

DProvDB: Differentially Private Query Processing with Multi-Analyst Provenance

Shufan Zhang and Xi He

University of Waterloo

Problem Setup

RQ1. Worst-case privacy bound across analysts?

DP Threat Model [SIGMOD'09] [VLDB'18] [VLDB'19] [PoPETs'19] [EuroSys'20] ...

Independent noises Data Analysts [System Timeline] But What is in *Practice*... How to allocate? Overall Budget *E* Sys-admin: Carol

Differential Privacy (DP)

[**DP**] A mechanism M is (ϵ, δ) -DP, if for any $D \cong D'$, and all $O \subseteq O$, we have

 $\Pr[M(D) \in O] \le e^{\epsilon} \Pr[M(D') \in O] + \delta.$

[(Analytic) Gaussian Mechanism] $M(D) = q(D) + \eta \sim N(0, \sigma^2 I)$ satisfies (ϵ, δ) -DP, if $\Phi_N\left(\frac{\Delta q}{2\sigma} - \frac{\epsilon\sigma}{\Delta q}\right) - e^{\epsilon}\Phi_N\left(-\frac{\Delta q}{2\sigma} - \frac{\epsilon\delta}{\Delta q}\right) \le \delta$

Our New DP System – DProvDB

Design Principles

- P1. View-based privacy management
- P2. Fine-grained privacy provenance \bullet
- P3. Dual query submission mode (c.f. our paper) \bullet
- P4. Maximum and fair query answering ullet

[**DP Properties**] 1.Post-Processing: if *M* is (ϵ, δ) -DP, then $F \circ M$ is (ϵ, δ) -DP as well!

$D \supseteq - M \to O - F \to O' \bigcup$

2.Sequential Composition: if M is (ϵ, δ) -DP, then *M*, *M* is $(2\epsilon, 2\delta)$ -DP.

Multi-Analyst DP (Our New DP Variant)

[Multi-analyst DP] A mechanism M is $[(A_1, \epsilon_1, \delta_1), \dots, (A_n, \epsilon_n, \delta_n)]$ multi-analyst-DP, if for any $D \cong D'$, any $j \in [n]$, and all $O_j \subseteq O$, we have

 $\Pr[M(D) \in O_j] \le e^{\epsilon_j} \Pr[M(D') \in O_j] + \delta_i.$

[Multi-analyst DP Properties]

1.Post-Processing: hold; 2.Sequential Composition: hold on each coordinate.

[DP vs. Multi-analyst DP]

- DP guarantees an overall bound by privacy budget;
- Multi-analyst DP guarantees an individual privacy bound for each data analyst.

 $\epsilon_A + S_V^A > \psi_A$, reject!

[Multi-analyst DP implies DP] By applying sequential composition, multi-analyst DP trivially implies a DP bound.

Privacy Provenance Framework

[State of Privacy Loss] S_i^J , i.e. the entry of the provenance table. The current consumed privacy budget on View *i* by Analyst *j*.

[**Privacy Constraints**] Privacy constraints are max allowed budget consumption. The privacy provenance table is set with 3 types of constraints: table, column, and analyst constraints. If any one is not satisfied, the query will be rejected.

Answering Queries on *Views*

- Directly answering queries on fresh DB is not good [CIDR'19]
- Instead, answer queries over private snapshots [VLDB'19, VLDB'23]

	Query Transf	Query-View Example			
Ū.		View V ₁	V_2		V _n
	Analyst A_1	$S_{V_1}^{A_1}$	$S_{V_2}^{A_1}$		$S_{V_n}^{A_1}$
<u> </u>	Bob	Bob $\{(0.2, 10^{-6}), (0.3, 10^{-5})\} \rightarrow S_{V_1}^{A_2}$			$S_{V_n}^{A_2}$
! !)→	Alice	•••			•••
	Analyst A_m	•••	•••		•••

<i>V</i> ₂		V_n	Rut How to set the constraints?				
$S_{V_2}^{A_1}$		$S_{V_n}^{A_1}$	[Proportional Fairness] A mechanism M is proportional fair, where each analyst A_i is with privilege l_i , if $\forall A_i, A_j$ $(i \neq j), l_i < l_j$, we have				
$S_{V_2}^{A_2}$		$S_{V_n}^{A_2}$					
			$\frac{ETI_i(M, A_i, Q)}{\mu(l_i)} \leq \frac{ETI_j(M, A_j, Q)}{\mu(l_i)}.$				
<u>Privacy</u>	Prover	nance Tab	$\mu(\eta) = \mu(\eta)$ This is about analyst constraintHow about column and table constraints? Quiz: Could you help our admin, Carol?				
fresh d 2.9 2b. upc	elta syr 9.2 late glo	nopsis (w 5.1 0. 9 obal synoj	$I = V^{\Delta \epsilon}$ $V^{\Delta \epsilon}$ $V^{Es, additive GM gives us nice bound to generate answers when \epsilon_i < \epsilon_{consumed}, but how do we do if later, Alice asks a query with higher budget?$				
2c. gen synops	V [€] i erate/u is (witł	$= w_1 V^{\epsilon}$ update loc additive	$(w_2 V^{\Delta \epsilon})$ (M) [Synopsis Update] When $\epsilon_i > \epsilon_{consumed}$, we update the current (M) synopsis based UMVUE, i.e., $V^{\epsilon_i} = w_1 V^{\epsilon_{consumed}} + w_2 V^{\Delta \epsilon}$.				
2.5 ↓ ↓ ver que cal Syne	9.8 ry with <u>opsis</u>	4.7 0.7	$V_{A_{i}}^{\epsilon_{i}}$ $V^{\epsilon_{consumed}} \longrightarrow \widehat{P}$ $V^{e_{consumed}} \longrightarrow \widehat{P}$ $V^{e_{consumed}} \longrightarrow \widehat{P}$ $V^{e_{consumed}} \longrightarrow \widehat{P}$ $Query q answerable!$ $DB View \widehat{P}$ $ButWhat if this query is asked$				
			$\mathbb{Z}_V \Delta^{\mathbb{Z}}_{\epsilon}$ by another analyst?				

Our New DP Mechanism (Additive Gaussian Approach)

Dataset: Adult, TPC-H **Baseline**: sPrivateSQL [VLDB'19], Chorus [EuroSys'20] ₹ 6000 · **Goal**: 1) End-to-End Comparison, on Utility and Fairness (Bottom \downarrow) 4000 2) Trading-off Fairness for Utility (Right \rightarrow) 2000 ·

A serious step to make DP query processing more practical!

- A multi-analyst interface can improve the system utility over \bullet existing DP approaches based on standard composition.
- DProvDB is the first "stateful" DP query-processing system. \bullet
- DProvDB can be benefit most, if not all, exiting DP query systems, and can be integrated as a middleware solution.
- Blue ocean for future work in DP + access control
 - We are happy to see more research join the discussion!

Acknowledgement

Thank Runchao Jiang, Florian Kerschbaum, Semih Salihoglu for helpful comments, and special thanks to Simon Oya for lovely cartoon drawings!

