Domain size # Dependencies
Tax [14] 9,998 15 + 1 10 ≈ 2107 (282 active) 10 DCs + 1 FC

Hospital10K [12] 10,000 15 15 ≈ 2115 (2104 active) 14 DCs
Hospital [12] 100,000 15 15 ≈ 2115 (2104 active) 14 DCs

TABLE 3
Dependency List for Tax Dataset

¬(t1[zip]=t2[zip] ∧ t1[city] ̸= t2[city])
¬(t1[areaCode]=t2[areaCode] ∧ t1[state] ̸= t2[state] )
¬(t1[zip]=t2[zip] ∧ t1[state] ̸= t2[state])
¬(t1[state]̸= t2[state] ∧ t1[hasChild]=t2[hasChild] ∧ t1[childExemp]̸= t2[childExemp]))
¬(t1[state]̸= t2[state] ∧ t1[marital]=t2[marital] ∧ t1[singleExemp]̸= t2[singleExemp])
¬(t1[state]̸= t2[state] ∧ t1[salary]>t2[salary] ∧ t1[rate]<t2[rate])
¬(t1[areaCode]̸= t2[areaCode] ∧ t1[zip]=t2[zip] ∧ t1[hasChild]=t2[hasChild] ∧ t1[salary]> t2[salary] ∧ t1[rate]< t2[rate] ∧ t1[singleExemp]̸= t2[singleExemp])
¬(t1[marital]̸= t2[marital] ∧ t1[salary]̸= t2[salary] ∧ t1[rate]=t2[rate] ∧ t1[singleExemp]=t2[singleExemp] ∧ t1[childExemp] ̸= t2[childExemp] )
¬(t1[state]̸= t2[state] ∧ t1[marital]̸= t2[marital] ∧ t1[rate]=t2[rate] ∧ t1[singleExemp]=t2[singleExemp] ∧ t1[childExemp]̸= t2[childExemp])
¬(t1[state]=t2[state] ∧ t1[salary]=t2[salary] ∧ t1[rate]̸= t2[rate])
“tax” = fn(“salary”, “rate”)

TABLE 4
Dependency List for Hospital Dataset

¬(t1[Condition]=t2[Condition] ∧ t1[MeasureName]=t2[MeasureName] ∧ t1[HospitalType]̸= t2[HospitalType])
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[ZIPCode] ̸= t2[ZIPCode] )
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[PhoneNumber] ̸= t2[PhoneNumber])
¬(t1[MeasureCode]=t2[MeasureCode] ∧ t1[MeasureName] ̸= t2[MeasureName] )
¬(t1[MeasureCode]=t2[MeasureCode] ∧ t1[StateAvg] ̸= t2[StateAvg] )
¬(t1[MeasureCode]=t2[MeasureCode] ∧ t1[Condition] ̸= t2[Condition] )
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[HospitalOwner] ̸= t2[HospitalOwner] )
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[ProviderNumber] ̸= t2[ProviderNumber] )
¬(t1[ProviderNumber]=t2[ProviderNumber] ∧ t1[HospitalName] ̸= t2[HospitalName] )
¬(t1[City]=t2[City] ∧ t1[CountyName] ̸= t2[CountyName] )
¬(t1[ZIPCode]=t2[ZIPCode] ∧ t1[EmergencyService] ̸= t2[EmergencyService] )
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[City] ̸= t2[City] )
¬(t1[MeasureName]=t2[MeasureName] ∧ t1[MeasureCode] ̸= t2[MeasureCode] )
¬(t1[HospitalName]=t2[HospitalName] ∧ t1[PhoneNumber]=t2[PhoneNumber] ∧ t1[HospitalOwner]=t2[HospitalOwner] ∧ t1[State] ̸= t2[State] )
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Fig. 15. The no. of hidden cells vs. the no. of sensitive cells (policies): (a) w. 100-1000 cells specified as sensitive; (b) w. 100-1000 cells specified
as sensitive from the same attribute.
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Fig. 16. Setting Access Control Policies on Specific Attributes: (a) on Tax dataset; (b) on Hospital dataset.


	Introduction
	Preliminaries
	Access Control Policies
	Data Dependencies

	Full Deniability
	Assumptions
	 Querier View
	Inference Function
	Security Definition

	Full Deniability with Data Dependencies
	Leakage due to Denial Constraints
	Selecting Cells to Hide
	Leakage due to Function-based Constraints

	Algorithm to Achieve Full Deniability
	Full-Deniability Algorithm
	Inference Detection
	Inference Protection
	Convergence and Complexity Analysis
	Wrapper for Scaling out Full-Deniability Algorithm

	Weaker Security Model
	k-Percentile Deniability
	Algorithm to Achieve k-Percentile Deniability

	Relaxing Security Assumptions
	Experimental Evaluation
	Evaluation Setup
	Experiment 1: Baseline Comparison
	Experiment 2: Dependency Connectivity
	Experiment 3: Scalability Experiments
	Experiment 4: k-Percentile Deniability
	Experiment 5: Modified Inference Protection
	Experiment 6: Case Study over Query Workloads
	Experiment 7: Case Study against Real-World Adversaries

	Related Work
	Conclusions and Future Work
	References
	Biographies
	Primal Pappachan
	Shufan Zhang
	Xi He
	Sharad Mehrotra

	Appendix A: Additional Proofs
	Appendix B: Additional Algorithms
	Appendix C: Additional Discussion
	Security Against Attacks Based on Knowledge of Algorithm
	Extending FC Constraints
	Adversary is A Data Owner

	Appendix D: Additional Related Work
	Appendix E: Additional Experimental Details
	Information of the Datasets for Evaluation
	Experiments with Highly Sensitive Databases
	Experiments with Sensitive Cells Selected from Attributes with Diverse Distributions


