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Recovery from Distance Queries

• Imagine a high-dimensional space (e.g., a hypercube), 
you are asked to locate an unknown point 𝑠 ∈ 0, 1 !"

• The knowledge you can get is a set of other points 𝑦! ∈ 𝒴 and 
the distance 𝒟 ≔ {𝑑!: 𝑑 𝑠, 𝑦! }.
• What is the minimal size of the set 𝒴?
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Recovery from Distance Queries

• Another way to describe this is as a 2-player game:
• Bob plays as an oracle, embedded with sequence 𝑠 and distance 𝑑.
• Alice guesses the unknown 𝑠, by making queries to Bob.
• Queries can be either adaptive or non-adaptive.
• What is the query complexity for Alice to win the game?
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Prior Work

• On Hamming distance: 
• Coin-weighing [COLT’09], Group testing [COLT’20]

• On ℓ$ norm:
• Mastermind [Approx’19]

• Other work on 𝑀-estimators [JMLR’14] [SODA’15]

• All these distances are ‘decomposable’:
• 𝑑 𝑠, 𝑦 = ∑! 𝑓(𝑠!, 𝑦!) for some function 𝑓.

• The problem for ‘non-decomposable’ distance is not studied.
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Non-Decomposable Distances

• A large class of distances: 
• Edit Distance
• DTW
• Fréchet Distance 
• Earth Mover Distance
• Ulam Distance
• Cascaded Norm (i.e., ℓ( of ℓ)), etc.

• This presentation will be mainly on DTW distance.
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Non-Decomposable Distances

• Dynamic Time Warping (DTW)
• Runs and Expansion

• Runs: substring containing a single repeated character.
• #𝑟𝑢𝑛𝑠: the number of runs in a sequence.
• Expansion: extending runs in a sequence.
• E.g., 𝑥 = 010110, #𝑟𝑢𝑛𝑠 𝑥 = 5, �̅�! = 0110110, �̅�" = 0100110. 

• Cost (ℓ$): | �̅� − ;𝑦 |$, �̅� and ;𝑦 are expansions of 𝑥 and 𝑦.
• E.g.,| �̅�! − �̅�" |! = 1.

• 𝑑*+, = min
(.̅, 01)

| �̅� − ;𝑦 |$
• E.g., 𝑥 = 010110, 𝑦 = 011010 → �̅� = 5𝑦 = 0110110 → 𝑑#$% = 0

Recovery from Non-Decomposable Distance Oracles 6



Main Contributions
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Understanding the non-decomposable recovery problem
• Existence of indistinguishable sequences
• Three levels of recovery guarantees
• Lower bounds for recovery

Adaptive strategies:
• General framework for all 

distances (sub-optimally)
• Adaptively querying edit and 

DTW oracle (optimally)

Non-adaptive strategies:
• Edit distance (optimally, with 1 extra char; 

sub-optimally, without extra char)
• DTW distance (optimally, with 2 extra chars; 

sub-optimally, with 1 extra char)
• Fréchet distance (optimally)

Application and open problems

*Covered in this presentation
**Refer to the full paper



Existence of Indistinguishable Sequences

• Let’s revisit the problem…
• What does it mean by “Alice wins the game”?
• Ideally, we want 𝑠 = 𝑠′, which means “exact sequence recovery”.
• However, this is not possible on some non-decomposable 

distances.
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Existence of Indistinguishable Sequences

• An example is DTW distance:
• If 𝑠 = 010110, when querying 𝑦! = 011010, → 𝑑*+, 𝑠, 𝑦! = 0.
• Alice can hardly get more information about 𝑠.
• In fact, 𝑠 𝑎𝑛𝑑 𝑦7 are not distinguishable by any binary seqs 

(Theorem 5.1 in our paper).
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Three Levels of Recovery Guarantees

• From strong to weak:
• 1. Recover the exact sequence
• 2. Recover the equivalence class
• If 𝑥 𝑎𝑛𝑑 𝑦 are indistinguishable to any queries, they are in the 

same “equivalence class”.

• 3. Recover sequence with zero distance to input
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Technical Results
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*Covered in this presentation
**Refer to the full paper



Lower Bounds for Recovery (Exact Recover)

• .Ω 𝑛 Lower bound for exact sequence recovery
• A query result is an integer 𝑑 = 𝒪 𝑛 .
• The search space is ∑3 23 = 2#4$ − 1, 𝑘 ∈ [𝑛].
• By information theory, log𝒪(#) 2#4$ = Ω( #

567 #) queries are needed.

• If one is allowed to use randomized algorithms…
• By a reduction from a two-party communication game, INDEX 

[STOC’95], we obtain the same lower bound.
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Lower Bounds for Recovery (Equivalence Class)

• Ω 𝑛 Lower bound for equivalence class recovery
• Due to the existence of indistinguishable sequences, you can 

only recover an equivalence class, if you are only allowed to 
make binary queries.
• The size of the search space reduces and is hard to characterize.
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• Ω 𝑛 Lower bound for equivalence class recovery
• Due to the existence of indistinguishable sequences, you can 

only recover an equivalence class, if you are only allowed to 
make binary queries.
• The size of the search space reduces and is hard to characterize.
• We prove this by finding a set of sequences; distinguishing 

them needs at least Ω(𝑛) queries
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Lower Bounds for Recovery (Proof Sketch)

• Ω 𝑛 Lower bound for equivalence class recovery
• DTW can be reduced to Min 1-Separated Sum (MSS) [FOCS’15]

• 𝑑#$% 𝑥, 𝑦 = 𝑀𝑆𝑆( 𝑥 " , … , 𝑥 #*+,-(/)1! , #*+,- / 1 #*+,-(2)
"

)
• E.g., 𝑥 = 010110, 𝑦 = 010, 𝑑#$% 𝑥, 𝑦 = 𝑀𝑆𝑆 1, 1, 2 , 1 = 1
• Same MSS instances → Same DTW distance

• Observation 1: certain pairs of 𝑠 𝑎𝑛𝑑 𝑠′ can only be distinguished by 
query with certain #runs.
• E.g., 𝑠 = 01301303130 and 𝑠4 = 0130"130"1303130 → #𝑟𝑢𝑛𝑠(𝑞) ∈ [4, 10].

• Observation 2: 𝑠 ∈ 0, 1 "#can have 𝒪 𝑛 runs.
• The 𝒪(𝑛) runs can be split into 𝒪(𝑛) constant intervals.
• For each interval, there exists a pair of 𝑠 𝑎𝑛𝑑 𝑠′ that can only be distinguished 

by query with runs in this interval.
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Technical Results
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**Refer to the full paper



General Framework for Recovery, Adaptively

• Coordinate descent framework for all non-decomposable 
distances
• Sub-optimal, requiring 𝒪(poly(𝑛)) queries
• Recovery level: Zero-distance to input
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General Framework for Recovery, Adaptively

• Coordinate descent framework for all non-decomposable 
distances
• Loss: distance function; Goal: reducing loss to zero.
• Step operation

• Defined as per distance: e.g, for DTW, adding/deleting/changing a character.
• 1 step operation can reduce loss at most 1.
• Finding a step operation to reduce loss requires at most 𝒪(poly(𝑛)) queries.

• Since ∀𝑞, 𝑞2 ∈ 0, 1 , 𝑑 𝑞, 𝑞2 ≤ 𝒪 𝑛
• The overall query complexity is 𝒪 poly(𝑛) .
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Adaptive Recovery Strategies

• Coordinate Descent is sub-optimal but fits all non-
decomposable distances
• For specific instantiations, we show adaptive strategies 

for edit, DTW, and Fréchet with 𝒪 𝑛 , 𝒪 𝑛 , 𝒪 𝑛 queries  
(cf. full paper).
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Technical Results
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Equivalence Class Recovery from DTW Oracle, 
Non-adaptively

• Recall that, sequences 𝑠 = 010110 𝑎𝑛𝑑 𝑠K = 011010 cannot be 
distinguished by any binary queries…
• We have shown an Ω(𝑛) lower bound for equivalence class 

recovery.
• Now we show the construction of 𝒪(𝑛) queries so that upper 

bound matches the lower bound (see paper for full proof).
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Equivalence Class Recovery from DTW Oracle, 
Non-adaptively (Proof Sketch)

• By contraposition:
• A sequence cannot be distinguished by 𝑧! and 𝑜! ⇒ it is not 

distinguishable by any binary sequences.
• Sequences cannot be distinguished by 𝑧7 and 𝑜7 have features:
• Same number of runs (≥ 3); same consecution of runs.
• Same first run and last run.
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Equivalence Class Recovery from DTW Oracle, 
Non-adaptively (Proof Sketch)

• Using these features, we can apply the DTW-MSS reduction 
[FOCS’15] to analyze all possible pairs of MSS instances 
𝑀𝑆𝑆 𝑠, 𝑞 and 𝑀𝑆𝑆(𝑠′, 𝑞)
• In every case, we can get the same solution to MSS instances, which 

implies the same DTW distance.
• For full details, please refer to our paper.
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Exact Recovery from DTW Oracle, Non-adaptively

• For queries from 0, 1 𝒪("):
• Alice can only recover to equivalence class.
• The best query complexity is Θ(𝑛).

• Interestingly, if Alice is allowed to query from 0, 1, L
M
, N
O

𝒪(")
, 

she can exactly recover the input sequence 𝑠 ∈ 0, 1 !"…
• Query construction: let 𝑎 = $

8
𝑎𝑛𝑑 𝑏 = 9

:
, define 𝑞(!) = 𝑎#;!𝑏!, ∀𝑖 ∈ [𝑛]. 

The query set consists of all 𝑞(!) plus 0 and 1.
• More generally, 𝑎 𝑎𝑛𝑑 𝑏 are co-prime, and 0 < 𝑏 − 𝑎 < 𝑎 < 𝑏 < $

9
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Exact Recovery from DTW Oracle (Proof Sketch)

• Why this set of queries works?
• Challenge 1. How to encode information for recovery? 
• Challenge 2. How to identify the implicit alignment?
• Let’s examine some properties of these queries

• Property 1. Sequence-monotonicity → input-uniqueness
• Let 𝑞 = 𝑞#𝑞$…𝑞%, we have min

&∈[%]
max{ 𝑞& − 0 , |𝑞& − 1|} > max

&,+∈[%]
|𝑞& − 𝑞+|
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Exact Recovery from DTW Oracle (Proof Sketch)

• Property 2. 0/1 preference → 0/1-uniqueness
• All characters in 𝑞(!) is less than ½
• Then every ‘1’ in 𝑠 only matches to a single character in 𝑞(!)

• Isomorphic DTW matchings:
• For all 𝑞(!), the matching between 𝑠 𝑎𝑛𝑑 𝑞(!) is the same.
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Other Interesting Results

• Our results on DTW naturally generalize to 𝑝-DTW.
• On Fréchet Distance, there are only 𝒪 𝑛 distinguishable 

sequences (as ℓZ gives less info than ℓ$).
• We also obtain a series of interesting results on edit distance, 

either optimally or near-optimally.
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Application and Open Problems

• Connections to (adversarially) robust machine learning
• Machine learning on discrete domain (e.g., NLP)
• (Small) Perturbations are defined by edit distance, etc.
• Certified robustness [S&P’19, ICML’19]: 

• Lipschitzness + information-preserving
• Our non-adaptive recovery naturally yields a way to robustness.
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Application and Open Problems

• Open problems
• Closing the quadratic gap between lower and upper bounds, for 

edit distance, non-adaptive query complexity.
• Solving DTW 𝒪 𝑛 non-adaptive query upper bound with only 1 

extra character (while we have to use 2).

• Solving any one of these two problems, we can treat 
him/her to an All-you-can-eat dinner, possibly Jinzakaya, 
in Waterloo!
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Q&A
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