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Abstract—A line of work has looked at the problem of
recovering an input from distance queries. In this setting, there
is an unknown sequence s ∈ {0, 1}≤n, and one chooses a set
of queries y ∈ {0, 1}O(n) and receives d(s, y) for a distance
function d. The goal is to make as few queries as possible to
recover s. Although this problem is well-studied for decomposable
distances, i.e., distances of the form d(s, y) =

∑n
i=1 f(si, yi)

for some function f , which includes the important cases of
Hamming distance, ℓp-norms, and M -estimators, to the best
of our knowledge this problem has not been studied for non-
decomposable distances, for which there are important instances
including edit distance, dynamic time warping (DTW), Fréchet
distance, earth mover’s distance, and others. We initiate the study
and develop a general framework for such distances. Interestingly,
for some distances such as DTW or Fréchet, exact recovery of the
sequence s is provably impossible, and so we show by allowing
the characters in y to be drawn from a slightly larger alphabet
this then becomes possible. In a number of cases we obtain
optimal or near-optimal query complexity. One motivation for
understanding non-adaptivity is that the query sequence can be
fixed and provide a non-linear embedding of the input, which
can be used in downstream applications involving, e.g., neural
networks for natural language processing.

Index Terms—Sequence Recovery, Edit Distance, DTW Distance,
Fréchet Distance.

I. INTRODUCTION

WE STUDY the problem of exact recovery of a sequence
from queries to a distance oracle. Suppose there is an

unknown input sequence s with length at most n, defined on
a binary alphabet {0, 1}. Assume we have a distance oracle
which returns the distance d(s, q) between a query sequence q
and the unknown sequence s, where the query sequence q is
chosen either adaptively or non-adaptively. The problem is to
determine the sequence s with a minimal number of queries
to the distance oracle. This problem has been studied for
decomposable distances, that is, the distance function between
two sequences can be computed as the sum of distances
between pairs of characters at the same entry, but never for
non-decomposable distances. Among all non-decomposable
distances, we are particularly interested in the edit distance, (p)-
Dynamic Time Warping (p-DTW), and Fréchet distances. The
edit distance measures the minimum number of edit operations
(i.e., insertions, deletions, and substitutions) for transforming
one sequence to another. The p-DTW distance (1 ≤ p < ∞)
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between two sequences x, y is defined as the minimum ℓp
distance between two equal-length expansions of x, y, where
the expansion of a sequence means you can duplicate each
character of each sequence an arbitrary number of times. When
p = 1, the p-DTW distance is called the DTW distance. If we
consider the ℓ∞ norm instead of the ℓp norm, we obtain the
Fréchet distance.

The problem of exact recovery for decomposable distances
is well-studied in the literature, under the names of the coin-
weighing problem [2], [3] and the group testing problems [4],
[5], [6]. The coin-weighing problem is to identify the weight
of each coin from a collection of n coins, each being of weight
either w0 or w1 (w0 and w1 are distinct). In this problem, our
only access to the coins is via weighing a subset of the coins
on a spring scale. The group testing problem has also been
shown to be equivalent to the coin-weighing problem in some
settings [7]. This line of research has been extensively studied
with interesting applications. For example, the coin-weighing
problem can be found in the detection problem [8], the problem
of determining a collection [9], and the distinguishing family
problem [10].

The query complexity of the adaptive version of the problem
is also related to the original Mastermind game [11]. The
Mastermind problem can be phrased as guessing an input
sequence based on Hamming distance queries. The non-
adaptive version of this problem can be shown to be equivalent
to the well-studied non-adaptive coin-weighing problem [3].
One can then consider other variants of the Mastermind game
where the input sequence is guessed based on other distance
metrics, such as permutation-based distances [12], ℓp distances
[13] and graph distances [14], [15]. However, general distance
metrics that do not decompose into coordinate sums are less
understood. In this paper, we initiate the study of this exact
recovery problem on non-decomposable distances.

One motivation of our exact recovery problem is its applica-
tion to adversarially robust learning on discrete domains. It is
well-known that deep neural networks are vulnerable to adver-
sarial examples: test inputs that have been modified slightly
in the ℓp space can lead to problematic machine predictions.
Though there exist various techniques such as Pixel-DP [16]
and randomized smoothing [17] that achieve certified robustness
against ℓp-norm perturbations in continuous domains, in many
tasks such as natural language processing, the ℓp norm is not
well-defined for discrete perturbations. To resolve this issue,
inputs from a discrete domain are usually mapped to vectors
in the ℓp space before being passed to a classifier; this is also
known as a word embedding. We require two properties of
such a mapping: 1) zero information loss; 2) Lipschitzness with
respect to the distance metric in the input space. We show that
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the exact recovery problem yields a direct construction of such
mappings: suppose the set of query sequences is {q1, . . . , qm}
and s is the unknown input sequence; the mapping for s:
ϕ(s) = [d(s, q1), . . . , d(s, qm)] has Lipschitz constant at most√
m (in the ℓ2 norm) and maintains complete information about

s. Similar to edit distance, which can be used for describing
the adversarial capability in changing sequences, the DTW and
Fréchet distances have received significant attention for their
flexibility in handling temporal sequences. The special instance
of our problem on DTW and Fréchet distances may be useful
for analyzing the robustness of DTW neural networks [18].

A distance embedding further inspires theoretical applica-
tions in functional analysis [19]. While the space of input
sequence s is a metric space, it may not be a Hilbert space
with a definition of norm and inner product. Our result provides
us with a tool to define a mapping from a metric space to
a Hilbert space without loss of information about the input
sequences. One can then use the norm or inner product to
analyze input sequences, e.g., when two input sequences are
orthogonal and how to normalize an input sequence to have
norm 1.

A. Our Contribution and Results

To the best of our knowledge, this paper makes the first effort
to consider the non-decomposable distance recovery problem.
We first present a general framework to tackle with this problem,
and then exhaustively explore representative distances of this
class, i.e., edit distance, DTW distance, and Fréchet distance.
We also study the role of adaptivity and non-adaptivity and
obtain a number of results on lower bounds and upper bounds
of query complexity. Before introducing our technical results,
we would like to clarify the assumptions we make in the setting
of the problem and justify some of them.
Assumptions. Throughout the paper, we assume the alphabet
of the unknown input sequence s is {0,1}. We note that under
this assumption, all of our results for DTW described below
will apply to p-DTW. To recover the sequence s, we submit
adaptive or non-adaptive query sequences to a distance oracle.
As we will show in Section I-A1, for some distance metrics,
there exist input sequences that cannot be distinguished by any
sequence on a binary alphabet. Therefore, our query sequences
may be allowed to utilize alphabets outside {0,1}with O(1)
extra characters to exactly recover the input sequence. For
edit distance, the extended alphabet can contain any symbol
outside the binary alphabet, as the edit distance oracle counts
the edit operations no matter what symbol is used. For (p-
)DTW distance and Fréchet distance, the extended alphabet
can consist of any real number. We assume the maximum
length of s is n, while the exact length of s is unknown.
Extension to non-binary inputs. The binary input sequence
setting is not an over-simplified assumption. All the results we
obtain on the binary setting can be naturally extended to any
non-binary alphabet Σ by encoding the non-binary alphabet in
a binary domain. This will increase the query complexity by a
constant factor from |Σ| (one-hot encoding) to log(|Σ|) (binary
encoding). Though this may not be the best solution if one
considers a large alphabet, this extension works for the results

for all distance metrics shown in this paper. Improvement on
this extension to the recovery problem leaves room for future
research.

Optimality. Throughout the paper, we consider asymptotic
optimality, that is, the asymptotic complexity lower and upper
bounds match orderwise. We would like to investigate lower
bounds of the problem per distance instance, and develop
algorithms that shows upper bounds can match lower bounds
up to constant factor or logarithmic factor (under Big-O /
Big-Omega tilde notation).

To list the results we obtain on this non-decomposable
distance recovery problem, we begin with a general coordinate
descent framework that can help recover sequences from
a large class of distance oracles, including but not limited
to earth mover’s distance (EMD), cascaded norms (ℓp of
ℓq), and A norms (a.k.a. Mahalanobis distance). We then
present improved results on three specific distance metrics:
edit distance, DTW distance, and Fréchet distance. We first
provide several observations on the sequence recovery problem,
showing the existence of indistinguishable input sequences
despite the fact that we can query their DTW and Fréchet
distances with all possible binary query sequences. We also
prove lower bounds on the query complexity in our distance
recovery problem w.r.t. DTW, edit, and Fréchet distances. Then
we present our main results on recovering sequences from edit,
DTW, and Fréchet distance oracles, with adaptive and non-
adaptive strategies.

1) Existence of Indistinguishable Sequences: We observe
that, for some distances, there exist sequences that cannot be
distinguished by any query sequence over a binary alphabet.
This can be proved by showing concrete examples, i.e., a pair
of sequences that cannot be distinguished, which we show is
true for the DTW and the Fréchet distances, as stated in the
following theorem.

Theorem I.1 (Informal, existence of indistinguishable se-
quences). There exists a pair of sequences (s, s′) such that
s and s′ cannot be distinguished by any query sequence on
a binary alphabet, for the DTW distance and the Fréchet
distance.

The formal proof of this theorem for the DTW distance
is deferred to Theorem VI.1. The analogous discussion for
the Fréchet distance can be found in Section VII. Due to the
existence of indistinguishable sequences, we define the concept
of an equivalence class of sequences, which is a set of input
sequences which are indistinguishable from all queries by a
given distance oracle.

This observation suggests the scope of the distance recovery
problem we study. We further categorize the recovery guarantee
into the following three levels, from strong to weak: 1) recover
the exact input sequence; 2) recover any sequence in the same
equivalent class of the input sequence, where the equivalence
class is defined to be the set for which any two input sequences
in the equivalence class cannot be distinguished by calling the
distance oracle to all query sequences; 3) recover any sequence
which has zero distance to the input sequence. While the
third level is the weakest one, in certain cases it can be reduced
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to the first two levels—for norm-induced distance functions,
the recovered sequence is exactly the input sequence; for semi-
norm-induced distance functions, the recovered sequence is in
the same equivalence class. For other distance functions which
are not metric, recovering a sequence with zero distance to
input does not necessarily imply any one of the first two levels.
We will show that our general coordinate descent framework
can recover sequences with the third-level guarantee.

2) General Coordinate Descent Framework for Adaptively
Querying Distance Oracles: We develop a general framework
for recovering an input sequence from adaptive queries, which
models the problem as a zero-th order optimization and utilizes
a coordinate-descent-based algorithm to give a solution. The
coordinate descent framework defines the distance between the
input sequence and the query sequence as the loss function.
The objective of the optimization is to reduce the loss function
to 0, which guarantees what we call the third level of recovery.
We define a step operation to modify the query sequence.
For example, in the context of edit distance, a step operation
is defined as adding/removing/substituting a character of the
query sequence. To perform coordinate descent, our algorithm
performs one step operation each time and queries the oracle
to find a direction for which the loss decreases by at least a
pre-determined constant scalar. By iteratively performing this
method, the loss can be reduced to 0 and we show that the
overall complexity of this method is poly(n), given that the
maximum length of the sequence is n. For a large class of non-
decomposable distance functions, such as the earth mover’s
distance (EMD), the cascaded norm (ℓp of ℓq), and the A norm,
we can use this framework to yield a solution, as stated in the
following theorem.

Theorem I.2 (Coordinate Descent for Adaptive Distance
Queries). For an arbitrary distance oracle, a binary alphabet
{0, 1} and any input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n,
using coordinate descent can reduce the distance to the input
sequence s to 0, by adaptively querying the distance oracle
between s and a set of query sequences with query complexity
at most poly(n).

Sufficient conditions for using this framework and further
details can be found in Theorem IV.1.

3) Lower Bounds on the Recovery Problem: If we study
the problem of exact recovery (the first level of recovery), we
can obtain an information-theoretic lower bound of Ω̃(n) for
various distance oracles, given by the following theorem. Here
f(n) = Ω̃(g(n)) if f(n) = Ω(g(n)/ polylog(n)).

Theorem I.3 (Lower Bounds for Exact Recovery). For any
input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, if for any input
sequence and query the distance oracle has poly(n) possible
values, any algorithm which exactly recovers s by querying
the distance oracle between s and a set of query sequences
requires query complexity at least Ω̃(n).

The idea behind this bound is that, there are exponen-
tially many possible input sequences with length at most
n, while for the distance oracles given in our setting, the

output of each query is a distance between two sequences
which only has poly(n) possibilities. Hence, we need at least
logpoly(n)(2

n+1) = Ω̃(n) queries. We instantiate this theorem
on the edit distance and DTW distance in Theorem V.1 and
Theorem VI.11, for recovery to the exact input distance.

We note for the DTW distance and Fréchet distance, there
exist indistinguishable sequences, which lead to the recovery
problem for equivalence class. Since the total number of
equivalence classes is less than the number of input sequences,
the previous counting technique (based on simple facts from
information theory) no longer works. So we need a different
argument, as we give in the following theorem:

Theorem I.4 (Lower Bounds for Equivalence Class Recovery).
For a binary alphabet {0, 1} and any input sequence s ∈
{0, 1}i where 0 ≤ i ≤ n, any algorithm which recovers the
sequence s up to equivalence by querying the DTW or Fréchet
distance oracle between s and a set of query sequences requires
query complexity at least Ω(n).

We highlight our techniques used in proving this lower bound
in Section III, while the formal proof can be seen in Theorem
VI.4 and Theorem VII.1.

4) Adaptively Querying Distance Oracles, Optimally: We
first answer the distance recovery problem with adaptive query
strategies. Our solutions are summarized in the theorem below.

Theorem I.5 (Upper Bounds for Adaptive Exact Recovery).
For a binary alphabet {0, 1} and any input sequence s ∈
{0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which can
exactly recover the input sequence s, by adaptively querying
the distance oracle (for the edit and DTW distances) between
s and a set of query sequences with query complexity at most
O(n).

All results in Theorem I.5 match our lower bounds on the
query complexity. Without extra character(s), using the DTW
distance oracle we can only recover a sequence in the same
equivalence class. Our result in Theorem I.5 for the DTW
distance is achieved with the assistance of 1 extra character
outside the alphabet {0, 1}, and the proof and algorithm can
be found in Theorem IV.6.

For the edit distance, we have two different adaptive
algorithms that can achieve the O(n) bound. The first algorithm
makes use of the property that, for two sequences, the edit
distance is equal to the difference in their lengths, if and only
if one sequence is a subsequence of the other. We construct
an O(n) adaptive query set and a binary search algorithm
utilizing this property to recover the input sequence. Our second
algorithm instead queries the length of the input sequence by
an empty sequence and then finds a set of O(n) bases as the
query set, from which we can reconstruct the input sequence.
These are further detailed in Theorem IV.2 and Theorem IV.4.

For the Fréchet distance, adaptive and non-adaptive strategies
are essentially the same, because we prove that 2n− 1 queries
are necessary and sufficient for recovering from a Fréchet
distance oracle. However, we can only recover a sequence in
the equivalence class in this setting. This result is described
as a non-adaptive query strategy in Theorem VII.3.
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TABLE I
SUMMARY OF OUR RESULTS FOR RECOVERING ARBITRARY INPUT SEQUENCES OF LENGTH n UNDER THE CONSTRAINT THAT THE QUERY LENGTH IS OF

O(n). LB: LOWER BOUND. #EC: NUMBER OF EXTRA CHARACTERS.

Oracle Query Complexity LB Adaptive? #EC Level of Recovery Positions

Edit 2k log(n/k) + k + log n+ c or n+ 2 Ω̃(n) Adaptive 0 Exact sequence Theorems IV.2&IV.4
Edit n+ 1 Ω̃(n) Non-adaptive 1 Exact sequence Theorem V.2
Edit 1

2 (n
2 + 3n) Ω̃(n) Non-adaptive 0 Exact sequence Theorem V.5

(p-)DTW n+ 1 Ω̃(n) Adaptive 1 Exact sequence Theorem IV.6
(p-)DTW 2n Ω(n) Non-adaptive 0 Equivalent class Theorem VI.7
(p-)DTW n2 + n Ω̃(n) Non-adaptive 1 Exact sequence Theorem VI.12
(p-)DTW n+ 2 Ω̃(n) Non-adaptive 2* Exact sequence Theorem VI.14
Fréchet 2n− 1 2n− 1 N/A† 0** Equivalent class Theorem VII.3

Any distance poly(n) - Adaptive 0 Zero distance to input Theorem IV.1

† For both adaptively and non-adaptively querying the Fréchet distance oracle, the optimal bound on the query complexity is 2n− 1.
* Increasing #EC from 2 to an arbitrary constant cannot improve the query complexity to be better than Õ(n).
** Involving extra characters not only cannot improve the level of recovery from “equivalence class” to “exact sequence”, but also cannot improve the query
complexity (see Theorem VII.2).

5) Non-adaptively Querying Distance Oracles, Optimally:
Next we describe our non-adaptive query strategies for the
distance recovery problem. Theorem I.6 shows upper bounds
for exact sequence recovery, while Theorem I.7 summarizes
our results on the recovery problem of finding a sequence in
the same equivalence class as the input sequence.

Theorem I.6 (Upper Bounds for Non-adaptive Exact Recovery).
For a binary alphabet {0, 1} and any input sequence s ∈
{0, 1}i where 0 ≤ i ≤ n, there exists an algorithm which can
exactly recover the input sequence s, by querying the distance
oracle (for the edit and DTW distances) between s and a
non-adaptive set of query sequences with query complexity at
most O(n), with the assistance of O(1) extra characters in
the query sequences.

With 1 extra character, we show the construction of a set of
non-adaptive queries that can exactly recover sequences from
the edit distance (Theorem V.2), while with 2 extra characters,
we can exactly recover input sequences from the DTW distance
(Theorem VI.14). Both results match our lower bound on the
query complexity, while we complement our results with an
O(n2) query complexity algorithm for the DTW distance with
1 extra character (Theorem VI.12). We note that non-adaptive
strategies have limited power compared to adaptive strategies.
Hence, we consider adding extra characters to construct query
strategies that are comparable to the lower bounds. For the
edit distance, introducing more than 1 extra characters cannot
encode more information in the query results, because the cost
between 0 (or 1) and any other additional character is always
the same.

Theorem I.7 (Upper Bounds for Non-adaptive Equivalence
Class Recovery). For a binary alphabet {0, 1} and any
input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n, there exists
an algorithm which can recover the sequence in the same
equivalence class as the input sequence s, by querying the
distance oracle (for the DTW and Fréchet distances) between
s and a non-adaptive set of query sequences with query

complexity at most O(n), without extra characters in the query
sequence.

By Theorem I.7, if we are not allowed to use extra characters,
we can only recover the sequence in the same equivalence
class as the input sequence for the DTW distance. Our query
construction and proof are shown in Theorem VI.7. We also
remark that for Fréchet distance, using extra characters cannot
help to improve the results of Theorem VII.3, as shown in
Theorem VII.2.
Summary. The main technical results of this paper are
summarized in Table I.

B. Paper Roadmap

The remainder of the paper is organized as follows. Section
II introduces the notations and essential background definitions
(regarding sequence, distances, and matching properties) used
in this paper. Section III highlights the techniques and insights
behind our proofs of non-adaptively querying the DTW
distance oracle, which helps the understanding of the most
non-trivial and interesting parts of this paper. Section IV
consists of our results on the recovery problem with adaptive
queries, which begin with a general framework for all non-
decomposable distances and follow by instantiations as per
distance using specific properties. We present and discuss
our results on the lower bounds and upper bounds of query
complexity for recovery with non-adaptive queries on edit
distance, DTW distance, and Fréchet distance, with different
recovery guarantees, in Section V, Section VI and Section
VII, respectively. Section VIII summarizes the related papers
to our problem. As an initiation of this line of study in the
recovery of non-decomposable distances, we finally describe
the yet-open problems in Section IX.

II. PRELIMINARIES

We would like to briefly introduce the fundamental concepts,
definitions and notations that are involved in this paper. An
alphabet is a finite set of characters. A binary alphabet contains
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two elements, Σb := {0, 1}. A sequence is either empty ϕ, or
an enumerated collection of characters selected from a given
alphabet. We denote the length of a sequence s by len(s).
Throughout the paper, we use [n] to denote the set {1, 2, . . . , n}.
Then for sequence s, [len(s)] represents its indices set. Note
our indices set starts from 1.

A distance function between a pair of sequences measures
the similarity and the structural relationship between them. A
distance function dist(·, ·), as a metric, satisfies the following
properties:

• Identity: dist(s, s′) = 0 iff s = s′;
• Commutativity: dist(s, s′) = dist(s′, s);
• Triangle inequality: for any sequence x, dist(s, s′) ≤
dist(s, x) + dist(x, s′);

• Non-negativity: dist(s, s′) ≥ 0.
Different distance functions can capture the similarity

information from different perspectives. While we use dist(·, ·)
to denote the distance metric in general, in this paper we
are in particular interested in the edit distance (denoted by
dL(·, ·), L for Levenshtein), (p)-Dynamic Time Warping (p-
DTW) distance (denoted by dDTW(·, ·)), and Fréchet distance
(denoted by dF (·, ·)), which are non-decomposable to a sum
of coordinate-wise contributions. We note that the widely used
DTW distance is not a metric because identity and triangle
inequality properties do not hold for it. It has been shown a
generalization to p-th power of DTW (i.e., p-DTW) distance
satisfies weak triangle inequality up to a factor parameterized
by p and the sequence length [20]. We discuss in this paper how
the missing triangle inequality affects our recovery problem
(especially for DTW).

There are several other definitions related to sequences that
are useful in our paper.

Definition II.1 (Runs and Expansion, [21]). The runs of a
sequence x are the maximal substrings consisting of a single
repeated character. Any sequence obtained from x by extending
x’s runs is an expansion of x. For a given character c, we use
cm to represent the sequence obtained by repeating c for m
times. We denote the length of the i-th run of x by LOR(x, i),
where LOR means Length of Run function, and the number of
runs of a sequence x by #RUNS(x).

The following definitions of a condensed expression and
subsequence are useful in developing our algorithms.

Definition II.2 (Condensed Expression). We say y is a
condensed expression of x if (i) y has the same number of
runs as x, (ii) the first and last character of y and x are the
same, (iii) each run of y only has 1 character.

Definition II.3 (Subsequence and Substring). Given a sequence
y, its subsequence x is derived by deleting zero or more
characters from y without changing the order of the remaining
characters. The substring x′ is a contiguous subsequence of
y. We use x[a] to denote the a-th character of the sequence
x, and x[a, b] to denote a substring of x which starts from the
a-th character and ends at the b-th character.

As an example, consider the sequence 0010111. The number
of runs in this sequence is 4. The runs of sequence 0010111 are

00 (the 1st run), 1 (the 2nd run), 0 (the 3rd run), and 111 (the
last run), with length of 2, 1, 1, 3, respectively. By duplicating
the characters, we can extend a run in a sequence and then
obtain another sequence which is an expansion of the original
one. For instance, by extending the second run in 0010111, we
get 0011110111 which is the expansion of sequence 0010111.
The condensed expression of 0010111 is the sequence 0101.
Sequences 010, 101, 0111 are subsequences (or substrings) of
0010111, while 01111, 000, 1111 are only subsequences (not
substrings).

The definitions of these three distances (Edit, DTW, and
Fréchet) are listed as follows.

Definition II.4 (Edit Distance, or Levenshtein Distance [22]).
Given two sequences x and y, the edit distance dL(x, y) equals
the minimal number of edit operations required for a sequence
x to be transformed to sequence y. Specifically, we consider the
Levenshtein distance [22] which captures the addition, deletion,
and substitution of single symbols.

We use ∥ · ∥1 or simply ∥ · ∥ to denote the ℓ1 norm distance
between two equi-length sequences whose symbols are real
numbers. The notation for absolute value |·| is used to calculate
the cost or difference between two characters.

Definition II.5 (DTW Distance, [21]). Consider two sequences
x, y of length m1 and m2, respectively. A correspondence (x, y)
between x and y is a pair of equal-length expansions of x and
y. The cost of a correspondence is calculated as the ℓ1 distance
between x, y: ∥x− y∥1. A correspondence between x and y is
said to be optimal if it has the minimum attainable cost, and
the resulting cost is called the dynamic time warping distance
dDTW(x, y), that is dDTW(x, y) = min(x,y)∈Wx,y

∥x − y∥1,
where Wx,y denotes the set of all correspondences (x, y).

Definition II.6 (p-DTW Distance, [20]). By replacing the ℓ1
norm in Definition II.5 with the ℓp norm (1 ≤ p < ∞), we
obtain the definition for the p-DTW distance.

In addition to the existing definitions, we need to introduce
some new concepts essential to our proofs for (p)-DTW
distance.

Definition II.7 (Monotonic Sequence). Recall that the indices
set of sequence x is denoted by x.indices := [len(x)]. We say
a sequence x is monotonic, if for every i, j ∈ [len(x)], i <
j ⇒ xi ≤ xj , or for every i, j ∈ [len(x)], i < j ⇒ xi ≥ xj ,
where xi denotes the i-th character in x.

Definition II.8 (Matching). Consider the query sequence
q and the input sequence s as two vertex sets (U =
{u1, . . . , uℓ}, V = {v1, . . . , vn}) where the vertex set U
denotes the characters in sequence q and the vertex set V
denotes the characters in sequence s. Let M be an edge set
that for each m := (u, v) ∈ M , we have u ∈ U and v ∈ V .
We say M(q, s) is a matching (or simply M when the context
is clear) between q and s (or U and V ) if M satisfies the
following properties:

1) every vertex in U and V corresponds to at least one edge
in M ;

2) the first character in U is matched to the first character in
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TABLE II
SUMMARY OF MAIN NOTATIONS

Notation Meaning of Notation Notation Meaning of Notation
s The input sequence ϕ The empty sequence

s[i] The i-th character of sequence s s[i, j] A substring of s (from the i-th to the j-th character)
cm Repeating character c for m times len(s) The length of s
[n] {1, 2, . . . , n} [len(s)] The index set of s

LOR(s, i) The length of the i-th run of s #RUNS(s) The number of runs in s
Q Query set q(i) The i-th query in the query set

dist(·, ·) The general distance oracle dL(·, ·) The edit distance oracle
dDTW(·, ·) The DTW distance oracle dF (·, ·) The Fréchet distance oracle

MSS(seq, r) A MSS instance ∥ · ∥p ℓp norm

V and the last character in U is matched to the last character
in V ;

3) the indices of matched character pairs are monotonic, i.e.,
for any two edges (ui, vj), (uk, vl) ∈ M , i > k ⇒ j ≥ l and
j > l ⇒ i ≥ k.
We define the degree of a vertex, deg(ui) or deg(vj), as the
number of associated edges in a matching M .

Definition II.9 (DTW Matching). The cost of an edge
m := (ui, vj) ∈ M is defined to be the ℓ1 norm distance
Cost(m) := ∥ui − vj∥. The cost of a matching is defined
as Cost(M) :=

∑
m∈M Cost(m). Let M consist of all

possible matchings between q and s (or U and V ). If a
matching M ∈ M has minimal cost on the edges, that is
Cost(M) = minMi∈M Cost(Mi), we call this matching a
DTW matching. A DTW matching yields a DTW distance
between q and s.

Based on our definitions, the concepts of matching provide
a different perspective of the non-decomposable distance. A
matching between two vertex sets defines a possible alignment
between two sequences with different lengths. The notion of
DTW matching better captures the graph-theoretical properties
of the implicit optimal alignment in computing DTW distance
than the conventional definition. The cost of a DTW matching
is equal to the DTW distance between two sequences which are
constituted by the vertex sets respectively. We note that there
might exist multiple DTW matchings (of equal cost) between
a pair of sequences.

Definition II.10 (Isomorphic Matching). Given input sequence
s of length ℓ, two query sequences q and q′ of length n and
two corresponding matchings M (between q and s) and M ′

(between q and s′). We say M and M ′ are isomorphic if,
∀1 ≤ i ≤ ℓ and ∀1 ≤ j ≤ n, edge (si, qj) ∈ M ⇐⇒ edge
(si, q

′
j) ∈ M ′.

Definition II.11 (Fréchet Distance). By replacing the ℓ1 norm
in Definition II.5 with the ℓ∞ norm, we obtain the definition
of the Fréchet distance.

The Fréchet distance in our paper is equivalent to the discrete
Fréchet distance in the prior works of [23], [24].
Extended alphabet. Since in this paper we discuss recovery
sequence based on distance queries from binary or extended
alphabet, we would like to note that the distance definitions are
independent of the alphabets. That being said, while we study

the problem by restricting the input sequence as drawn from
the binary alphabet (which generalizes to any constant-sized
alphabet by applying coding methods), we do not change the
distance definitions in a skewed way of embedding special
symbols on the extended alphabet or backdoors to the oracle.
To ensure that the distance output makes sense, we specify
the extended alphabets for queries to the different distance
oracles. For edit distance, the extended alphabet can contain
any symbol outside the binary alphabet, as the edit distance
oracle counts the edit operations no matter what symbol is
used. For (p-)DTW distance and Fréchet distance, the extended
alphabet can consist of any real number. This makes sense
because the DTW and Fréchet distances are defined based on
ℓp or ℓ∞ cost.

The main notations used in this paper are summarized in
Table II.

III. OUR TECHNIQUES

In this section, we summarize and highlight the main
technical insights behind our results on non-adaptive recovery
from the DTW distance oracle, which are the most non-trivial
and interesting parts of this paper. We hope to convey our
intuitive ideas in a less formal manner before diving into the
full proofs in the later sections. Reader may skip this section
if they are looking for the complete statements and proofs of
these results. In particular, we will cover the intuitions behind
the following four theorems.

Theorem III.1 (Hardness, Refers to Theorem VI.1). There
exists a pair of input sequences s and s′ such that for any
query sequence q, dDTW(s, q) = dDTW(s′, q). That is, s and
s′ cannot be distinguished by DTW Distance Oracle queries
without using extra characters.

Theorem III.1 shows the impossibility of only using binary
sequences to recover the input sequence from the DTW distance
oracle. If two input sequences cannot be distinguished, we say
that they are in the same equivalence class. The following two
informal theorems state the upper bound and lower bound on
DTW distance recovery up to the equivalence class.

Theorem III.2 (Informal, Upper Bound, Refers to Theorem
VI.7). There exists a query set Q consisting of O(n) queries of
length O(n), such that any two distinguishable input sequences
can be distinguished by Q.
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Fig. 1. Constructing a matching between q and s′ based on the matching
between q and s.

Q is designed to contain all queries with i runs, for any
i ∈ [1, n].

Theorem III.3 (Informal, Lower Bound, Refers to Theorem
VI.4). For the binary alphabet {0, 1}, any algorithm to recover
an arbitrary input sequence s ∈ {0, 1}ℓ, where 0 ≤ ℓ ≤ n, up
to its equivalence class, by querying the DTW distance to a
set of sequences, has query complexity Ω(n).

Note that our upper bound matches the lower bound for
DTW equivalence class recovery. The next exciting finding
is that, using queries that contain a small number of extra
characters, we can exactly recover the input sequence.

Theorem III.4 (Informal, Upper Bound with Extra Chars,
Refers to Theorem VI.14). By introducing O(1) extra charac-
ters to the query sequence alphabet, we can recover any input
sequence of length ≤ n with O(n) DTW queries.

We aim to recover the given input sequence (of length ≤ n)
with the minimum number of queries for different distance
metrics. Theorems III.1, III.2 and III.3 summarize the best
results one can hope to obtain for recovering sequences from
a DTW oracle without extra characters, i.e., identifying the
equivalence class that the input sequence belongs to. If we
are allowed to use extra characters in the query construction,
we can distinguish and recover all the sequences with O(n)
queries, as informally stated in Theorem III.4. We summarize
and highlight the techniques used in proving these theorems
in the rest of this section, in which the informal proofs are
grouped as follows. In Section III-A, we show proof sketches
on recovery of sequences using binary queries, which include
results from Theorems III.1, III.2 and III.3. In Section III-B,
we give a bird’s-eye view over the key ideas of the query
construction and proof of Theorem III.4.

A. Optimal Non-adaptive Strategy using DTW Queries over
Binary Alphabet

The hardness result (Theorem III.1) is shown by finding
evidence of such a pair of indistinguishable input sequences.
Informal proof for Theorem III.1. In the case of DTW Distance,
we discover that it is actually impossible to recover any given
input with an arbitrary number of queries. For example, the
input sequences s = 010110 and s′ = 011010 cannot be
exactly recovered, since they cannot be distinguished by any

query sequence. To see this, the idea is that dDTW(1, r) =
dDTW(11, r) for any non-empty sequence r, unless r = 0.
Therefore, a DTW matching between s and any query sequence
q would yield a corresponding matching between s′ and q
with the same cost, (see Figure 1 as an example) and vice
versa. (Refer to Theorem VI.1 for detailed proof). This implies
that dDTW(s, q) = dDTW(s′, q), and thus s and s′ cannot be
distinguished by q.

Before giving the intuition for the proof of Theorem III.2 and
III.3, we first introduce the notion of a Min 1-Seperated Sum
(MSS) problem [25], [26], where each instance of the DTW
distance computation can be reduced to solving a corresponding
instance of MSS problem. The reduction plays the role of an
important primitive in our proofs.

MSS Problem. The min 1-separated sum (MSS) problem
takes as input a sequence seq of m positive integers and an
integer r ≥ 0. The problem is to select r integers from seq
and minimize their sum, under the constraint that any two
adjacent integers cannot be selected simultaneously. We say
MSS(seq, r) is an MSS instance.

Theorem III.5 (DTW-to-MSS Reduction, [26], Theorem
2). Let x ∈ {0, 1}m and y ∈ {0, 1}n be two bi-
nary strings such that x[1] = y[1], x[m] = y[n], and
#RUNS(x) ≥ #RUNS(y). Then, the DTW distance between
x and y, i.e., dDTW(x, y), equals the sum of a solution for

the MSS instance MSS

((
LOR(x, 2), . . . , LOR(x,#RUNS(x)−

1)
)
, (#RUNS(x)−#RUNS(y))

2

)
.

To give an example of the reduction, let s = 010110 and
q = 010. By Theorem III.5, we obtain dDTW(s, q) =
MSS((1, 1, 2), 1). For ease of presentation, we will use
MSS(x, (#RUNS(x) −#RUNS(y))/2) to represent the same
MSS instance.

Remark. For binary strings x ∈ {0, 1}m, y ∈ {0, 1}n where
x[1] ̸= y[1] or x[m] ̸= y[n], we can still reduce dDTW(x, y)
to an MSS instance (which will be presented later in the paper
using another technique from [26]). In this section, where
we only illustrate the main idea of the proofs, we will only
consider the case where the input sequence and query sequence
each have the same starting character and the same ending
character (so Theorem III.5 can be directly applied), and other
cases can be resolved similarly. For full details, we defer to
later sections.

Intuition for Theorem III.2. We would like to skip the proof
sketch for Theorem III.2, but just to mention the insights of the
query construction to obtain such an orderwise optimal query
complexity upper bound. The set of queries Q contains queries
of all possible combinations of runs in the input sequence. That
is, for the maximum length n of the input sequence, the set
of the possible number of runs is [n]. This gives us n queries.
Since we have 0 runs and 1 runs, there are 2n queries in the
query set Q in total. Then the remainder of the proof is to
perform case analysis – we first eliminate obvious cases and
then build a mapping to the corresponding MSS instances such
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Fig. 2. (a) Illustration of input-uniqueness and 0/1-uniqueness; (b) Illustration of isomorphism and performing a difference operation, compared to Fig (a); (c)
Illustration of shifting operation.

that if any pair of sequences cannot be distinguished by Q,
they cannot be distinguished by any binary queries.

Informal proof of Theorem III.3. Recall our query set Q
contains queries of all numbers of runs. The intuition for
the proof of Theorem III.3 is that, for each given constant-
length interval of the number of runs, we can construct a
certain pair of input sequences which can only be distinguished
by queries with a number of runs within this interval. For
instance, it can be proved that s1 = 013013031303130 and
s2 = 0130213021303130 can only be distinguished with queries
with a number of runs within [4, 10]. Thus, an Ω(n) number
of such constructed pairs of input sequences can correspond
to Ω(n) disjoint intervals, yielding an Ω(n) lower bound for
this problem.

We now construct a class of pairs of input sequences (s, s′)
where s and s′ share the same starting and ending character,
such that s and s′ can only be distinguished by queries q
with a number of runs within [#RUNS(s)+c1,#RUNS(s)+c2]
for two constants c1 < c2. According to Theorem III.5, as
long as the constructed pair of input sequences (s, s′) have
the same number of runs, for a query q with more than
#RUNS(s) number of runs, dDTW(q, s) and dDTW(q, s′) are
only determined by the query q and #RUNS(s), and thus q
cannot distinguish s and s′. For a query q with fewer than
#RUNS(s) number of runs, dDTW(q, s) and dDTW(q, s′) are
reduced to two MSS instances. Note that for different queries
q, the sequences (i.e., the first parameter) of MSS instances
remain the same, while #RUNS(q) determines the number of
elements selected in the sequences of MSS instances (i.e.,
(#RUNS(s)−#RUNS(q))/2). We hope to construct a pair of
sequences seq and seq′ such that MSS(seq, 1) ̸= MSS(seq′, 1)

and MSS(seq, x) = MSS(seq′, x) for all x > 1: let seq and
seq′ be the sequences corresponding to MSS instances of s and
s′; in this way, s and s′ would still be distinguishable because
MSS(seq, x) ̸= MSS(seq′, x) for x = 1, but any query q with
fewer than #RUNS(s) − 4 runs cannot distinguish s and s′

because MSS(seq, x) = MSS(seq′, x) for all x ≥ 2, where
x = (#RUNS(s)−#RUNS(q))/2.

B. Optimal Non-adaptive Strategy using DTW Queries with
Extra Characters

We show that, if we augment the ability of our oracles by
introducing extra characters, we can solve the DTW distance
oracle recovery problem with optimal query complexity up to
polylogarithmic factors.
Informal proof of Theorem III.4. We would like to construct
a query set of size O(n) that can recover the input sequence
using a DTW distance oracle. A natural idea is to retrieve
information about the input sequence by taking the difference
between the query results of neighbouring queries (i.e., queries
only differing by 1 character). To achieve this, we construct a
query set satisfying the following three properties:

1) Isomorphism: The matchings corresponding to neighbor-
ing queries should be isomorphic. Fig. 2 (a) and Fig. 2 (b)
show an example of isomorphism, where only one character
of the input sequence is changed, while the structure of
both optimal matchings remains identical. With this property,
we know that the difference between the query results of
neighboring queries only reflects the effects of the different
characters in neighboring queries. This property is the essence
of guaranteeing the correctness of the difference operation.

2) Input-uniqueness: Each character in the query sequence
should be matched to exactly 1 character in the input sequence.
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Another way to think of this property is to imagine a total
function that maps the entire query sequence to the input
sequence. Each matching between the query and input defines
such a function so that we can extract information about the
input by knowing something about the function. With this
property, we can take the difference to get the information of a
single character in the input sequence with a pair of neighboring
queries. Note that if the differing character in the neighboring
queries is matched to multiple characters in the input sequence,
the difference in the query results can only reflect the sum of
the costs over these characters, which makes exact recovery
hard. Take Fig. 2 (a) and Fig. 2 (b) as an example. Input-
uniqueness is satisfied for both Fig. 2 (a) and Fig. 2 (b), since
all characters in the query sequences of both figures have degree
1. Denote the matchings from Fig. 2 (a) and Fig. 2 (b) by Ma

and Mb respectively. Since Ma has cost 3(1 − a) + 2a + b
while Mb has cost 2(1− a) + 2a+ (1− b) + b, we know that
Cost(Ma)−Cost(Mb) = b− a. By taking the difference, we
can infer that s[4] = 1; otherwise, if s[4] = 0, we would have
Cost(Ma)− Cost(Mb) = (a− 0)− (b− 0) = a− b.

Combining properties 1) and 2), we note that each character
in the input sequence can match to 1 or more characters in the
query sequence, so we can obtain an expansion of the input
sequence. Based on the example, Fig. 2 (a) and Fig. 2 (b), we
can obtain an expansion, 110010, of the input sequence. We
can then infer that the input sequence is of the form 1x0y10,
where x, y ∈ [1, 2]. To recover the exact input sequence, we
require more information given by the following third property.

3) 0/1-uniqueness: In an optimal matching w.r.t. our con-
structed queries, either all 0’s or all 1’s in the input sequence
have degree 1. Using this property, we can locate the exact
position of either all 0’s or all 1’s in the input sequence, and
exactly recover the input sequence by combining the two cases.
In the example of Fig 2, 1-uniqueness is satisfied in Fig. 2
(a) and Fig. 2 (b), while 0-uniqueness is not, since s[3] in
both figures has degree 2. According to 1-uniqueness, we can
reduce the form of the input sequence from 1x0y10 to 110y10.
Similarly, we can construct another set of queries that satisfies
0-uniqueness to locate the positions of 0’s in the input sequence,
which determines y in this example.

Sequence Monotonicity → Input-uniqueness. We observe
that property 2) can be obtained from a monotonic design of
the query sequences.

Lemma III.6 (Refers to Lemma VI.15). Given a monotonic
sequence q of length n where

min
i∈[n]

max{|q[i]− 0|, |q[i]− 1|} > max
i,j∈[n]

|q[i]− q[j]|, (1)

for any input sequence s with length ℓ ≤ n, given a DTW
matching M for (q, s), we have deg(q[i]) = 1 for all characters
q[i] in q.

The intuition for Lemma III.6 is that, with the monotonic
property and equation (1) guaranteed in our query construction,
we can ensure that there do not exist characters s[i] ∈ s and
q[j] ∈ q where deg(s[i]) > 1 and deg(q[j]) > 1 are satisfied at
the same time. Fig 4 in a later section illustrates that, for such
a pair of s[i] and q[j], we can always construct a matching

Fig. 3. The position of the first 0 in s and the length of both sequences can
determine the structure of Mi.

with lower cost where one of their degrees is decreased to
1. Therefore, either all characters in s or all characters in q
would have degree 1. Since len(q) = n ≥ len(s), we know
that deg(q[i]) = 1 for all characters q[i] in q.

Fig. 2 (a) and Fig. 2 (b) satisfy sequence monotonicity, since
the query sequences in both figures are monotonic sequences
of length n and for x in {1, 2}, mini∈[n] max{|q(x)[i] −
0|, |q(x)[i]−1|} = 3

5 > ( 25 −
1
3 ) = maxi,j∈[n] |q(x)[i]−q(x)[j]|.

Sequence 0/1-preference → 0/1-uniqueness. We observe that
property 3) can be guaranteed by the 0/1-preferred design of
the query sequences. If all characters in the query sequence
are less than (or greater than) 1

2 , then we can guarantee 1-
uniqueness (or 0-uniqueness) of the input sequence. Intuitively,
this would hold because, if all characters in the query sequence
are less than (or greater than) 1

2 , matching them to 0’s (or 1’s)
in the input sequence yields lower cost than matching to 1’s
(or 0’s). Fig. 2 (a) and Fig. 2 (b) satisfy 0-preference, since
all characters in query sequences (either a = 1

3 or b = 2
5 ) are

less than 1
2 .

Query Construction. We now propose the following design
of the query sequence. We first need a single 0 query and
a single 1 query to obtain the number of 1’s and 0’s in the
input sequence. Let a, b be two fractional characters that satisfy
0 < b− a < a < b < 1

2 and the denominators of a, b are co-
prime. Without loss of generality, we can assume a = 1

3 and
b = 2

5 . We will use a, b as the extra characters to construct the
query sequences. In particular, the rest of the query sequences
(other than the 0 query and the 1 query) consist of queries Q
in the form of q(i) = an−ibi, where i = 1, . . . , n. This query
construction satisfies sequence monotonicity and sequence 0/1-
preference properties. Now we need to prove it also satisfies
isomorphism.

Lemma III.7 (Refers to Lemma VI.19). For any input sequence
s, there exists an set of isomorphic matchings M where
Mi ∈ M is optimal for query q(i) ∈ Q.

Lemma III.7 guarantees the isomorphism property of the
constructed query set Q. Here we construct an isomorphic set
of matchings Mi ∈ M such that only the first 0 in the input
sequence has degree greater than 1, while all other characters
in the matching are of degree 1. Fig. 2 (a) and Fig. 2 (b) are
instances of M1 and M2, where the matchings in both figures
are isomorphic to each other. Note that in this construction, the
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structure of the matchings is only determined by the position
of the first 0 in the input sequence and the length of both
sequences (see Fig 3). Since all query sequences in Q have
the same length, an isomorphism of constructed matchings is
naturally guaranteed.

To prove the optimality of the Mi, we introduce the notion of
a “shifting” operation. Consider two 0’s in the input sequence.
If any character between them has degree 1 and the first 0
has degree greater than 1, by running the shifting operation
we decrease the degree of the first 0 by 1 and increase the
degree of the last 0 by 1, while preserving the degree of all
other characters. Fig. 2 (c) illustrates an example of the shifting
operation.

Claim III.8 (Refers to Claim VI.20). For our constructed
query set Q, a shifting operation would not reduce the total
cost of the matching.

Claim III.9 (Informal, Refers to Claim VI.21). Given input
sequence s, query q(i) ∈ Q and any optimal matching M∗

i

between s and q(i), we can obtain M∗
i by applying a series of

shifting operations to Mi.

Combining the above two claims, we can show that the Mi

are always optimal, which proves Lemma III.7. So far, the
constructed query set satisfies three properties – isomorphism,
input-uniqueness, and 0/1-uniqueness. Further details of our
algorithm to recover the input sequence are given in later
sections (see Algorithm 2).

IV. RECOVERY WITH ADAPTIVE QUERIES

A. General Framework

Theorem IV.1 (Coordinate Descent Framework). For a given
distance oracle dist(·, ·), a constant-sized alphabet Σ and any
input sequence s ∈ Σi where 0 ≤ i ≤ n, there exists an
adaptive algorithm which returns a sequence s′ such that its
distance to the input sequence s satisfies dist(s, s′) = 0 using
poly(n) queries, given that the following two conditions are
true:

• There exists a positive constant c (independent of n), ∀s ∈
Σi, q ∈ ΣO(n),where 0 ≤ i ≤ n and dist(s, q) > 0, we
can find a sequence q′ within poly(n) queries such that
dist(s, q) ≥ dist(s, q′) + c;

• ∀s ∈ Σi, q ∈ ΣO(n), dist(s, q) ≤ poly(n).

Proof sketch: The two above conditions naturally imply a local
search algorithm. To recover the sequence q, we perform the
following steps: 1) randomly initialize q. 2) find q′ such that
dist(s, q) > dist(s, q′). 3) set q to q′ and repeat 2) to 3). The
algorithm terminates if dist(s, q) = 0, and outputs the final q
as the sequence s′.

Since we reduce dist(s, q) by at least a positive constant
c in each iteration, and dist(s, q) ≤ poly(n), the algorithm
terminates in at most poly(n)/c iterations. Therefore, the total
number of queries is O(poly(n)).

The above local search algorithm can be applied to all
aforementioned distances. Specifically, the complexity for the
edit distance, DTW distance and Fréchet distance is O(n2),

O(n2) and O(n), respectively. A detailed instantiation of the
algorithm on these distances can be found in Appendix B.
Remark. As stated in the theorem, the objective of this
coordinate descent framework is to reduce dist(s, s′) to 0,
which reflects our “zero distance to input” recovery guarantee.
We remark that, for distance function which is a metric, this
guarantee implies “recover to equivalence class”, while for
distances such as DTW where the triangle inequality does not
apply, there exist sequences that can be distinguished whereas
the distance is 0. Such an example includes sequence 101 and
1011.

B. Edit Distance

We show that a binary input sequence with maxi-
mum length n can be adaptively recovered using at most
n+ log n+ c ∈ O(n) queries to the edit distance oracle (where
c is a constant), by the following theorem.

Theorem IV.2 (Adaptive Strategy for Edit Distance). For a
binary alphabet {0, 1}, and any input sequence s ∈ {0, 1}ℓ
with k runs where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm
to recover the input sequence s using at most 2k log(n/k) +
log n+k+c queries Q of length ≤ n and the exact Levenshtein
distance of s to each query sequence qi ∈ Q, where the query
sequences use no extra characters.

Proof. The proof makes use of the following claim.

Claim IV.3. Given two sequences x and y, the edit distance
dL(x, y) = |len(x)− len(y)| if and only if x is a subsequence
of y or y is a subsequence of x.

Proof of claim. Without loss of generality, we can assume that
len(x) ≥ len(y). Since each insertion, deletion or substitution
operation can change the sequence length by at most 1, we
have dL(x, y) ≥ t where (t = len(x) − len(y)). If y is a
subsequence of x, we can obtain y by performing t deletions
on x. Since dL(x, y) ≥ t, we have dL(x, y) = t. If y is not a
subsequence of x, we show that dL(x, y) > t. To transform
x to y we would need at least t deletions. Since y is not a
subsequence of x, we cannot obtain y by merely performing t
deletions on x, implying that dL(x, y) > t.

Next, to prove Theorem IV.2, we observe that for any sequence
on a binary alphabet, the first run starts with either 0 or 1.
That is, the condensed expression of a binary sequence is in
the form of 1010... or 0101.... Let the number of runs be k.
The first part of our adaptive recovery algorithm is determining
the input sequence’s condensed expression. To do so, we need
the following set of 2n+ 1 queries, {ϕ, 0, 1, 01, 10, 010, . . . },
where the maximum length of the query in this set is n. The
length of the input sequence ℓ can be determined by querying
the empty sequence ϕ. The condensed expression of the input
sequence is equal to the query in the query set of maximum
length such that k = ℓ − r, where k is the length of this
query and r is the query result from the oracle. Since we are
adaptively querying the oracle, we do not require all 2n+ 1
queries. By using our querying strategy, the query complexity
of this part can be reduced to log n+ c. To see this, we take
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out all n queries beginning with 0 from the query set and
adaptively query the oracle using binary search to find the
longest query sequence such that the edit distance between
this query and the input sequence equals the length difference
between two sequences. Next, we add an 1 to the left side (or
the most significant bit) of the longest query we just selected,
then query the oracle to see if the distance is smaller. The
query sequence with the smaller edit distance is therefore the
condensed expression of the input sequence. Since a ϕ query
is required at the beginning, the entire process requires at most
log n+ 2 ≤ log n+ c queries.

The second part of our algorithm is to recover the sequence
from the condensed expression via expanding each run by
inserting 1’s (or 0’s) into the corresponding location. We have
obtained the number of runs, which is k. According to the claim,
if any one of the runs of the query sequence contains more
characters than that of the input sequence, meaning the query
sequence is no longer the subsequence of the input sequence,
then we can observe from the query results. Therefore, we
can recover the input sequence run by run. The naïve way of
achieving this is to iterate over runs and insert one character per
time to a run until scanning and fulfilling the entire sequence,
which results in at most n queries. Combining the first part of
recovering the condensed expression, this approach gives us
the overall query complexity of n+ log n+ c ∈ O(n).

An alternative approach to recover the runs is to determine
the number of characters in each run using line search and
binary search. That is, we increase the number of characters
in a run exponentially (by a factor of 2) and then look back to
find the exact number by binary search. Compared to directly
using binary search to find the length of the run within the
range of [2, n− k], the complexity analysis of our approach
can avoid a potential n log n term. To give an example of this
approach, suppose we have a run of length 13. To recover this
run, instead of using 13 queries by the naïve approach, we
can make 7 queries with the following numbers of 1’s: 2, 4,
8, 16, 12, 14, and 13, respectively. For a run with length m,
the worst-case query complexity of this approach is ⌈2 logm⌉.
Let ti be the number of characters in each 1 run or 0 run. Then
we have

∑k
i=1 ti = ℓ ≤ n. Since the number of characters in

each block can be determined adaptively using line and binary
search, we can derive the query complexity of the second part
as

∑k
i=1⌈2 log ti⌉ ≤ 2 log(Πk

i=1ti)+k ≤ 2 log(
∑k

i=1 ti/k)
k+

k ≤ 2k log(n/k) + k. The first inequality holds due to the
AM-GM inequality. Combining the two parts of the algorithm,
we know that the overall adaptive query complexity for the
exact recovery of the sequence is 2k log(n/k)+k+log n+c ∈
O(n).

In many cases our alternative approach, as shown in the
complexity, saves queries. There are also edge cases that the
naïve approach wins the game – for runs with two characters,
using binary search requires 3 queries (i.e., queries with 2, 4,
3, characters in this run respectively), while the naïve approach
finishes the task with only 2 queries.

Theorem IV.4 (Yet Another Adaptive Strategy for Edit
Distance). For a binary alphabet {0, 1}, and any input
sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an

adaptive algorithm to recover the input sequence s using at
most n+ 2 ∈ O(n) queries Q of length ≤ n and the exact
Levenshtein distance of s to each query sequence qi ∈ Q,
where the query sequences use no extra characters.

Proof. The adaptive query strategy is the following. We first use
an empty sequence to query the length ℓ ∈ [n] = {1, 2, . . . , n}
of the input sequence. Then we use ℓ+ 1 ≤ n+ 1 queries: an
e0 = 0ℓ query and a set of ei = 0i−110ℓ−i, i ∈ [ℓ] queries (all
with length ℓ).

Claim IV.5. s[i] =

{
0, if dL(s, e0)− dL(s, ei) ≤ 0;

1, if dL(s, e0)− dL(s, ei) = 1.

Proof of claim. If s[i] = 1, dL(s, e0) − dL(s, ei) = (#1’s in
s) − (#1’s in s− 1) = 1. If s[i] = 0, dL(s, e0) = (#1’s in s).
We show that dL(s, ei) ≥ (#1’s in s). First, dL(s, ei) ≥ (#1’s
in s) − (#1’s in ei) = #1’s in s − 1. Consider the series of
transformations from s to ei: 1) If we only perform substitution
on s, we need at least #1’s in s + 1 operations. 2) Otherwise
we show that we have at least one insertion. If we perform
at least one deletion operation(s) on s, since s and ei are of
the same length, we would need at least one insertion(s) on s.
Note that insertions on s cannot reduce the difference of the
number of 1’s between s and ei. Thus, we need at least (#1’s
in s −1) extra operations to reduce the difference to 0 and we
have dL(s, ei) ≥ (#1’s in s −1) +1 = #1’s in s. Combining
these cases, we obtain dL(s, ei) ≥ (#1’s in s).

By claim IV.5, we can recover the sequence s character by
character.

Remark. We remark that both results of Theorem IV.2 and
Theorem IV.4 are useful. Clearly, using n+ 2 queries in the
second algorithm is a better strategy than the naïve approach
in the first algorithm, which requires n + log n + c queries.
However, the first algorithm with the binary search approach
yields query complexity of 2k log(n/k)+log n+2k+c. When
the number of runs (i.e., k) is small, this result is better than
the n+ 2 queries in the second algorithm.

C. DTW Distance

Theorem IV.6 (Adaptive Strategy for DTW Distance). For a
binary alphabet {0, 1}, and any input sequence s ∈ {0, 1}ℓ
where 0 ≤ ℓ ≤ n, there exists an adaptive algorithm to recover
the input sequence s using at most n+ 1 ∈ O(n) queries Q
of length ≤ n and the exact DTW distance of s to each query
sequence q(i) ∈ Q, where the query sequences use 1 extra
character.

Proof. Using an adaptive method, for a binary alphabet {0, 1},
an input sequence s ∈ {0, 1}i where 0 ≤ i ≤ n can be exactly
recovered with at most n+ 1 ∈ O(n) queries to the DTW
distance oracle. We need 1 additional character, which is the
fractional character 1

2 , to construct the set of query sequences.
The details are presented as follows.

First, with a single-character query sequence q(1) = 1
2 , we

can obtain the length of the input sequence s, which is ℓ =
2dDTW(s, q(1)).
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Consider the query q(2) = 0 ( 12 )
ℓ−1. Note that each 1

2 in
the q(2) corresponds to at least 1

2 cost in the query result, and
we have dDTW(s, q(2)) ≥ (ℓ− 1)/2. If s[1] = 0, then s[1] and
q(2)[1] are perfectly matched, so dDTW(s, q(2)) = (ℓ − 1)/2.
Otherwise, the first character 0 in q(2) would correspond to
cost > 0 in the query result, so dDTW(s, q(2)) > (ℓ− 1)/2. In
this way, we can recover s[1].

Now we recover the whole sequence by induction. Suppose
we have recovered s[1, k], we show that we can recover s[k+1]
with the query sequence q(k+2) = s[1, k]s[k]( 12 )

ℓ−k−1. Noting
that each 1

2 in q(k+2) corresponds to at least a 1
2 cost in the

query result, we have dDTW(s, q(k+2)) ≥ (ℓ − k − 1)/2. If
s[k + 1] = s[k], then s[1, k + 1] and q(k+2)[1, k + 1] can
be perfectly matched, so dDTW(s, q(k+2)) = (ℓ − k − 1)/2.
Otherwise, we claim that dDTW(s, q(k+2)) > (ℓ− k− 1)/2. If
the cost corresponding to q(k+2)[k+1] > 0, we would already
have dDTW(s, q(k+2)) > (ℓ−k−1)/2, so we can assume that
the cost corresponding to q(k+2)[k + 1] is 0. Since q(k+2)[k +
1] = s[k] ̸= s[k + 1], we know that q(k+2)[k + 1] cannot be
matched with s[k+1]. Suppose q(k+2)[k+1] is matched with
substring s[u, u+t] in the optimal DTW matching, where t ≥ 0
and s[u] = s[u+ 1] = · · · = s[u+ t] = q(k+2)[k + 1] = s[k].
Since k + 1 /∈ [u, u + t], we either have k + 1 > u + t or
k + 1 < u. If k + 1 > u + t, since ∀u + t < j ≤ ℓ we
have s[j] matched to a 1

2 , the total cost would be at least
(ℓ − (u + t))/2 > (ℓ − k − 1)/2. Otherwise if k + 1 < u,
note that s[1, u] are matched to q(k+2)[1, k+1] in the optimal
DTW matching. Since s[k + 1] ̸= s[k], the number of runs
in s[1, k + 1] would be greater than the number of runs in
q(k+2)[1, k+1] by 1. Thus, the number of runs in s[1, u] would
be greater than the number of runs in q(k+2)[1, k + 1] by at
least 1, and they cannot be perfectly matched. Therefore, the
cost corresponding to q(k+2)[1, k + 1] would be greater than
0, yielding a total cost of greater than (ℓ− k − 1)/2.

By induction, we can recover the input sequence of maximum
length n with n+ 1 queries.

V. RECOVERY WITH NON-ADAPTIVE EDIT DISTANCE
ORACLE QUERIES

We begin with a lower bound for edit distance.

Theorem V.1. For a binary alphabet {0, 1}, any algorithm
to recover an arbitrary input sequence s ∈ {0, 1}ℓ where
0 ≤ ℓ ≤ n by querying the Levenshtein distance to a set
of sequences of length O(n) requires a query complexity of
Ω(n/ log n).

Proof. For each query of length O(n), the result would be an
integer d = O(n). Without loss of generality, assume the query
is of length an+b where a, b are non-negative constant integers
and b < n. For an arbitrary input sequence with length ≤ n,
the query result falls into the range of [(a− 1)n+ b, an+ b]
if a > 0 (or [0, n] if a = 0), yielding n+ 1 possibilities. For
0 ≤ k ≤ n, the number of different sequences of length k is
2k, and the total number of sequences of length no greater
than n would be

∑n
k=0 2

k = 2n+1−1. Thus, to distinguish all
possible sequences, one would need at least logn+1(2

n+1) =
(n+ 1)/ log(n+ 1) ∈ Ω(n/ log n) queries.

Note that this information theoretical proof only applies to
deterministic algorithms. Next we give a proof if one is allowed
to use a randomized algorithm. To show this, we introduce a
one-way two-party communication game called INDEX.

Definition V.1 (INDEX Game [27]). Consider two players
Alice and Bob. Alice and Bob have access to a common
public coin and their computation can depend on this. Alice
holds an n-bit string x ∈ {0, 1}n and is allowed to send a
single message M to Bob (i.e., this is a one-way protocol).
Bob has an index i ∈ [n] and his goal is to learn x[i], i.e.,
Prr[Out(M) = x[i]] ≥ 2

3 ).

It is shown in [27] that the above problem requires |M | =
Ω(n). To reduce our recovery problem from the INDEX game,
let R be an adaptive randomized recovery algorithm which
works as follows. First, Alice randomly selects a query q1 based
on the first part r1 of the shared public coin, and computes
d(q1, x). Alice then adaptively selects a set of queries qi, where
each qi is chosen based on disjoint parts r1, . . . , ri of the
public coin, as well as the responses d(q1, x), . . . , d(qi−1, x)
to previous queries. Alice then sends all query results d(qi, x)
to Bob as the message M .

We now show that, if the algorithm R is correct w.p. 2/3,
then M contains Ω(n/ log n) query results. Given the success
probability 2/3 of R, from message M , Bob can reconstruct
the string x w.p. at least 2/3, so Bob can learn each bit of x
w.p. at least 2/3. According to [27], |M | = Ω(n) bits. Since
each distance query result contains at most O(log n) bits, it
follows that Ω(n/ log n) queries are required.

A. Exact Recovery with Extra Character(s)

We now move on to the analysis of the upper bound for edit
distance with the assistance of extra character(s). The following
theorem uses 1 extra character in the extended alphabet to
construct query sequences. We note that for edit distance, using
more than 1 extra character in the extended alphabet does not
help recover the input sequence, because the edit distance
oracle only counts the edit operations made from transforming
one sequence to another. Different characters result in the same
edit cost.

Theorem V.2 (Non-adaptive Strategy for Edit Exact Recovery
with 1 Extra Character). For a binary alphabet {0, 1} and
an input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists
an algorithm to recover the input sequence s, given a set of
n+1 ∈ O(n) query sequences Q of length ≤ n and the exact
Levenshtein distance of s to each query sequence q ∈ Q, where
an extra character 2 is allowed in the query sequences.

Proof of Theorem V.2. The intuition of our proof is to build
an oracle that returns the number of 1’s in the first j characters
of the input sequence s. Then querying the oracle with all
possible j’s (where j ∈ [n]) implies a recovery of the input
sequence. Note that this oracle calls the edit distance oracle
as a subroutine. The following lemma shows the existence of
such an oracle.

Lemma V.3. Let s ∈ {0, 1}n′
be a non-empty sequence with

length len(s) = n′ ≤ n. Consider a sequence s′ = 1j2n−j ,
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where j ∈ [n′], and 2 denotes a random character not in the
binary alphabet {0, 1}. Let k denote the number of 1’s in the
substring s[1, j] (i.e., the first j characters of s). Then the edit
distance between s and s′ is equal to n− k.

Proof. We prove the lemma in two steps. First, we prove that
the number of operations required in the transformation from
s to s′ is greater than or equal to n− k. Second, we show the
existence of a sequence of operations that transforms s to s′

in exactly n− k steps.
To formally prove the first step, we perform a case analysis

on the j-th character of s, i.e., s[j], being 0 or 1. When s[j] = 0,
the following claim shows dL(s, s

′) ≥ n− k.

Claim V.4. If s[j] = 0, then dL(s, s
′) ≥ n− k.

Proof of claim. Let s = [prefix]0[suffix], where the length of
the prefix is len([prefix]) = j−1. Recall sequence s′ = 1j2n−j .
The edit distance between s and s′ can be regarded as the
number of operations required in the transformation from s
to s′. This transformation from s to s′ leads to a sequence
of operations of insertion, deletion, and substitution. For
an optimal transformation sequence, swapping two adjacent
operations in this sequence generates another valid sequence
of operations of the same length.We can therefore assume all
the deletion operations are performed in the beginning, and
we denote the number of deletions by d. Let t be the number
of 0’s in [prefix], and suppose d ≥ t + 1. We can assume
that all entries in [suffix] are 1 and any 0 is deleted before a
1 is deleted; indeed, these assumptions will not increase the
edit distance. After the deletion operations, s is a sequence
of n′ − d 1’s. If n′ − d ≤ j, then we need an additional
n − (n′ − d) insertions to recover s′. Thus the total cost is
d+n−(n′−d) ≥ d+n−j ≥ (t+1)+n−j = n−k. It remains
to consider the case that d < t+1. At this point s is a sequence
of length n′ − d containing (t+ 1)− d 0’s among its first j
entries, and remaining 1’s. Since there are no more deletions,
any 1’s occurring after the j-th entry must be substituted to a
2. There are (n′ − d)− j such 1’s that each cost 1. Also, each
of the (t+ 1)− d 0’s among the first j entries costs one for a
substitution. Finally, we need at least n− n′ + d insertions to
obtain equal-length sequences. So the total cost is at least
(d)︸︷︷︸

#deletions

+(n− n′ + d)︸ ︷︷ ︸
#insertions

+ [(n′ − d)− j]︸ ︷︷ ︸
#substitutions of 1’s

+ [(t+ 1)− d]︸ ︷︷ ︸
#substitutions of 0’s

=

n− j + t+ 1 = n− k. This completes all cases.

To finish the case analysis, now we consider the case that
s[j] = 1. We define s′′ = (s[1, j − 1])0(s[j + 1, n′]). Note s′′

is obtained by substituting the j-th character of s from 1 to
0, hence dL(s, s

′′) = 1. We have k 1’s in s[1, j], so we have
(k − 1) 1’s in s′′[1, j]. By Claim V.4, we have dL(s

′, s′′) ≥
n−k+1. Since edit distance is a metric, by triangle inequality,
dL(s

′, s) + dL(s, s
′′) ≥ dL(s

′, s′′) ≥ n − k + 1. Therefore,
dL(s, s

′) ≥ n− k + 1− 1 = n− k.
Now, for the second step, we give a valid sequence of

operations to transform s to s′ in exact n− k steps. 1) insert
2’s to the end of s such that s and s′ have the same length.
This results in n − n′ insertions. 2) for every index i ∈ [n],
substitute s[i] to s′[i] if they are different in the first place.

The number of operations is counted as follows. For i ∈ [1, j],
it requires j − k substitutions since there are (j − k) 0’s. For
i ∈ [j+1, n′], it requires n′ − j substitutions since we need to
substitute every character to 2. For i ∈ [n′+1, n], it requires no
substitutions. Therefore, we have n−n′+j−k+n′−j = n−k
operations in total.

Query Sequence Construction. We introduce an additional
wildcard character which is not in the input sequence alphabet.
Using this newly introduced character, the n + 1 query
sequences are constructed as follows. We use an empty
sequence together with n sequences of the form of 1j2n−j for
j = 1, . . . , n where 2 denotes a “not-in-the-alphabet” character.

Algorithm to recover input sequence s. We now give an
algorithm to recover s using the query sequence set to complete
the proof of Theorem V.2. From the query result of the empty
sequence, we know the length of the input sequence (n′).
If n′ = 0, we know the input sequence is empty as well.
Otherwise, consider the query results of the sequences 1j2n−j ,
for j ∈ [n′]. By Lemma V.3, we know the number of 1’s (k) in
the first j characters of s (j ∈ [n′]), which implies a complete
recovery of s. The exact recovery algorithm is presented in
Algorithm 1. We note that the order of the query sequences
matters. ■

Remark. Note that the exact length of sequence s is unknown.
This algorithm works non-adaptively for any sequence s with
length ≤ n.

B. Exact Recovery without Extra Characters

Theorem V.5. For a binary alphabet {0, 1} and an input se-
quence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an algorithm
to recover the input sequence s, given 1

2 (n
2 + 3n) ∈ O(n2)

query sequences Q of length ≤ n and the exact Levenshtein
distance of s to each query sequence qi ∈ Q, without extra
characters.

Proof. The construction can be obtained by naturally extending
the query set in the proof of Theorem IV.4 to all lengths ℓ ∈ [n].
This gives us

∑n
ℓ=1(ℓ+1) = 1

2 (n
2+3n) ∈ O(n2) queries.

VI. RECOVERY WITH NON-ADAPTIVE DTW DISTANCE
ORACLE QUERIES

A. Hardness Result without Extra Characters

Theorem VI.1 (Indistinguishable Sequences by Binary Queries
with DTW Oracle). There exists a pair of input sequences s
and s′ such that for any query sequence q, dDTW(s, q) =
dDTW(s′, q). That is, s and s′ cannot be distinguished by
DTW Distance Oracle queries without extra characters.

Proof. We can prove this theorem by constructing a witness
pair of input sequences. Consider the following pair of input
sequences: s = 010110 and s′ = 011010. We argue that this
pair of input sequences cannot be distinguished by any binary
sequence query q.

First, for query sequences that only consist of 0, it is obvious
dDTW(s, q) = dDTW(s′, q) = 3. Then we only need to con-
sider query sequences containing 1(’s). To see dDTW(s, q) =
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Algorithm 1: Exact Recovery Algorithm via Queries to an Edit Distance Oracle

Input: Non-adaptive query sequences Q = {q(1), q(2), . . . , q(n+1)}; The edit distance query result from the sequence for
recovery to each query sequence R = {d(1), d(2), . . . , d(n+1)}.

Output: The sequence for recovery s.
1 Function RECOVERYEDIT(Q,R):
2 sequence = [] ▷ Initialize the sequence for recovery.
3 sequence.append(n− d(2))
4 for i ∈ [2, n+ 1] do
5 sequence.append(d(i) − d(i+1))

6 sequence = ϕ if d(1) = 0, else sequence[1, d(1)] ▷ d(1) is the distance to the empty string.
7 return s := sequence

dDTW(s′, q) in this case, we will show (1) dDTW(s, q) ≤
dDTW(s′, q) and (2) dDTW(s, q) ≥ dDTW(s′, q) hold simulta-
neously.

Note that the sequence s contains three 1’s. To prove case (1),
we show that there exists an optimal DTW matching satisfying
the following properties:

a) The first 1 in s is matched to a substring (c.f. Definition
II.3) of q that begins and ends with both 1’s;

b) The second 1 in s is matched to a substring of q that
begins with 1;

c) The third 1 in s is matched to a substring of q that ends
with 1.

To see the existence of such an optimal matching, we would
like to show that, if any one of these properties is violated,
we can find another matching with at most the same cost that
does not violate these properties. We take property a) as an
example to illustrate this. If a) is violated, then the substring
in q that the first 1 in s gets matched to contains at least a 0
in the beginning or the end, or both. If this substring contains
both a 0 and a 1, then we can map the 0 at the beginning (or
in the end) to the 0 on the left (or right) side to the first 1 to
obtain a matching with lower cost. We consider the substring
that contains only 0. In the optimal matching, the first 1 in
s cannot get matched to more than one 0 because this will
yield more cost than necessary. Then it reduces to the case
where 1 is matched to a single 0. In this case, if the left 0
in s is matched to a substring that contains at least a 1 in q,
then matching the first 1 (in s) to this (these) 1(’s) leads to a
matching with lower cost, since the right 0(’s) in the substring
can be matched to the 0 on the right to the first 1 in s. Then
this leaves the discussion for the case that the first “01” in
s is matched to a substring with only 0(’s) in q. For ease of
presentation, we denote this substring by “ss-0”. The second 0
in s can always be matched to ss-0 because this will not yield
cost and therefore we know in a potential optimal matching the
first “010” can be matched to ss-0. Since we know q contains
at least a single 1, this(these) 1(’s) will be matched to character
after the first “010” (i.e., the second 1) in s. We then argue
that we can change this matching to obtain an equally optimal
matching without violating the properties: i) the first 0 in s is
matched to the substring before the first 1 in q; ii) the first 1
and the second 0 in s are simultaneously matched to the first
1 in q; iii) after the first “010” in s, the matching does not

change. In this new matching, there is a cost of 1 saved and
generated due to the matching changing on the first 1 and the
second 0 in s, and therefore the overall DTW cost does not
change and the matching remains optimal. For the rest of the
properties, the cases and proofs are similar. We therefore omit
the detailed analyses.

Next, we will show that, given the matching (between s
and q) with these three properties, we can find a matching
between s′ and q that will generate DTW cost at most c (that
is, dDTW(s′, q) ≤ c). In particular, we give the following
reduction in two matchings.

a) All 0’s in s′ get matched to the same substring in q as
all 0’s in s;

b) The first 1 and the second 1 in s′ get matched to the
substring in q that matches the first 1 in s;

c) The third 1 in s′ gets matched to the two substrings in q
that match the second 1 and the third 1 in s.

By this matching, the cost between s′ and q is exactly c. We
do not need to know if this matching is optimal for dDTW(s′, q)
but this shows dDTW(s′, q) ≤ c. We note that these three
properties hold for any query sequence that contains at least a
single 1, because the single 1 can be a substring of this query
sequence to satisfy the properties. Thus, this analysis covers
all possible cases of a binary query sequence. By symmetry, a
similar construction can be shown for the opposite side and the
conclusion is dDTW(s, q) ≥ dDTW(s′, q). Combining the two
parts of the proof, we obtain that dDTW(s, q) = dDTW(s′, q)
for any binary query q.

B. Recovery without Extra Characters w.r.t. Equivalence
Classes

As indicated by Theorem VI.1, there exist input sequences
that cannot be distinguished by DTW distance oracle queries.
For ease of presentation, we say that any two different input
sequences s and s′ are distinguishable if s and s′ can be
distinguished by DTW Distance Oracle queries. We categorize
mutually indistinguishable sequences into equivalence classes.
In this context, using binary queries, the best solution we
can provide in this problem setting is to recover those input
sequences up to their equivalence class.

The characterization of the set of indistinguishable binary
sequences, given a parameterized sequence length n, is not

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3289981

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on July 02,2023 at 03:23:34 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 15

so simple to describe (which can be seen from Observation 4
of [26]). However, we can propose an optimal query strategy
in this setting to distinguish all distinguishable sequences and
prove optimality by making use of the reduction between the
calculation of DTW distance and the min 1-separated sum
problem [25], [26]. We introduce the necessary results from
[26] below and interpret them in our setting.

Definition VI.1 (Min 1-Separated Sum (MSS), [26]). The min
1-separated sum (MSS) problem takes the inputs of a sequence
(b1, . . . , bm) of m positive integers and an integer r ≥ 0. The
problem is to select r integers bi1 , . . . , bir with 1 ≤ i1 < i2 <
· · · < ir ≤ m and ij < ij+1 − 1 for all 1 ≤ j < r such that∑r

j=1 bij is minimized. We say ((bi1 , . . . , bir ), r) is an MSS
instance.

Theorem VI.2 (DTW-to-MSS Reduction, [26], Theorem
2). Let x ∈ {0, 1}m and y ∈ {0, 1}n be two bi-
nary strings such that x[1] = y[1], x[m] = y[n], and
#RUNS(x) ≥ #RUNS(y). Then, the DTW distance be-
tween x and y, i.e., dDTW(x, y), equals the sum of

a solution for MSS

((
LOR(x, 2), . . . , LOR(x,#RUNS(x) −

1)
)
, (#RUNS(x)−#RUNS(y))/2

)
.

For ease of presentation, we will use MSS(x, (#RUNS(x)−
#RUNS(y))/2) to represent the same MSS instance.

Theorem VI.3 ([26], Observation 4). Let x ∈ {0, 1}m, y ∈
{0, 1}n with m′ := #RUNS(x) ≥ n′ := #RUNS(y). Further,
let a := LOR(x, 1), a′ := LOR(x,m′), b := LOR(y, 1), and
b′ := LOR(y, n′). The following holds:
If x[1] ̸= y[1], then:

dDTW(x, y)

=


max(a, b), m′ = n′ = 1;

a+ dDTW(x[a+ 1,m], y), m′ > n′ = 1;
min (a+ dDTW(x[a+ 1,m], y),

b+ dDTW(x, y[b+ 1, n]))
n′ > 1.

If x[1] = y[1] and x[m] ̸= y[n], then:

dDTW(x, y)

=

a′ + dDTW (x [1,m− a′] , y) , n′ = 1;
min (a′ + dDTW (x [1,m− a′] , y) ,

b′ + dDTW (x, y [1, n− b′]))
n′ > 1.

In Theorem VI.3, we call a, b, a′ and b′ (which are the length
of first/last blocks of x or y) offsets. Theorem VI.3 actually
states that, for two sequences x, y with different starting and
ending characters, by removing the first/last run of x or y,
calculating dDTW(x, y) can be reduced to calculating the offset
and solving a DTW sub-problem where the sub-sequences start
and end with the same character.

To illustrate how we can transfer a DTW problem to
an MSS instance, we give a concrete example here. Let
s = 010110, q(1) = 010, q(2) = 011. We first consider
the calculation of the DTW distance between s and q(1).
Since the first and the last blocks of s and q(1) are the
same and the number of runs of s is more than that of

q(1), we can directly apply Theorem VI.2, where we have
the MSS instance MSS((1, 1, 2), 1) and the DTW distance
is equal to the solution to this MSS instance. As for the
computation of the DTW distance between s and q(2), we
need to first apply Theorem VI.3 since the last blocks of s and
q(2) are different. By Theorem VI.3, dDTW(s, q(2)) = min(1+
dDTW(“01011”, q(2)), 2 + dDTW(s, “0”)). Then by Theorem
VI.2, the calculation of dDTW(“01011”, q(2)) yields the MSS
instance MSS((1, 1), 1) and computing dDTW(s, “0”)) is equiv-
alent to MSS((1, 1, 2), 2).
We now show the lower bound on the query complexity using
binary queries.

Theorem VI.4 (Lower Bound for DTW Equivalence Class
Recovery). For binary alphabet {0, 1}, any algorithm to
recover an arbitrary input sequence s ∈ {0, 1}ℓ, where
0 ≤ ℓ ≤ n, up to equivalence class, by querying the DTW
distance to a set of sequences, requires a query complexity of
Ω(n).

Proof. We will assume the input sequence is of length ≤ n and
all the query sequences are of length O(n), when the context
is clear in the proof.

Claim VI.5. Given MSS1((3, . . . , 3︸ ︷︷ ︸
a

, 1, 3, 3, 3, . . . , 3︸ ︷︷ ︸
b

), x) and

MSS2((3, . . . , 3︸ ︷︷ ︸
a

, 2, 3, 2, 3, . . . , 3︸ ︷︷ ︸
b

), x), we claim that when x =

1, MSS1 ̸= MSS2 and when 2 ≤ x ≤ (a+ b+4)/2, MSS1 =
MSS2.

Proof of claim VI.5. By the definition of MSS, when x = 1,
MSS1 = min(3, . . . , 3, 1, 3, 3, 3, . . . , 3) = 1 and MSS2 =
min(3, . . . , 3, 2, 3, 2, 3, . . . , 3) = 2. When 2 ≤ x < (a + b +
4)/2, MSS1 = 3x− 2 = MSS2. When x = (a+ b+ 4)/2, if
a is odd, MSS1 = 3x = MSS2; otherwise, MSS1 = 3x− 2 =
MSS2.

Claim VI.6. Let Q be a query set which can distinguish any
pair of binary input sequences that are distinguishable. For
∀c ∈ N+ such that 6c + 9 ≤ n, ∃q ∈ Q such that #RUNS(q)
∈ [2c, 2c+ 6].

Proof of claim VI.6. Consider two input sequences, s =
013013(0313)c0 and s′ = 01302130213(0313)c−10, where
len(s) = len(s′) = 6c + 9 ≤ n. We know that #RUNS(s) =
#RUNS(s′) = 2c+5. First we show that s and s′ are distinguish-
able. Let q† = 0(10)c10, where #RUNS(q†) = 2c+3. According
to Theorem VI.2, dDTW(s, q†) = MSS((3, 1, 3, 3, . . .), 1) = 1
and dDTW(s′, q†) = MSS((3, 2, 3, 2, 3, . . .), 1) = 2. Thus, q†

can distinguish s and s′.
Next we show, for any query q such that #RUNS(q) ≥ 2c+

7 or ≤ 2c − 1, dDTW(s, q) = dDTW(s′, q). Note that, to
compute the DTW distances, according to Theorem VI.3, we
may remove the first/last blocks of s (and s′) or q to reduce to
the case of Theorem VI.2. Since s and s′ have the same first and
last blocks, the offsets while reducing to the case of Theorem
VI.2 are the same. To prove that dDTW(s, q) = dDTW(s′, q),
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we only need to prove that for each possible reduction, the
corresponding reduced MSS instances have the same sum of
solutions (see Example VI.1 for illustration).

Example VI.1. To illustrate, take c = 2 and q =
101. In this case, we would have s = 013013031303130,
s′ = 0130213021303130. According to Theorem VI.3, we
have dDTW(s, q) = min(1 + dDTW(s[2, len(s)], q), 1 +
dDTW(s, q[2, len(q)])) = min(1 + dDTW(s[2, 21], q), 1 +
dDTW(s, q[2, 3])). Then dDTW(s[2, 21], q) = min(1 +
dDTW(s[2, 20], q), 1 + dDTW(s[2, 21], q[1, 2])). Also, we note
that dDTW(s, q[2, 3])) = min(1 + dDTW(s[1, 20], q[2, 3]), 1 +
dDTW(s, q[2])).

Therefore, to show that dDTW(s, q) = dDTW(s′, q), we only
need to prove that

dDTW(s[2, 21], q) = dDTW(s′[2, 21], q);

dDTW(s[2, 20], q[1, 2]) = dDTW(s′[2, 21], q[1, 2]);

dDTW(s[1, 20], q[2, 3]) = dDTW(s′[1, 20], q[2, 3]);

dDTW(s, q[2, 3]) = dDTW(s′, q[2, 3]),

where each of the 4 cases corresponds to an MSS instance.

Suppose after applying Theorem VI.3, s and q are reduced
to sub-sequences s∗ and q∗ (where s∗ and q∗ have the same
beginning and ending characters), while s′ and q are reduced to
s′∗ and q∗. Now we calculate dDTW(s∗, q∗) and dDTW(s′∗, q∗)
according to Theorem VI.2. Suppose s∗ and s′∗ have k∗ runs
and q∗ have l∗ runs.

Case 1. If #RUNS(q)≥ 2c+ 7 =#RUNS(s)+2, then k∗ ≤ l∗,
by Theorem VI.2 the generated MSS instance only depends
on q∗ and k∗. Thus, dDTW(s∗, q∗) = dDTW(s′∗, q∗).

Case 2. If #RUNS(q)≤ 2c − 1, then k∗ > l∗ and we have
the MSS instances MSS(s∗, (k∗ − l∗)/2) and MSS(s′∗, (k∗ −
l∗)/2). Note that, (k∗ − l∗)/2 ≥ (#RUNS(s)−#RUNS(q)−
2)/2 ≥ ((2c+ 5)− (2c− 1)− 2)/2 = 2. By Claim VI.5, we
have MSS(s∗, (k∗ − l∗)/2) = MSS(s′∗, (k∗ − l∗)/2). Thus,
dDTW(s∗, q∗) = dDTW(s′∗, q∗).

Combining case 1 and case 2, we know dDTW(s, q) =
dDTW(s′, q) when #RUNS(q) ≥ 2c + 7 or ≤ 2c − 1. Since
there always exists q ∈ Q that can distinguish s and s′, we
know that #RUNS(q) ∈ [2c, 2c+ 6], which proves the claim.

Let c′ ∈ N+ satisfy 24c′ − 9 ≤ n. Let c = 4c′ − 3. We
have 6c+ 9 ≤ n. By Claim VI.6, ∃q ∈ Q such that #RUNS(q)
∈ [2c, 2c+6], i.e., #RUNS(q) ∈ [8c′−6, 8c′]. For c′ = 1, 2, . . .,
intervals [8c′ − 6, 8c′] are disjoint. Therefore, there should be
at least ⌊(n+ 9)/24⌋ = Ω(n) queries in the set Q.

With these useful results at hand, now we prove the following
results for recovering sequences using the DTW distance oracle
with only binary queries.

Theorem VI.7 (Non-adaptive Strategy for DTW Equivalence
Class Recovery). There exists a set Q of 2n ∈ O(n) queries,
each of which has O(n) length, such that for any two different
input sequences s and s′, s and s′ are distinguishable ⇐⇒
s and s′ can be distinguished by Q.

Proof. First (⇐), for any given query set Q and two different
input sequences s and s′, if s and s′ can be distinguished by

Q then s and s′ are distinguishable. Then we need to prove
the opposite side (⇒). To see this, we construct the following
query set Q of size 2n ∈ O(n) and prove the contrapositive:
if s and s′ cannot be distinguished by Q, then s and s′ are
not distinguishable.

Let

zi =


0n, i = 1;

0n1(01)m−10n, i = 2m+ 1;

0n(10)m−11n, i = 2m,

and

oi =


1n, i = 1;

1n0(10)m−11n, i = 2m+ 1;

1n(01)m−10n, i = 2m,

where 1 ≤ i ≤ n and m is an positive integer. It is clear
that oi’s and zi’s are of O(n) length. Let Q = {oi|1 ≤ i ≤
n}

⋃
{zi|1 ≤ i ≤ n}. We show that given any two different

input sequences s and s′, if s and s′ cannot be distinguished
by Q then s and s′ are not distinguishable.

Claim VI.8. Given two different input sequences s and s′, if
the condensed expressions of s and s′ are different, then s and
s′ can be distinguished by Q.

Proof of claim VI.8. We note that the condensed expressions
of oi and zi for 1 ≤ i ≤ n cover all possible condensed
expressions for a sequence with length at most n. Therefore,
for input sequence s, we can find a query sequence q ∈ Q
such that s and q have the same condensed expression, and
we would have dDTW(s, q) = 0. Since s and s′ have different
condensed expressions, we would have dDTW(s′, q) ̸= 0. Thus,
q distinguishes s and s′.

Suppose s and s′ cannot be distinguished by Q. By Claim VI.8,
we know that the condensed expression of s and s′ are the
same. Let the number of runs in s and s′ be k = #RUNS(s) =
#RUNS(s′).

Claim VI.9. If s and s′ cannot be distinguished by Q, then
k ≥ 3.

Proof of claim VI.9. Consider the query sequence z1 = 0n and
o1 = 1n. By querying z1 and o1, we can obtain the number
of 1’s and 0’s in the input sequence. If k ≤ 2, then s (and s′)
would contain at most a single 0-run and a 1-run. With queries
z1 and o1 we can determine the length of the 0-run and the
1-run in s and s′, and therefore distinguish them.

Claim VI.10. If s and s′ cannot be distinguished by Q, then
LOR(s, 1) = LOR(s′, 1) and LOR(s, k) = LOR(s′, k).

Proof of claim VI.10. If s and s′ start with 0, we show that
dDTW(s, ok−1) = LOR(s, 1). Since k ≥ 3, by Theorem VI.3,

dDTW(s, ok−1) =

min (dDTW(s[LOR(s, 1) + 1, len(s)], ok−1) + LOR(s, 1),

n+ dDTW(s, ok−1[n+ 1, len(ok−1)]))

Note that dDTW(s[LOR(s, 1) + 1, len(s)], ok−1) = 0, and
LOR(s, 1) ≤ n ≤ n + dDTW(s, ok−1[n + 1, len(ok−1)]),
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we know that dDTW(s, ok−1) = LOR(s, 1). Similarly
dDTW(s′, ok−1) = LOR(s′, 1). Since s and s′ cannot be
distinguished by Q, we have LOR(s, 1) = dDTW(s, ok−1) =
dDTW(s′, ok−1) = LOR(s′, 1). Similarly, we would have
LOR(s, k) = dDTW(s, zk−1) = dDTW(s′, zk−1) =
LOR(s′, k).

By symmetry, if s and s′ starts with 1, we would have
LOR(s, 1) = dDTW(s, zk−1) = dDTW(s′, zk−1) = LOR(s′, 1)
and LOR(s, k) = dDTW(s, ok−1) = dDTW(s′, ok−1) =
LOR(s′, k). This finishes the proof for Claim VI.10.

Next, we show that s and s′ cannot be distinguished by any
binary query r. Let the number of runs in r be l = #RUNS(r).
Given s and r, we can calculate dDTW(s, r) with Theorem
VI.3 and Theorem VI.2. Note that in Theorem VI.3, we may
remove the first/last blocks of s (and s′) or r to reduce to the
case of Theorem VI.2. By Claim VI.10 we have LOR(s, 1) =
LOR(s′, 1) and LOR(s, k) = LOR(s′, k), while LOR(r, 1) and
LOR(r, l) are only related to r but not s and s′. Therefore, the
offsets while reducing to the case of Theorem VI.2 are the
same. To prove that dDTW(s, r) = dDTW(s′, r), we only need
to prove that for each possible reduction, the corresponding
reduced MSS instances have the same sum of solutions (see
Example VI.2 for illustration).

Example VI.2. To illustrate, take s = 010110, s′ = 011010
and r = 1001011 as an example. In this case, we would have
LOR(s, 1) = LOR(s′, 1) = 1, LOR(s, k) = LOR(s′, k) = 1,
LOR(r, 1) = 1 and LOR(r, l) = 2. According to Theorem VI.3,
we have dDTW(s, r) = min(LOR(s, 1)+ dDTW(s[LOR(s, 1)+
1, len(s)], r), LOR(r, 1) + dDTW(s, r[LOR(r, 1) +
1, len(r)])) = min(1 + dDTW(s[2, 6], r), 1 +
dDTW(s, r[2, 7])). Then dDTW(s[2, 6], r) =
min(LOR(s, k) + dDTW(s[2, 6 − LOR(s, k)], r), LOR(r, l) +
dDTW(s[2, 6], r[1, len(r) − LOR(r, l)])) = min(1 +
dDTW(s[2, 5], r), 2 + dDTW(s[2, 6], r[1, 5])). Also,
dDTW(s, r[2, 7])) = min(LOR(s, k) + dDTW(s[1, len(s) −
LOR(s, k)], r[2, 7]), LOR(r, k) + dDTW(s, r[2, 7 −
LOR(r, k)])) = min(1 + dDTW(s[1, 5], r[2, 7]), 2 +
dDTW(s, r[2, 5])).

Therefore, to show that dDTW(s, r) = dDTW(s′, r), we only
need to prove that

dDTW(s[2, 5], r) = dDTW(s′[2, 5], r);

dDTW(s[2, 6], r[1, 5]) = dDTW(s′[2, 6], r[1, 5]);

dDTW(s[1, 5], r[2, 7]) = dDTW(s′[1, 5], r[2, 7]);

dDTW(s, r[2, 5]) = dDTW(s′, r[2, 5]),

where each of the 4 cases corresponds to an MSS instance.

Suppose after applying Theorem VI.3, s and r are reduced
to sub-sequences s∗ and r∗ (where s∗ and r∗ have the same
beginning and ending characters), while s′ and r are reduced to
s′∗ and r∗. Now we calculate dDTW(s∗, r∗) and dDTW(s′∗, r∗)
according to Theorem VI.2. Suppose s∗ and s′∗ have k∗ runs
and r∗ have l∗ runs.

Case 1. If k∗ = l∗, then dDTW(s∗, r∗) = dDTW(s′∗, r∗) =
0.

Case 2. If k∗ < l∗, by Theorem VI.2 the generated MSS
instance only depends on r∗ and k∗. Thus, dDTW(s∗, r∗) =
dDTW(s′∗, r∗).

Case 3. If k∗ > l∗, we have the MSS instances
MSS(s∗, (k∗ − l∗)/2) and MSS(s′∗, (k∗ − l∗)/2). Note that,
we can always find a query q ∈ Q which has l∗ runs and has
the same starting and ending characters as s∗ and s′∗. Consider
dDTW(s, q) and dDTW(s′, q). Note that the first and last runs
of q are both of length n and removing them would yield at
least cost n, the only possible reduction would be dDTW(s∗, q)
and dDTW(s′∗, q). Since q cannot distinguish s and s′, we have
dDTW(s, q) = dDTW(s′, q), so dDTW(s∗, q) = dDTW(s′∗, q),
implying that MSS(q∗, (k∗− l∗)/2) and MSS(q′∗, (k∗− l∗)/2)
have the same sum of solution. Therefore, dDTW(s∗, r∗) =
dDTW(s′∗, r∗).

Combining the 3 cases above, we always have
dDTW(s∗, r∗) = dDTW(s′∗, r∗), so dDTW(s, r) =
dDTW(s′, r), implying that s and s′ cannot be distinguished
by r. This finishes the proof for Theorem VI.7.

C. Exact Recovery with Extra Character(s)

Theorem VI.11 (Lower Bound for DTW Exact Recovery). For
a binary alphabet {0, 1}, any algorithm to recover arbitrary
input sequence s ∈ {0, 1}ℓ where 0 ≤ ℓ ≤ n by querying DTW
distance to a set of sequences of length O(n) from a constant-
sized extended alphabet Σ would require a query complexity
of Ω(n/ log n).

Theorem VI.11 shows the lower bound of the query complexity
for DTW exact recovery. The proof of Theorem VI.11 is given
by an information-theoretic lower bound, which refers back to
the proof of Theorem V.1.

With this lower bound, now we would like to show that
if one is allowed to construct queries from a slightly larger
alphabet beyond {0, 1}, there exists a non-adaptive query
strategy such that this lower bound is attainable as per the
order of magnitude.

1) With One Extra Character:

Theorem VI.12 (Non-adaptive Strategy for DTW Exact
Recovery with 1 Extra Character). For a binary alphabet
{0, 1} and an input sequence s := {0, 1}ℓ where 0 ≤ ℓ ≤ n,
there exists an algorithm to recover the input sequence s, given
n2 + n ∈ O(n2) query sequences Q and the dDTW(s, q) to
each query sequence q ∈ Q, where the query sequences are
allowed to use only one extra character.

Proof of Theorem VI.12 We give our proof by constructing
n2 + n query sequences of length ≤ n and presenting an
algorithm to recover an input sequence s from its DTW distance
to these n2 + n query sequences.

Let zi,k =

{
0(10)m( 12 )

k, i = 2m+ 1;

(01)m( 12 )
k, i = 2m,

and oi,k ={
1(01)m( 12 )

k, i = 2m+ 1;

(10)m( 12 )
k, i = 2m,

where m is a non-negative

integer, 1 ≤ i ≤ n and 0 ≤ k ≤ n − i. Let Q = {oi,k|1 ≤
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i ≤ n, 0 ≤ k ≤ n− i}
⋃
{zi,k|1 ≤ i ≤ n, 0 ≤ k ≤ n− i}. We

have |Q| = 2
∑n

i=1 i = n2 + n.
Without loss of generality, we can assume that s starts

with a 0 and has t runs, where the i-th run of s is LOR(s, i),
l =

∑t
i=1 LOR(s, i). Then dDTW(zt,0, s) = 0. Consider

dDTW(zi,k, s) where 1 ≤ i ≤ t. The first i runs of s have a
total length of

∑i
j=1 LOR(s, j), and the last t − i runs of s

have a total length of
∑t

j=i+1 LOR(s, j).

Claim VI.13. For 1 ≤ i ≤ t, dDTW(zi,k, s) =
k
2 ⇐⇒ k ≥∑t

j=i+1 LOR(s, j).

Proof of Claim VI.13. Since each 1
2 in zi,k corresponds to

at least 1
2 cost, we have dDTW(zi,k, s) ≥ k

2 . Note that
s[1,

∑i
j=1 LOR(s, j)] and zi,k[1, i] can be perfectly matched.

If k ≥
∑t

j=i+1 LOR(s, j), then s[(
∑i

j=1 LOR(s, j))+1, l] and
zi,k[i+ 1, i+ k] = ( 12 )

k can be matched with exactly k
2 cost,

so dDTW(zi,k, s) =
k
2 . Otherwise, if k <

∑t
j=i+1 LOR(s, j),

we show that dDTW(zi,k, s) >
k
2 . In fact, if any of the 1

2 in
zi,k is matched to more than one character in s, we would
already have dDTW(zi,k, s) >

k
2 . If all 1

2 ’s in zi,k have degree
1, then zi,k[1..i] must be matched with s[1, l − k]. Since
l − k >

∑i
j=1 LOR(s, j), zi,k[1..i] and s[1, l − k] cannot be

perfectly matched, yielding a non-zero cost. This finishes the
proof of Claim VI.13.

By Claim VI.13, we know that for 1 ≤ i ≤ t,∑t
j=i+1 LOR(s, j) = mindDTW(zi,k,s)=

k
2
k. In this way, we

can recover the length of each run in s, and therefore recover
s. A similar analysis can be performed for the cases where s
starts with a single 1. ■

2) With Two Extra Characters:

Theorem VI.14 (Non-adaptive Strategy for DTW Exact
Recovery with 2 Extra Characters). For a binary alphabet
{0, 1} and an input sequence s := {0, 1}ℓ where 0 ≤ ℓ ≤ n,
there exists an algorithm to recover the input sequence s,
given n+2 ∈ O(n) query sequences Q of length ≤ n and the
dDTW(s, q) to each query sequence q ∈ Q, where the query
sequences are allowed to use only O(1) extra characters.

Proof of Theorem VI.14. We give our proof by constructing
n+ 2 ∈ O(n) query sequences of length ≤ n and presenting
an algorithm to recover an input sequence s from its DTW
distance to these n+ 2 query sequences.

Note that for any sequence s, we have dDTW(s, 0) =
0 ⇐⇒ s consists of only 0’s and dDTW(s, 1) = 0 ⇐⇒
s consists of only 1’s. We can also derive that dDTW(0m, 1) =
m and dDTW(1m, 0) = m. Thus, any input sequence consisting
of only 0s or 1s can be exactly recovered by the two query
sequences 0 and 1. For simplicity, we assume in the rest of
the proof that the input sequence s contains both 0 and 1
and let s = s[1]s[2] . . . s[ℓ].

Query Sequences Construction. Let a, b be two fractional
characters that satisfy 0 < b − a < a < b < 1

2 and the
denominators of a, b are co-prime. We will use a, b as the
extra characters to construct the query sequences. In particular,

the rest of the query sequences (other than the 0 query and
the 1 query) consist of queries Q is in the form of an−ibi,
where i = 1, . . . , n. It is not hard to see this set of queries
are monotonic sequences, for which we show the following
property holds in the distance query to DTW. We will use
a = 1

3 and b = 2
5 as a running example for better explanation

when necessary, but the proof works for all a, b satisfying the
condition.

Lemma VI.15. Given a monotonic sequence q of length n
where

min
i∈[n]

max{|q[i]− 0|, |q[i]− 1|} > max
i,j∈[n]

|q[i]− q[j]|, (2)

for any input sequence s with length ℓ ≤ n, given a DTW
matching M for (q, s), we have deg(q[i]) = 1 for all elements
q[i] in q.

Proof. Suppose ∃i ∈ [ℓ] such that deg(q[i]) > 1. We first
prove the following two claims.

Claim VI.16. For any edge e in M , the two vertices cor-
responding to e in M cannot have degree > 1 at the same
time.

Proof of Claim VI.16. This is trivial, since otherwise by deleting
e we would obtain a better matching.

Claim VI.17. There does not exist i ∈ [n] and j ∈ [ℓ] such
that deg(q[i]) > 1 and deg(s[j]) > 1.

Proof of Claim VI.17. We prove this by contradiction. Suppose
∃(i, j) where i ∈ [n] and j ∈ [ℓ] such that deg(q[i]) > 1 and
deg(s[j]) > 1. Consider the following index sets X,Y,Z. Let
X = {x ∈ [n] | deg(q[x]) > 1}, Y = {y ∈ [ℓ] | deg(s[y]) >
1} and Z = {z ∈ [ℓ] | ∃x ∈ X such that edge (q[x], s[z]) ∈
M}. According to Claim VI.16, we know that Y

⋂
Z = ∅. Let

d = miny∈Y,z∈Z |y − z|, we would have d > 0. Suppose we
have x0 ∈ X, y0 ∈ Y, z0 ∈ Z such that edge (q[x0], s[z0]) ∈
M and |y0 − z0| = d. And this leaves two cases to discuss.

1) if y0 < z0, then we know that (i) ∀k ∈ (y0, z0),
deg(s[k]) = 1; otherwise we would have k ∈ Y and
|k − z0| < d, causing a contradiction. (ii) ∀k1, k2 within
range (y0, z0), k1 ̸= k2, we would have s[k1] and s[k2]
matched to different vertices in q; otherwise, suppose edges
(q[t], s[k1]) ∈ M and (q[t], s[k2]) ∈ M . We would have t ∈ X,
k1 ∈ Z and |y0 − k1| < d, causing a contradiction.

Now, since d is minimal, we can suppose that s[y0] is
matched to

{q[w − deg(s[y0]) + 1], q[w − deg(s[y0]) + 2], . . . , q[w]},

and q[x0] is matched to

{s[z0], s[z0 + 1], . . . , s[z0 + deg(q[x0])− 1]}.

Since y0 < z0, by the monotonic property of the matching,
we know that w < x0. With (i) and (ii), we know that for
w < l < x0 and y0 < r < z0, the vertices q[l]’s and s[r]’s are
perfectly matched one-to-one. Fig 4 is an illustration of such
an example.

We now claim, by re-matching edges between vertices
q[w], q[w+1], . . . , q[x0] and s[y0], s[y0+1], . . . , s[z0], we can

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3289981

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on July 02,2023 at 03:23:34 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 19

Fig. 4. Optimal re-matching (hybrid stitching) when both query and input sequences have a vertex with degree greater than 1 (c.f. Claim VI.17).

construct another matching M ′ which is better than M , contra-
dicting that M is a DTW matching. We remove the d+1 edges
E = {(q[w], s[y0]), (q[w + 1], s[y0 + 1]), . . . , (q[x0], s[z0])}
from M and add d new edges E′ = {(q[w], s[y0 + 1]), (q[w+
1], s[y0 +2]), . . . , (q[x0 − 1], s[z0])} to obtain a new matching
M ′. Since deg(s[y0]) > 1 and deg(q[x0]) > 1 in M , M ′

would still be a valid matching. Computing the sum of two
sets of edges E and E′, respectively, would yield Equation. 3
(see the cross-column equations).

So M ′ would be a better matching than M , causing a
contradiction.

2) if y0 > z0, this case is symmetric to 1) and we can use
a similar method to complete the proof by contradiction. We
give a detailed proof in the appendix.

Combining the two cases finishes the proof for Claim VI.17.

Suppose ∃i ∈ [ℓ] such that deg(q[i]) > 1. With Claim
2, we know that ∀j ∈ [ℓ], deg(s[j]) = 1. Thus, we
would have

∑ℓ
j=1 deg(s[j]) =

∑n
i=1 deg(q[i]) > n ≥ ℓ =∑ℓ

j=1 deg(s[j]), which causes a contradiction and finishes the
proof of Lemma VI.15.

Furthermore, we have the following lemma for the DTW
matching for our query sequences.

Lemma VI.18. For any given input sequence s and query
q ∈ Q, the DTW matching M for (q, s) has deg(s[i]) = 1 in
M if s[i] = 1.

Proof. We give proof by contradiction. Given an optimal DTW
matching M for (q, s), suppose ∃1 ≤ i ≤ ℓ such that s[i] =
1 and deg(s[i]) > 1. Suppose s[i] is matched to q[j], q[j +
1], . . . , q[j + deg(s[i])− 1].

First, we show that we can “swap” s[i] with its neighboring
element while maintaining the optimality of the matching. If
one of the neighboring elements of s[i] is 1, w.l.o.g, suppose
s[i + 1] = 1, then we can construct an alternate optimal
matching M∗ where deg(s[i]) = 1 and deg(s[i + 1]) > 1.
According to Lemma VI.15, s[i+1] cannot be matched with any
of q[j], q[j+1], . . . , q[j+deg(s[i])−1] in M , otherwise there
would exist j+1 ≤ k ≤ j+deg(s[i])−1 such that deg(q[k]) =
2. Thus, by matching q[j+1], . . . , q[j+deg(s[i])−1] to s[i+1]
instead of s[i], we would obtain a new optimal matching M∗

where deg(s[i]) = 1 and deg(s[i+ 1]) > 1.
As there exists at least one 0 in s, we know that there exists

an optimal DTW matching M∗
0 for (q, s) where ∃s[i] such that

s[i] = 1, deg(s[i]) > 1 and one of the neighboring element of

s[i] is 0. Without loss of generality, suppose s[i + 1] = 0.
Similarly, according to Lemma VI.15, s[i + 1] cannot be
matched with any of q[j], q[j + 1], . . . , q[j + deg(s[i]) − 1]
in M0. Here we construct a new matching M ′

0 by matching
q[j + 1], . . . , q[j + deg(s[i]) − 1] to s[i + 1] instead of
s[i]. Fig 5 illustrates an example of such a construction.
Considering the total cost of differing edges in both matchings,
we have

∑j+deg(s[i])−1
k=j+1 |s[i] − q[k]| >

∑j+deg(s[i])−1
k=j+1

1
2 >∑j+deg(s[i])−1

k=j+1 |s[i + 1] − q[k]|. Thus M∗
0 would be a better

matching than M0, causing a contradiction and thus finishing
the proof.

Notation clarification. For the rest of the proof, we will use
q(i) to denote the i-th query in the query set Q and q(i)[j] the
j-th character in q(i).

Lemma VI.19. For any input sequence s, there exists a set
of isomorphic matchings M∗, where M∗

i (q
(i), s) ∈ M∗ is

optimal for query q(i) ∈ Q.

Proof. According to previous assumptions, we know that the
input sequence s contains at least one 0. Suppose s[u] is the
first 0 in s. We construct the following matching M∗

i for each
q(i) ∈ Q:

1) For 1 ≤ j < u, q(i)[j] is matched to s[j] in M∗
i ;

2) For u ≤ j ≤ u+n− ℓ, q(i)[j] is matched to s[u] in M∗
i ;

3) For u+n−ℓ < j ≤ n, q(i)[j] is matched to s[j−(n−ℓ)]
in M∗

i .
The constructed M∗

i ’s form a set of isomorphic matchings,
and we will show that each M∗

i is an optimal matching between
s and q(i). To prove this, we first define the “shifting” operation.

Definition VI.2 (Shifting Operation for Queries in Q). Given
a matching M between input sequence s of length ℓ and query
sequence q ∈ Q of length n. Suppose ∃1 ≤ x < y ≤ ℓ s.t.
s[x] = s[y] = 0, deg(s[x]) > 1, and ∀x < j < y, deg(s[j]) =
1. We now construct a new matching M ′ based on M :

Suppose q[z] is the last character matched to s[x] and q[w] is
the first character matched to s[y], we know that z−x = w−y
(cf. lemma VI.15). For x ≤ j < y, we remove the edge (q[j−
x+ z], s[j]) from M and add the edge (q[j− x+ z], s[j+1]).
As deg(s[x]) > 1. This will give us a valid matching. We call
this process a shifting operation.

An illustration of the shifting operation is shown in Fig 6.
The shifting operation reduces deg(s[x]) by 1 and increases
deg(s[y]) by 1, while preserving the degree of all other vertices
in s. Now we give the following claims for shifting operations.
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Claim VI.20. A shifting operation does not reduce the total
cost of the matching.

Proof of claim. As one can observe, the shifting operation
will not increase the total number of edges – the number of
removed edges is equal to the number of newly added edges.
Then we only need to consider the cost of those changed edges.
Recall that our monotonic query sequences are in the form of
an−kbk for k = 1, . . . , n. To calculate the change of cost in
the shifting operation, we have two cases to analyze.
Case 1. All characters between q[z] and q[w] (including q[z]
and q[w]) in the query sequence are the same, either a or b.
In this case, the total cost does not change after the shifting
operation. This is because, ∀s[j] ∈ s s.t. x < j < y, the edge
changes from (q[j−x+z], s[j]) to (q[j−x+z−1], s[j]) and the
cost Cost(q[j−x+z], s[j]) = Cost(q[j−x+z−1], s[j]) since
q[j− x+ z] = q[j− x+ z− 1]. Notice in the matching before
shifting, we have the edge (q[z], s[x]) while in the matching
after shifting this edge is removed but the edge (q[w], s[y])
is added. These two edges have equal cost Cost(q[z], s[x]) =
Cost(q[w], s[y]) because sx = sy = 0.
Case 2. The characters between q[z] and q[w] (including q[z]
and q[w]) contain both a and b. Without loss of generality, we
can assume there exists index i, s.t. for j < i, q[j] = a while
for j ≥ i, q[j] = b. Applying a similar analysis as we did in
case 1, the cost of edges containing characters q[j] such that
z < j < i−1 or i < j < w remains the same after the shifting
operation. Suppose s[t] gets matched to q[i] before the shifting
operation. We only need to analyze the cost of the (removed
and added) edges corresponding to characters s[x], s[t] and
s[y]. Before the shifting operation, these three characters get
matched in edges (q[z], s[x]), (q[i], s[t]), respectively, while in
the matching after shifting, they are involved in edges (q[i−
1], s[t]), (q[w−1], s[y]). We can compute the total cost of these
three edges before shifting Costbefore = |a− 0|+ |b− s[t]| and
the total cost after shifting Costafter = |a− s[t]|+ |b− 0|. If
s[t] = 0, then Costbefore = a + b = Costafter; otherwise if
s[t] = 1, then Costbefore = a+1− b and Costafter = 1− a+ b.
Since 0 < a < b < 1, Costbefore < Costafter when s[t] = 1.
Therefore in this case, Costbefore ≤ Costafter.

Combining both cases, the total cost of the matching before
the shifting operation could be only less than or equal to the
cost after shifting, which proves the claim.

Claim VI.21. Given input sequence s, query q(i) ∈ Q and any
matching Mi between s and q(i). If Mi satisfies the properties
that (i) ∀1 ≤ j ≤ ℓ, deg(s[j]) > 1 ⇒ sj = 0, (ii) ∀1 ≤ k ≤ n,
deg(q(i)[k]) = 1, then we can obtain Mi by applying a series
of shifting operations to M∗

i .

Proof of Claim. If the input sequence s contains only a single
0, then this claim is trivial since any matching Mi = M∗

i .
For cases that the input sequence s contains more than one
0, without loss of generality, we can assume s has k 0’s
and in the matching Mi, for each 0 in s (denoted by s0m ,
m ∈ [k]), the degree deg(s0m) = tm ≥ 1. Note that, as we
defined, the shifting operation can be performed between s[x]
and s[y], if s[x] = s[y] = 0, deg(s[x]) > 1, and ∀x < t < y,
deg(s[t]) = 1. This condition obviously holds for the matching
M∗

i if s[x] and s[y] are the nearest neighboring 0’s in the input
sequence s, because all characters between s[x] and s[y] are 1’s
and in M∗

i all characters s[j] s.t. s[j] = 1 we have deg(s[j]) =
1 (indicated by Lemma VI.18). Property (ii) indicates that
both M∗

i and Mi have the same number of edges n, and
property (i) indicates ∀1 ≤ j ≤ ℓ, s[j] = 1 ⇒ deg(s[j]) = 1.
For M∗

i and Mi, we have
∑

s[j]=0 deg(s[j]) = n − (#1s
in s) =

∑k
m=1 tm. For matching M∗

i , the degree of all 0’s
is 1 except for the first 0 and therefore the degree of the
first 0 is

∑k
m=1 tm − (k − 1). Therefore, we can perform the

shifting operation
∑k

m=1 tm − (k − 1) − t1 times to move∑k
m=1 tm − (k − 1)− t1 edges from the first 0 to the second

0. Similarly, we continue doing shifting operations to move∑k
m=j tm−(k−1)− tj edges from the j-th 0 to the (j+1)-th

0. We can hence obtain Mi after all shifting operations are
finished and this shows the correctness of this claim.

Suppose Mi0 is an optimal DTW matching between s and
q(i). By Lemma VI.15, in DTW matching Mi0, ∀1 ≤ k ≤
n,deg(q(i)[k]) = 1. By Lemma VI.18 we know that Mi0 has
deg(s[i]) = 1 in Mi0 if s[i] = 1, so ∀1 ≤ j ≤ ℓ, deg(s[j]) >

Cost(E) = |s[y0]− q[w]|+
d∑

i=1

|s[y0 + i]− q[w + i]| (3)

> |q[w]− q[x0]|+
d∑

i=1

|s[y0 + i]− q[w + i]| (Equation. 2)

=

d∑
i=1

|q[w + i− 1]− q[w + i]|+
d∑

i=1

|s[y0 + i]− q[w + i]| (Monotonicity of q)

=

d∑
i=1

(|q[w + i− 1]− q[w + i]|+ |s[y0 + i]− q[w + i]|)

≥
d∑

i=1

|q[w + i− 1]− s[y0 + i]| (Triangle Inequality)

= Cost(E′).
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Fig. 5. Obtaining a lower cost matching by shifting matched edges (c.f. Lemma VI.18).

Fig. 6. An illustration of the shifting operation (c.f. Definition VI.2).

1 ⇒ sj = 0 in Mi0. By Claim VI.21 we know that we can
obtain Mi0 by applying a series of shifting operations to M∗

i ,
and according to Claim VI.20 we would have Cost(M∗

i ) ≤
Cost(Mi0). Thus, M∗

i is an optimal matching between q(i)

and s.

Proposition VI.22. Let xj ∈ {0, 1} be the value of the
character matched to q(i)[j] in all isomorphic DTW matchings
M∗

i , where j ∈ [n]. We denote the sequence x := x[1] . . . x[n],
where x[j] = xj for j ∈ [n]. The sequence x can be obtained
by amplifying the leftmost 0 in s.

Proof. We see the proposition is naturally true based on the
construction of M∗

i in the proof of Lemma VI.19.

Algorithm to recover DTW matching M∗
i . We now give the

algorithm to recover the isomorphic DTW matchings M∗
i

with the query set Q (Algorithm 2: line 8-15). The query
result di of q(i) = an−ibi would be di =

∑n−i
j=1 |x[j] − a| +∑n

j=n−i+1 |x[j]− b|. Recall that a = 1
3 and b = 2

5 . Consider
q1 = an−1b, where d1 =

∑n−1
j=1 |x[j] − 1/3| + |x[n] − 2/5|.

By computing (d1 ∗ 15) mod 5, we can know whether x[n]
is 0 or 1. For i > 1, we have di − di−1 = (

∑n−i
j=1 |x[j]− a|+∑n

j=n−i+1 |x[j]− b|)− (
∑n−i+1

j=1 |x[j]−a|+
∑n

j=n−i |x[j]−
b|) = |x[n − i + 1] − b| − |x[n − i + 1] − a|. By computing
((di − di−1) ∗ 15) mod 5, we can know whether x[n− i+1]
is 0 or 1. Then we can recover all x[j]’s using this procedure.

Algorithm to recover input sequence s. We now give an overall
algorithm (as shown in Algorithm 2) that recovers s using the
matching recovery algorithm and claims. For the all 0 and
all 1 input sequences, we can use q(n+1) = 0, q(n+2) = 1 to
directly recover them (Algorithm 2: line 2-5). For the rest of
the cases, we first recover the optimal isomorphic matching
using the described algorithm (Algorithm 2: line 6-15). Let the
recovered matching for Q be m = x[1] . . . x[n], (x[i] ∈ {0, 1}).
Denote the position of the leftmost 0 in x to be u (1 ≤ u ≤ ℓ).

Then we know s[1], . . . , s[u − 1] = 1 by Proposition VI.22.
By using the sequence q(n+2) = 1 to query s, we get the
total number of 0’s (n0) in s. Consider the substring x[u, n],
and delete the leading zeros in x[u, n] until it has n0 zeros.
Suppose we obtain string sd after the deletion. We know that
s = 1u−1sd (Algorithm 2: line 16-24). ■

Remark. If we are allowed to use O(n) extra characters in
our queries, we have non-adaptive solutions with O(1) query
complexity for DTW distance. This assumption is stronger
than the problem setting (where only O(1) extra characters
are considered) throughout the paper. For details of this
complementary result, see Appendix D.

VII. RECOVERY WITH NON-ADAPTIVE FRÉCHET DISTANCE
ORACLE QUERIES

Consider two sequences x and y (x ̸= y) defined on the
binary alphabet {0, 1}. The query result from a Fréchet distance
oracle only gives very limited information, viz. 0 or 1 (which
is more limited than the query from DTW oracle). This 1-bit
binary information restricts the power of sequence recovery
with Fréchet oracle. Note that it is not possible to distinguish
any sequences x and y under Fréchet distance. To see this and to
see why the recovery problem is interesting for Fréchet distance,
we first define the concept of equivalent sequences under
Fréchet distance and revisit the problem from the perspective
of equivalent sequences.

Definition VII.1 (Equivalent Sequences under Fréchet Dis-
tance). Given two sequences x and y, we say x and y are
equivalent if y is obtained by taking any bit in x and copying
this bit contiguously any number of times. For any pair of
equivalent sequences, the Fréchet distance between them is 0.

A simple example of equivalent sequences under Fréchet
distance is two sequences, 1 and 11. 11 can be seen as copying
the bit 1 in the first sequence and the Fréchet distance between
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Algorithm 2: Exact Recovery Algorithm via Queries to DTW Distance Oracle (O(1) Extra Chars)

Input: Non-adaptive query sequences Q = {q(1), q(2), . . . , q(n+2)}, where q(n+1) = 0, q(n+2) = 1 and the rest of the
queries follows our construction;
The DTW distance query results R = {d1, d2, . . . , dn+2} aligned from each query sequence in Q to the input
sequence to be recovered.

Output: The sequence s to be recovered.
1 Function RECOVERYDTW(Q,R):
2 if dn+1 = 0 then
3 return s := 0dn+2

4 if dn+2 = 0 then
5 return s := 1dn+1

6 positions:= []
7 coef_1 := 0
8 for i ∈ [1, n] do ▷ Corresponding queries q(i) = an−ibi

9 coef := di ∗ 15 ∗ 2 mod 5
10 if (coef − coef_1 + 5) mod 5 = 2 then
11 positions.append(0)
12 else if (coef − coef_1 + 5) mod 5 = 3 then
13 positions.append(1)
14 coef_1 := coef

15 positions.reverse()
16 sequence := [], i := 0
17 n_0 := dn+2, n_1 := dn+1

18 while positions[i] = 1 do
19 sequence.append(1)
20 i += 1

21 i += n− n_0− n_1
22 while i < n do
23 sequence.append(positions[i])
24 i += 1

25 return s := sequence

1 and 11 is 0. In addition, these two sequences cannot be
distinguished by any query sequence. This is because for the
second sequence, the double 1 characters can be matched to the
same character in the query sequence as the single 1 sequence.
This will not change the Fréchet distance because the l∞ norm
of the cost of matching edges is not changed.

From the perspective of equivalent sequences, for any two
sequences x and y, they are either in the same equivalence class
(the Fréchet distance is 0) or in different equivalence classes
(the Fréchet distance is 1). Thus the Fréchet distance between
two sequences reflects whether or not they are equivalent.
Any equivalent sequences, therefore as suggested by its name,
are not distinguishable, because all queries from the same
equivalence class return 0 and all queries from different
equivalence classes return 1. Further, we can categorize all the
equivalence classes under Fréchet distance and then derive the
lower bound of query complexity of recovering non-equivalent
sequences under Fréchet distance, which is shown in the
following theorem.

Theorem VII.1 (Lower Bound of Recovery from Fréchet
Distance). For a binary alphabet {0, 1}, any algorithm to
recover an arbitrary input sequence s ∈ {0, 1}i up to

equivalence, where 0 ≤ i ≤ n, by querying its Fréchet distance
to a non-adaptive set of sequences requires a query complexity
of Ω(n).

Proof. We begin this proof of query complexity lower bound
with a classification of all equivalence classes under the
Fréchet distance. For each length 1 ≤ i ≤ n, there exists
two non-equivalent sequences under Fréchet distance, which
are 010101 . . .︸ ︷︷ ︸

of length i

and 101010 . . .︸ ︷︷ ︸
of length i

, yielding 2n mutually non-

equivalent sequences in total. As the Fréchet distance oracle
returns 0 when the input sequence and the query sequence are
equivalent and 1 otherwise, we would need at least 2n − 1
queries to exactly recover the input sequence. If the number of
queries is less than 2n− 1, we can always select 2 sequences
from the 2n mutually non-equivalent sequences which are not
covered by the queries, and these two sequences cannot be
distinguished by the query sequences. This yields an Ω(n)
lower bound on the query complexity.

In the analysis of non-adaptive strategies for DTW distance,
we have shown that, with extra characters, we can obtain
stronger results in recovering the exact sequence. However,
using queries from the extended alphabet (no matter how many
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extra characters are allowed) does not help increase the power
of recovery under Fréchet distance, proved in the following
theorem.

Theorem VII.2 (Extra Characters Are Not Helpful). Given
two sequences s and s′, if the Fréchet distance dF (s, s

′) = 0,
then any query q with extra characters cannot distinguish s
and s′.

Proof. Given sequences s, s′ (where dF (s, s
′) = 0) and query

q with extra characters, our goal is to show dF (s, q) = dF (s
′, q)

for every possible q. The technique of our proof is, for an
optimal matching between s and any query q, we can construct
a matching between s′ and q with the same cost, and vice
versa. In this way, we know that dF (s

′, q) ≤ dF (s, q) and
dF (s, q) ≤ dF (s

′, q), so dF (s, q) = dF (s
′, q) and q cannot

distinguish s and s′.
Since dF (s, s

′) = 0, s and s′ have the same condensed
expression. Suppose s and s′ has k runs. In the optimal
matching between q and s, let qs(i) denote the substring in q
which is matched to the i-th run of s for every i ∈ [k]. We can
always match all qs(i) ’s to the i-th run of s′ instead. Note that
the i-th runs of s and s′ (denoted by s(i) and s′(i), resp.) are
of the same character with maybe various length. The Fréchet
distance between qs(i) and s(i) only depends on the characters
in qs(i) and thus dF (qs(i) , s(i)) = dF (qs(i) , s

′(i)). Therefore we
obtain a matching between s′ and q with a cost of dF (s, q).
This matching between q and s′ may be not optimal but is
valid, and therefore we can conclude dF (s

′, q) ≤ dF (s, q).
Due to the symmetry of the statement, we can similarly
obtain dF (s, q) ≤ dF (s

′, q). This finishes the proof of this
theorem.

Since extra characters are not helpful in recovering from
Fréchet distance queries, we conclude the analysis with a
trivially interesting approach to recover sequences up to
equivalence. The approach uses up to 2n− 1 queries, which
exactly matches our query complexity lower bound, as shown
in the following theorem.

Theorem VII.3 (Non-adaptive Strategy for Fréchet Equivalence
Class Recovery). For a binary alphabet {0, 1} and two input
sequences s, s′ ∈ {0, 1}i where 0 ≤ i ≤ n and s and s′ are
non-equivalent sequences under Fréchet distance, there exists
an algorithm to distinguish the input sequences s and s′, given
2n− 1 ∈ O(n) query sequences Q and the Fréchet distance
of s and s′ to each query sequence q ∈ Q.

Proof. We first show that, for each length 0 ≤ i ≤ n,
there are only two non-equivalent sequences under Fréchet
distance, which are 010101... and 101010... sequences, viz.,
we can identify two non-equivalent sequences by specifying
the sequence length i and the starting bit. Therefore, for the
maximum sequence length n, there are only 2n mutually non-
equivalent sequences.

Given any two different sequences from this 2n-sized
collection of non-equivalent sequences under Fréchet distance,
we can use O(n) query sequences to distinguish them. That
is, we can utilize the exact set of 2n non-equivalent sequences
as the query sequences. If the query sequence p is exactly

the input sequence q, the Fréchet distance between p and q
is dF (p, q) = 0. If the query sequence p is not equivalent to
the input sequence q, then the Fréchet distance between p and
q is dF (p, q) = 1 because it is impossible to skip over a bit
without paying cost 1. Note that any one of the 2n queries can
be skipped since we know the fact that there would be exactly
one 0 among the 2n query results. Therefore, 2n− 1 ∈ O(n)
query sequences suffice to distinguish any two sequences from
the non-equivalent sequence set and this finishes the proof.

This theorem shows that, if an input is in the collection of
non-equivalent sequences under Fréchet distance, we can use
O(n) queries to exactly recover this sequence given the query
results under the Fréchet distance.

Remark: Extension to non-binary alphabets. Our results
are presented for input sequences from binary alphabet {0, 1}.
These results can be extended to any non-binary alphabet Σ
by encoding the non-binary alphabet in a binary domain. This
will increase the query complexity by a constant factor from
|Σ| (one-hot encoding) to log(|Σ|) (binary encoding). This
extension works for the results for all distance metrics shown
in this paper. However, we note that this extension may not
be optimal if one considers a large alphabet (e.g., larger than
n). In fact, calculating some of the distances themselves on a
general alphabet is under SETH [28], [29], which is a much
hard problem than on the binary case [30]. Obtaining optimal
results on the extension of the non-decomposable distance
recovery problem leaves room for future research.

VIII. RELATED WORK

A distance embedding [31] embeds sequences from the
original distance metric space to other distance measures
(usually lp norms), such that the distance measurements in the
original space can be preserved up to a factor of D, namely
the distortion rate. The sequence distance embedding problem
is related to our problem in the sense that, in our problem, we
intend to recover the input sequence from a list of query results
that are in the lp space, which can be regarded as finding a
special distance embedding. Existing works on the sequence
distance embedding problem mainly focus on constructing such
an embedding which can have a close approximation (viz., low
distortion rate) and reduce the computational complexity (i.e.,
cost) on the new distance space. [32] shows a lower bound
of 3/2 on the distortion rate of embedding edit distance into
ℓp norm spaces. An improvement of (log n)

1
2−o(1) on this

lower bound [33] has been further simplified and improved
into Ω(log n) by [34].

Distance embeddings can be used to estimate the distance
on the complex metric space because the evaluation and
computations on the new (simpler metric) space can be
significantly faster [31]. Under the asymmetric query model
(when estimating the edit distance between x and y, the
algorithm has unrestricted power accessing x but limited power
accessing y), [35] proposes a (log n)O(1/ϵ) approximation
algorithm that runs in n1+ϵ time. [36] considers the alignment
problem when estimating the edit distance (finding the sequence
of edits between the estimated sequences) and presents an align-
ment with (log n)O(1/ϵ2) approximation in time Õ(n1+ϵ). The
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sequence distance embedding problem has been investigated
on other distance metrics as well, for example, the block edit
distance [31] and the Ulam distance [37]. Existing work also
shows embeddings from edit distance to the Hamming space
[38], [39]. However, to the best of our knowledge, there is no
prior work considering the embedding problem of the DTW
distance and the exact recovery problem based on distance
oracle query results.

IX. OPEN PROBLEMS

We initiate an exact recovery problem of sequences using
queries to a non-decomposable distance oracle. We show
recovery algorithms for edit distance, DTW distance, and
Fréchet distance, as well as a general adaptive algorithm for
a wide class of distance oracles. We envision the following
directions for future work.

First, for the edit distance, there is still a quadratic gap
between the non-adaptive query complexity upper and lower
bounds without extra characters. Closing this gap requires a
deeper understanding about the properties of edit distance.

Second, for the DTW distance, it remains unclear whether 1
extra character suffices for an O(n) non-adaptive upper bound,
or we can have an Ω(n2) non-adaptive lower bound with 1
extra character (our proof uses 2 extra characters).

Furthermore, as the initial work on non-decomposable
distance recovery problem, we consider a simpler setting where
input sequences are drawn from binary alphabet {0, 1}. While
our results can be naturally extended to a non-binary alphabet,
as stated in the paper, with a compensation of increasing the
query complexity up to a constant factor, we notice that for
some distances (e.g., DTW), the calculation on the general
alphabet is much harder than on the binary case. This spawns
the open question for follow-up work to consider: Would there
exist a strategy specifically designed for the non-binary alphabet
with lower query complexity (than using encoding extensions
to our results on the binary alphabet)?

Lastly, it would be interesting to consider the exact sequence
recovery problem using the properties of specific distance
metrics. For example, the Edit distance with Real Penalty (ERP)
distance [40] which supports local time shifting in time series
by the marriage of the ℓ1 norm and edit distance, would be of
interest. One can also consider other variants of our problem in
terms of adaptive queries or the approximate recovery problem
in the presence of noise.
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APPENDIX A
OTHER RELATED WORK

Recovery problems in metric spaces. Our problem is related to
the recovery or reconstruction problems over metric spaces. [41]
study the period recovery problem on strings, which is to find
the primitive periods between two strings such that the periodic
distance is below a threshold. They present an O(n log n)-
time algorithm for Hamming distance and an O(n4/3)-time
algorithm for edit distance. [42] investigate the approximate
recovery problem over bounded edit distance spaces in the
presence of noise and show nO(k) noisy samples suffice for
(approximate) reconstruction. Interestingly, [43] consider the
exact recovery problem using oracle queries but the objective
of their work is to exactly recover the clusters in Euclidean
space, which is similar but orthogonal to our problem.

Learning problems: Coin-weighing and group-testing prob-
lems. The related “decomposable” instance to our problem
of querying a Hamming distance oracle is equivalent to the
coin-weighing problem [3] and the quantitative group testing
problem [7]. Both the coin-weighing problem and group-testing
problems are well-studied learning problems in the literature
and have many real-world applications [8], [9], [10], [44], [45].
The coin-weighing problem is to determine the weight of each
coin (of two distinct weights w1 and w2) by using a minimal
number of weighings of a subset of n total coins each time. [9]
and [3] respectively present 2n/ log n weighing solutions which
are optimal non-adaptive solutions to this problem. Assuming
the number of w1 weight coins is known to be d, this d-coin
weighing problem can be solved by an adaptive algorithm in
time 2d log n

d / log d+O(d/ log d+d(log log d) log n
d /(log d)

2)
[3]. The major difference between our problem and these well-
studied problems is that we consider distance metrics which
cannot be aligned and represented as

∑n
i f(xi − yi) (i.e., the

edit distance, DTW distance, and Fréchet distances).

APPENDIX B
COORDINATE DESCENT ALGORITHM INSTANTIATION

Now we briefly discuss how we apply the Coordinate Descent
algorithm to all three distances we consider in this paper by
justifying the two conditions hold.

Edit distance. For condition 2, we know that ∀s, q, dist(s, q) ≤
n since the maximum length of s or q is n. For condition
1, in each iteration, we consider a set Q that contains all
sequences that can be transformed from q by inserting, deleting
or substituting one character in q (edit operations). Note that
|Q| cannot exceed (n + 1) + n + n = 3n + 1. We claim
that there exists a q′ in Q such that dist(s, q) > dist(s, q′).
Let dist(s, q) = d. By the definition of edit distance, there
exists a chain of edit operations of length d that trans-
forms s to q, resulting in a list of intermediate sequences
q1, ..., qd−1. Note that dist(s, q) ≥ dist(q1, q) + 1, otherwise
we have dist(q1, q) > d− 1. However, the chain implies we
can transform q1 to q in d − 1 edit operations, which leads

to a contradiction. Since q1 ∈ Q, we can find q1 satisfying
the condition in 3n+ 1 searches. Therefore, the algorithm is
guaranteed to recover the input in O(n2) steps.

DTW distance. For DTW distance, condition 2 holds since
∀s, q,dist(s, q) ≤ n. For condition 1, consider the #RUNS(x)
in s and q. If #RUNS(x) of q < s, then either adding an
(arbitrary length) run to the start or the end of q will decrease
the DTW distance from s. On the other hand, if #RUNS(x)
of q > s, then either deleting a run from the start or the end
of q will decrease the DTW distance from s. If #RUNS(x) of
q = s and dist(s, q) ̸= 0, we can still decrease the distance
from q by either adding/deleting a run to the start/end of the
sequence. Therefore, the algorithm is guaranteed to recover
the input in O(n2) steps.

Fréchet distance. Condition 2 holds since ∀s, q, dist(s, q) ≤ 1.
For condition 1, enumerating 2n non-equivalent sequences,
(i.e., 010101... and 101010...) guarantees to find q′ such that
dist(s, q) > dist(s, q′) = 0. Therefore, the algorithm termi-
nates in O(n) steps.

APPENDIX C
PROOFS OF CLAIM VI.17 IN LEMMA VI.15

Proof of Claim VI.17. We prove this by contradiction. Suppose
∃(i, j) where i ∈ [n] and j ∈ [ℓ] such that deg(q[i]) > 1
and deg(s[j]) > 1. Let X = {x ∈ [n] | deg(q[x]) > 1},
Y = {y ∈ [ℓ] | deg(s[y]) > 1} and Z = {z ∈ [ℓ] | ∃x ∈
X such that edge (q[x], s[z]) ∈ M}. According to Claim
VI.16, we know that Y

⋂
Z = ∅. Let d = miny∈Y,z∈Z |y− z|.

We would have d > 0. Suppose we have x0 ∈ X, y0 ∈ Y, z0 ∈
Z such that edge (q[x0], s[z0]) ∈ M and |y0 − z0| = d. There
are two cases to discuss. As we have already solved the case
y0 < z0 in the proofs of Claim VI.17 in Lemma VI.15, here
we only discuss the case y0 > z0.

In this case, we can assume that s[y0] is matched to

{q[w], q[w + 1], ..., q[w + deg(s[y0])− 1]}

and q[x0] is matched to

{s[z0 − deg(q[x0]) + 1], s[z0 − deg(q[x0]) + 2], ..., s[z0]}.

We remove d+1 edges E = {(q[x0], s[z0]), (q[x0+1], s[z0+
1]), ..., (q[w], s[y0])}and add d new edges

E′ = {(q[x0+1], s[z0]), (q[x0+2], s[z0+1]), ..., (q[w], s[y0−1])}

to construct a new matching M ′. Since deg(s[y0]) > 1 and
deg(q[x0]) > 1 in M , M ′ would still be a valid matching.
Computing the sum of two sets of edges E and E′, respectively,
would yield Equation. 4 (see the cross-column equations).

Hence, M ′ would be a better matching than M , a contra-
diction. Combining 1) and 2) completes the proof of Claim
VI.17.

APPENDIX D
RECOVERY USING NON-ADAPTIVE DTW DISTANCE

ORACLE WITH O(n) EXTRA CHARACTERS

Theorem D.1 (Non-adaptive Strategy for DTW Exact Recovery
with O(n) Extra Characters). Define a sequence of n elements,
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Cost(E) = |s[y0]− q[w]|+
d∑

i=1

|s[z0 + i− 1]− q[x0 + i− 1]| (4)

> |q[w]− q[x0]|+
d∑

i=1

|s[z0 + i− 1]− q[x0 + i− 1]| (Equation. 2)

=

d∑
i=1

|q[x0 + i− 1]− q[x0 + i]|+
d∑

i=1

|s[z0 + i− 1]− q[x0 + i− 1]| (Monotonicity of q)

=

d∑
i=1

(|q[x0 + i− 1]− q[x0 + i]|+ |s[z0 + i− 1]− q[x0 + i− 1]|)

≥
d∑

i=1

|q[x0 + i]− s[z0 + i− 1]| (Triangle Inequality)

= Cost(E′).

each of which has O(log n) bit complexity, as a query sequence.
For a binary alphabet {0, 1} and an input sequence s :=
{0, 1}ℓ where 0 ≤ ℓ ≤ n, there exists an algorithm to recover
the input sequence s, given 4 ∈ O(1) query sequences Q and
the dDTW(s, q) to each query sequence q ∈ Q.

We note that, if we remove the constraint of O(log n)
bit complexity, we can give a straightforward solution by
leveraging the query string q = { 1

(n+1) ,
1

(n+1)2 , . . . ,
1

(n+1)n }
to encode much more information in a single query. With the
word RAM bit complexity requirement [46] on the queries
though, namely that each entry fits into a single O(log n)-bit
word, such solutions are not allowed.
Proof of Theorem D.1. Note that we can still use query
sequences 0 and 1 to recover input sequences consisting of
only 0s or 1s. For simplicity, we assume in the rest of the
proof that the input sequence s contains both 0 and 1 and let
s = s[1]s[2]...s[ℓ].

We give our proof by constructing 2 query sequences q and
q′ and presenting an algorithm to recover an input sequence s
from its DTW distance to these 2 query sequences.
Query Sequences Construction. Let Pprime = {p1, p2, ..., pn}
be the first n primes not including 2. By the prime number
theorem [47], we have that pn = O(n log n). Note that for any
prime number pi > 2, ∃1 ≤ xi < pi such that 1

4 < xi

pi
< 1

2 .
We obtain q by selecting such a xi

pi
for each pi ∈ Pprime and

rearranging them in increasing order. Then we construct q as
q = q[1]q[2]...q[n] where 1

4 < q[1] < q[2] < ... < q[n] < 1
2 .

Let q′[i] = 1 − q[i], 1 ≤ i ≤ n, and let q′ = q′[1]q′[2]...q′[n].
We would have 3

4 > q′[1] > q′[2] > ... > q′[n] > 1
2 . Since

pn = O(n log n), it is easy to verify that each q[i] and q′[i]
does have bit complexity O(log n).

According to Lemma VI.15, each element in q would be
involved exactly once in dDTW(q, s), and a similar argument
would hold for q′. We hereby present an algorithm to determine
the value of the matched element for each element in q, and
the same algorithm can also be applied to q′.
Algorithm to determine matched elements for a query sequence.
Suppose q[i] =

xti

pti
where {tj} is a permutation of [n]. Letting

mi be the value matched to q[i] in the optimal DTW matching
for (q, s) (different mis could correspond to the same element
in s), mi ∈ {0, 1} , we would have

dDTW(q, s) =

n∑
i=1

|mi − q[i]| =
n∑

i=1

∣∣∣∣mipti − xti

pti

∣∣∣∣
=

∑n
i=1 (|mipti − xti | ·Πj ̸=tipj)

Πn
i=1pi

.

Let dDTW(q, s) = u
v , where u and v are co-primes. We

have u =
∑n

i=1 (|mipti − xti | ·Πj ̸=tipj) and v = Πn
i=1pi.

Consider u mod ptk for a specific k. As each term in the
summation has a factor ptk except |mkptk − xtk | · Πj ̸=tkpj ,
we have a ≡ |mkptk − xtk | · Πj ̸=tkpj mod ptk . Note that
ptk − xtk ̸≡ xtk mod ptk , so (ptk − xtk) · Πj ̸=tkpj ̸≡ xtk ·
Πj ̸=tkpj mod ptk . Thus, we can determine mk by checking
whether (ptk−xtk)·Πj ̸=tkpj ≡ u mod ptk or xtk ·Πj ̸=tkpj ≡
u mod ptk .

Furthermore, we have the following claim for the optimal
DTW matching between q, q′ and s.

Claim D.2. For any given input sequence s and optimal DTW
matching M and M ′ for (q, s) and (q′, s) respectively, we
have deg(s[i]) = 1 in M if s[i] = 1 and deg(s[i]) = 1 in M ′

if s[i] = 0 .

Proof of claim. We give a proof by contradiction. Given an
optimal DTW matching M for (q, s), suppose ∃1 ≤ i ≤ ℓ
such that s[i] = 1 and deg(s[i]) > 1. Suppose s[i] is matched
to q[j], q[j + 1], . . . , q[j + deg(s[i])− 1].

First, we show that we can “swap” s[i] with its neighboring
element while maintaining optimality of the matching. If one of
the neighboring elements of s[i] is 1, without loss of generality,
suppose s[i+1] = 1, then we can construct an alternate optimal
matching M∗ where deg(s[i]) = 1 and deg(s[i + 1]) > 1.
According to Lemma VI.15, s[i+1] cannot be matched with any
of q[j], q[j+1], . . . , q[j+deg(s[i])−1] in M , otherwise there
would exist j+1 ≤ k ≤ j+deg(s[i])−1 such that deg(q[k]) =
2. Thus by matching q[j+1], . . . , q[j+deg(s[i])−1] to s[i+1]
instead of s[i], we would obtain a new optimal matching M∗
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where deg(s[i]) = 1 and deg(s[i+ 1]) > 1.
As there exists at least one 0 in s, we know that there exists

an optimal DTW matching M∗
0 for (q, s) where ∃s[i] such that

s[i] = 1, deg(s[i]) > 1 and one of the neighboring elements
of s[i] is 0. Without loss of generality, suppose s[i+ 1] = 0.
Similarly, according to Lemma VI.15, s[i + 1] cannot be
matched with any of q[j], q[j + 1], . . . , q[j + deg(s[i]) − 1]
in M0. Here we construct a new matching M ′

0 by matching
q[j + 1], . . . , q[j + deg(s[i]) − 1] to s[i + 1] instead of
s[i]. Fig 5 illustrates an example of such a construction.
Considering the total cost of differing edges in both matchings,
we have

∑j+deg(s[i])−1
k=j+1 |s[i] − q[k]| >

∑j+deg(s[i])−1
k=j+1

1
2 >∑j+deg(s[i])−1

k=j+1 |s[i + 1] − q[k]|. Thus M∗
0 would be a better

matching than M0, causing a contradiction and thus finishing
the proof. A similar proof can be derived for query sequence
q′ and the case s[i] = 0.

Algorithm to recover s. We now give an overall algorithm
that recovers s using the above algorithm and claim. Applying
the above algorithm gives the matched elements of q and
q′. Let the matching result for q and q′ be m = m1...mn

and m′ = m′
1...m

′
n, (mi,m

′
i ∈ {0, 1}) respectively. We break

m and m′ into blocks such that each block is the longest
substring that contains either 0 or 1. By also breaking s into
such blocks, we know that m has the same number of blocks
as s according to Lemma VI.15. Similarly m′ has the same
number of blocks as s. Let l be the number of blocks that m
and m′ have. Then we can represent m and m′ as m = A1...Al

and m′ = B1...Bl. Note that if Ai contains only 1, then s must
have the same number of 1’s in the i-th block, otherwise there
will be some s[k] for which deg(s[k]) > 1, which contradicts
Claim D.2. Similarly, if Bj contains only 0, then s has the same
number of 0’s in the j-th block. Then we can fully recover
s as h(A1)...h(Al) where h(Xi) = Ai if Xi contains 1 and
h(Xi) = Bi if Xi contains 0. ■
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