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Abstract—Existing secure data outsourcing systems offer users
ways to select from different cryptographic primitives supported
by the system to encrypt their data to strike a balance between
data confidentiality and query performance. Though prior work
have identified the danger of mixing cryptographic primitives,
they fall short of providing a systematic approach to guide
users to prevent such cross-cryptographic leakages. Inspired by
the database design theory, we envision Secure Normal Form,
a new approach to normalize encrypted databases such that
the leakages of the partitioned databases are limited to the
users’ specifications. In this work, we propose a new architecture
to support secure normal form. This system includes several
new components for secure data outsourcing: (i) an inference
mechanism that reasons about additional leakages from weaker
encryption techniques, based on semantic data properties (e.g.,
dependence between attribute values); (ii) a normalization mech-
anism that converts relational data into secure normal forms,
so that the information leaked by the representation is limited
to that specified by the user; and (iii) a secure query execution
approach over encrypted data in secure normal forms. Our initial
experimental results validate the performance improvement over
naı̈ve baseline and show that a careful data representation can
be allowed without compromising security. We believe that our
paper opens a new direction in secure data management.

Index Terms—Secure Data Management, Encryption, Holistic
Leakage Accounting, Inference Control.

I. INTRODUCTION

“A chain is only as strong as its weakest link.”

Thomas Reid, Essays on the Intellectual Powers of Man
Applicable to the security of data management systems.

A Retrospective of Secure Data Management: Twenty-Five
Years Later, Where Are We? The growing demand to store
and manage large (and increasing) amounts of private data
over the cloud has spawned an era of secure data management.
Nearly twenty-five years have passed since the first initiative
on outsourcing encrypted database as a service [1] and the
first cryptographic technique that allows search on encrypted
data [2]. System researchers, cryptographers, and practition-
ers have made significant progress in developing many new
algorithms or protocols for storing, transferring, and operating
on encrypted data. These advances include several encryption
techniques, e.g., deterministic encryption (DET) [3]–[5] for
equi-join queries [6], order-revealing encryption (ORE) [7],
[8] for range queries, homomorphic encryption [9]–[13] for
performing arbitrary computation, non-deterministic encryp-
tion (NDET) [14], multi-party computation [15], [16], just
to name a few. Hardware-oriented solutions, such as secure

enclave [17], [18], have been explored as well to address the
same problem. All such existing approaches exhibit trade-offs
among the nature of queries that can be executed, the efficiency
of query performance, and the security offered to the end users.

The emerging wisdom in the field is that no single approach
offers a silver bullet. As a result, diverse secure data manage-
ment systems have been built, adopting different encryption
technologies based on the discrepant use cases — needs
for efficiency, security, and the required database operators.
These include systems such as CryptDB [6], Seabed [19],
HE3DB [20], SDB [21], Jana [22], Microsoft Always En-
crypted [23], AWS Clean Room [24], and MongoDB Querable
Encryption [25]. Some systems focus on implementing a single
type of cryptographic technique, but they support only limited
queries efficiently [23], [25]. Others support a more general
class of queries by applying multiple cryptographic techniques
each offering different security guarantees to meet the perfor-
mance requirements of a data management system in practice.
For example, CryptDB [6] and Seabed [19] allow users to
encrypt different parts of data using different encryption mech-
anisms. Users can perform a “sensitivity analysis” [26] on the
schema specification to determine the encryption schemes —
highly sensitive columns can be encoded with a strong en-
cryption technique, such as the Advanced Encryption Standard
(AES) that ensures full confidentiality or a fully homomorphic
technique in case computation (e.g., aggregation) may need
to be performed on the field, while less sensitive attributes
are encrypted with weak encryption like DET or ORE to
make query processing more efficient. By allowing users to
encrypt different parts of the data using different cryptographic
techniques, such systems empower users to explore tradeoffs
between security and performance. Users can choose a rep-
resentation that delivers the best performance subject to the
security guarantee that the adversary, often the cloud server,
should not learn anything useful about the plaintext, other than
the necessary leakages specified by the weak(er) encryption
technique used.

Cross-Cryptographic Leakages. The final security offered by
systems that use multiple cryptographic techniques to encrypt
different parts of the database is less well understood. Prior
work [27]–[30] primarily analyzes the information leakage
within a single weakly encrypted database column. For ex-
ample, when employing DET on a column, the ciphertext’s
distribution may reveal the true value of the entire column



Fig. 1: An example of lacking holistic leakage accounting in secure data management: (Left:) leakages can happen when
multiple encryption techniques are used in outsourced databases; (Right:) SNF Representation can avoid such leakages.

based on auxiliary knowledge on the data distribution [27].
Note such leakages may be permitted in practice for better
performance, but they can propagate to affect other parts of
the dataset, giving rise to unintended leakages, what we term
cross-cryptographic leakages. We illustrate such a leakage in
a simple example below.

Example 1. (Leakage Across DET and NDET). Consider a
database relation that contains two or more attributes, e.g., tid,
State and ZipCode, and consider three tuples in this relation;
see the left part of Figure 1. Suppose the data owner encrypts
tid (tuple id) and State columns with NDET, and ZipCodes
with DET to enable the equality test. Due to DET, the distri-
bution of ZipCode column is revealed. Although NDET itself
reveals nothing about the State column, ZipCode and State
columns are functionally dependent (i.e., ZipCode → State).
A semi-honest cloud server can thus learn more than what it
is allowed about State data. That is, as t218[ZipCode WE] =
t589[ZipCode WE], the cloud server can infer the plaintext
Dec(t218[State SE]) = Dec(t589[State SE]). Here, WE refers
to weak encryption techniques, such as DET that reveals data
distribution and ORE that reveals ordering of values. SE refers
to strong encryption techniques, such as NDET that does not
reveal anything. □

This toy example illustrates how functional dependency
between columns can lead to additional leakage. Prior work
such as [27], [31] have considered more subtle inference
attacks, showing that when systems use weak encryption
techniques general correlations between columns can prop-
agate the leakages from a weakly encrypted column to other
columns. In particular, prior work [27] shows that if a relation
represents an attribute using DET and another attribute using
ORE, it may reveal the entire tuple based on background
knowledge. [31] further shows that based on background
knowledge and property revealing encryption (e.g., ORE) on
a column of a table can reveal the data of another strongly
encrypted column encrypted of the table, if the columns are
dependent. Such prior work identify the challenges in mixing
multiple cryptographic approaches. However, they fall short
of providing a path forward wherein diverse cryptographic
techniques with different levels of security can be composed
while still ensuring provable security guarantees.

Despite negative results in [27], [31], we would like
to devise a way forward to build provably secure cross-
cryptographic solutions that supports weaker cryptography
without any unintended cross-cryptographic leakage. Such an
approach would offer end-users ways to explore tradeoffs
between provable security and performance empowering them
to make informed choices. This paper offers the first step in
developing the theoretical underpinning to understand how
leakages can spread when multiple cryptographic primitives
are used and system designs that reduce/prevent unintended
leakages that may result when multiple primitives are used.

Research Questions. We articulate our goals in the form of
the following two research questions (RQs) that are necessary
to answer in building toward a secure cross-cryptographic
solution.

Preventing Cross-Cryptographic Leakages

RQ1. Is there a systematic approach to account for
cross-cryptographic leakages in encrypted databases?

RQ2. How can we build an efficient system to
holistically mitigate these leakages, thereby users can

use secure data management services carefree?

The first RQ aims to detect unintended cross-cryptographic
leakages within an encrypted database. Addressing it requires
us to explore theoretical principles to reason about all implicit
/explicit leakages that may occur given a relational data
representation that uses multiple cryptographic primitives to
encrypt different parts of the data. Given a way to reason about
leakages, the second RQ seeks solutions to prevent unintended
leakages1 while minimizing performance overheads. Next, we
will discuss the core idea for constructing our solution to these
two RQs.

Towards A Solution. To address RQ1 and RQ2, we take inspi-
ration from the relational design theory that has so successfully
led to developing a formal basis of reasoning about redundancy

1That is, leakages other than the permissible ones the user explicitly defined
by choosing a weaker cryptographic primitive that may reveal some property
of data.



Our Vision: Secure Normal Form (SNF)

Normalizing the encrypted database, where the
leakages of each partition are restricted to only what
a user explicitly allows (by specifying encryptions).

in relational representations. Similar to a framework to reason
about database constraints (e.g., functional dependencies), we
envision a theoretical framework that given data semantics in
the form of constraints such as correlations, and cryptographic
primitives used to encrypt data, allows us to reason about
leakages that may ensue from the data representation. Once
such a theoretical framework has been established, just like
relational normalization that transforms a given representation
to an equivalent representation without redundancy by parti-
tioning relations into sub-relations, we envision transforming
encrypted representations into equivalent encrypted relational
representations such that the transformed representation pre-
vents unintended leakages2.

Secure Normal Form. We refer to such a transformed repre-
sentation (where leakages are restricted to only those permitted
directly by the choice of encryption technique specified by
user, and no other unintended leakage from inference) as
being in a secure normal form (SNF). That any relational
representation can be transformed into an equivalent SNF
can be easily seen by revisiting Example 1 which had an
unintended leakage about two ciphertext representations of the
State field representing the same plaintext through the DET
representation of the ZipCode field coupled with the functional
dependency between ZipCode and State fields. Consider a
different representation wherein we partition the table into
two sub-relations, one containing ZipCode and another State
with a new attribute identifier, strongly encrypted using non-
deterministic encryption to link the appropriate rows in the two
sub-relations. The original relation can be reconstructed by
performing a join over the identifier — of course, such a join
operator must be implemented carefully to prevent adversary
to learn correspondence between the tuples in the two sub-
relations. A partitoned representation such as above prevents
the leakage resulting from the DET encryption of ZipCode to
spread to other attributes and can be argued to be in SNF with
no unintended leakages. In general, for any relation with some
attributes encrypted using weak encryption techniques such
as ORE or DET, or cryptographic protocols over attributes
that may leak data, we can always transform the relation into
SNF by simply partitioning the table to store each column
separately with appropriate secure mechanism to reconstruct
the tuples by joining them using an identifier.

While such an approach will generate SNF, as we will see,
several SNF representations can exist for a given relation,
some more preferable than others (we will formally define

2Partitioning has also been studied in distributed system settings [32]–[34]
and serves different security or deduplication goals.

a criterion of how to rank representations in Section II). Our
goal, thus, becomes that of developing algorithms to transform
data representations that may contain unintended leakages into
desirable representations that are in secure normal form.

To build our approach to transforming encrypted repre-
sentations into SNF, similar to relational design theory, we
seek to define a sound and complete inference mechanism to
reason with leakages when data is converted into proper server-
side representations based on which partitioning algorithms
for SNF can be built. Such algorithms, in turn, can guide
the development of data outsourcing algorithms using which
data owners can explore tradeoffs between security and perfor-
mance, serving as a risk management and mitigation strategy
for outsourcing relational data.

In addition to leakage from ciphertext and corresponding
implementation of relational operators using the cryptographic
primitives, additional leakages can arise when queries are
executed over a normalized encrypted database when cross-
cryptographic primitives are used. To avoid such query-time
leakages, we need to support the encrypted database with a
new secure query processing schemes.
Roadmap. In this paper, in addition to achieving representa-
tions that are in SNF, we present a forward-looking system
architecture for query execution that is secure, as well as our
early results, and the opportunities and challenges toward a full
realization of our vision. We start with an analysis to obtain
a better understanding of leakages (Section II), and present
our proposed system architecture that allows encrypted data
representation based on secure normal forms (Section III). The
paper focuses on the following three aspects:
• Efficient Leakage Reasoning. An efficient inference engine

to automatically reason about additional leakages from the
representation of the outsourcing database.

• Efficient Normalization. A normalization mechanism with
heuristics that can efficiently find a partitioned represen-
tation in secure normal form, while achieving desired
optimization objectives.

• Secure Query Processing. A new query processing mecha-
nism, deployed on the server side, that can securely execute
queries across sub-relations in the secure normal form
representation.

In addition, we explore multiple dimensions to extend the
solution space for constructing SNFs (Section IV). Our pre-
liminary experimental results show promising evidence in
realizing our vision of provably secure representations that
exploit multiple cryptographic techniques simultaneously. We
discuss directions, opportunities, and challenges of building
a full-fledged system based on our vision in Section V.
Finally, we offer concluding remarks in Section VI. As future
work, we would like to complete/implement a prototype for a
system that supports data representation based on SNFs and
integrate such an approach with industrial cloud databases
such as Cisco’s Panoptica [35]. We believe, that once realized,
the SNF vision can usher in a novel design paradigm for
secure data management and reshape researchers’ perspectives



within the community to address cryptographic leakages from
a more comprehensive and systematic standpoint. Hopefully,
this paper can inspire people to take the opportunity to solve
the open challenges with realizing systems that support data
representations based on SNF. These challenges include but
are not limited to, the need for a more precise characterization
of leakages, extending SNFs to prevent leakages from other
system components like logging or indexing, the integration
of probabilistic modeling into SNFs, and the development of
frameworks capable of sustaining SNFs across dynamically
growing databases or other database types beyond the tradi-
tional relational model.

II. SECURE NORMAL FORM

In this section, we formally define the notion secure nor-
mal form and discuss criteria for selecting amongst multiple
SNF representation of the encrypted relation. We begin by
first discussing the notion leakage including concepts of per-
missible and unintended leakages based on which SNF are
defined. In discussing leakage and SNF, we will consider a
setup in which a data owner outsources the database to a
public cloud. The data owner specifies different encryption
techniques that are used to protect each attribute while en-
abling functionalities to execute queries efficiently over the
outsourced encrypted database. We assume the cloud is a semi-
honest adversary, hosting the encrypted data and executing
user-submitted queries faithfully, but the cloud tries to gain
information about the data from both encrypted data at rest
and during query execution.

A. Information Leakage

Leakages can be viewed as the information about targeted
data objects that the adversary gains from seeing the cipher-
text, which is encrypted with a specific technique. An example
of a targeted data object could be a cell in a relation. Such
leakages that happen when data is stored at rest due to the
choice of encryption technique used. It could also happen
when queries are executed based on the access patterns,
intermediate computations, query patterns, output size – any
observation an adversary can make from the execution of
queries. We refer to the former as static leakages and the
latter as dynamic leakages. SNF definition deals with leakage
from ciphertext and so we focus for now on static leakages
and formally define it as follows:3

Definition 1 (Leakage): We say there is a leakage on a
collection of plaintext C from its ciphertext representation C,
iff, ∀ci ∈ C, such that,∣∣∣PrA[Dec(ci) = v | C, b]−PrA[Dec(ci) = v | b]

∣∣∣ > negl(1η),

where Dec(ci) refers to the plaintext corresponding to the
ciphertext ci, v is any plaintext value ci can take, b denotes
the background knowledge that an adversary A can obtain. ■

3Dynamic leakages can be equivalently defined by conditioning the adver-
sarial knowledge not just on the knowledge of ciphertext but other query-
specific leakages such as access patterns, output volume, etc. See [36] for
such an extended definition of leakages.
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Fig. 2: An illustration of permissible and unintended leakages,
and when unintended leakages can happen at the representa-
tion level.

This definition says a leakage happens when an adversary’s
probability of successfully guessing the plaintext value of a
data object increases by a non-negligible amount (w.r.t. a
security parameter η) with the knowledge of the ciphertext
as compared to only the background knowledge. We further
categorize leakages as permissible due to the nature of cryp-
tographic techniques used to enable database functionalities,
and unintended due to the dependencies among data.

Permissible Leakages LP . Let R be a relational scheme
with a set of permissible leakages, denoted by LP . Let R
be its corresponding representation with (possibly multiple)
cryptographic techniques used to encrypt data in R and store
it at the server4. Permissible leakages LP refer to the leakages
that the data owner is willing to accept. In our setup these
correspond to explicit leakages that result due to the choice
of cryptographic techniques the database owner has chosen
and are a result of the property revealing nature of the chosen
primitives.

Example 2. In Example 1, the user specifies to use DET
for the ZipCode column. Leakages on the ZipCode data
distribution through DET are permissible leakages. □

Unintended Leakages LU . Unintended leakages, denoted by
LU , are those leakages not specified by users but can be
inferred based on permissible leakages.

Example 3. In Example 1, due to the combined use of NDET
and DET, there is unintended leakage on the State column via
functional dependencies. This leakage has not been defined by
the user and is an unintended leakage. □

Figure 2 further illustrates permissible and unintended leak-
ages, where unintended leakages can occur at the representa-
tion level. The upper plane in the figure illustrates a cipher
representation that stores different parts/attribute values of the
data (dots and crosses). The lower plane is the underlying
plaintext data of the corresponding ciphertext. Permissible
leakages (blue arrows) of plaintext based on the corresponding
ciphertext are a property of the encryption schemes used

4In general, R may store some data at the local machines as well if that
storage scheme helps prevent leakage, though such a representation does not
fundamentally change the problem we study.



(“Enc 1” and “Enc 2”). The solid red arrow in the plaintext
domain denotes the correlation or dependencies between two
parts of the data, which leads to unintended leakages (dotted
red arrow) from one part of the ciphertexts to the other part
of the data.

B. Secure Normal Form

We can now provide a more formal definition of secure
normal form (SNF) representation of a relation.

Definition 2 (Secure Normal Form): Let R be a relation.
Let R = {R1,R2, . . . ,Rn} be a representation of R. R is said
to be in secure normal form (SNF) with respect to LP if and
only if the set of leakages that can be inferred from R about
relation R are limited to only those in LP . ■

The representation R consists of a set of sub-relations
(of the original relation R), where each Ri contains one or
more attributes of R, encrypted using a specific cryptographic
technique. For R to be a SNF representation of R, it must
prevent any further leakage except for permissible leakage
specified in LP . Further, R satisfy the following properties:

• Sub-relations Unlinkability. Given any two sub-relations
Ri,Rj in SNF representation, one cannot link tuples from
Ri with tuples from Rj .

• Lossless Reconstructability. The original database can be
reconstructed by correctly performing a secure relational
operations (e.g., unions, joins, or a combination of the two)
over the sub-relations in secure normal forms.

To achieve the above two properties simultaneously, sub-
relations in SNF are associated with a tid attribute, encrypted
always with strong encryption, with different cryptographic
keys. We discuss in the following section how we perform se-
cure reconstruction and query execution over the sub-relations.

Example 4. Referring to the right-side of Figure 1, the
outsourced database in secure normal form stores two sub-
relations R1 and R2. The leakages to the State and Zip-
Code columns are restricted to their own partitions. That is,
the equality information leaked from ZipCode WE does not
spread to the State column. □

C. Maximally Permissive SNF

SNFs could be more secure (i.e., leak less) than what the
user specifies in the schema annotated with encryption tech-
niques. For example, if the user annotates attribute ZipCode to
be encrypted with DET, it is allowed to encrypt ZipCode with
strong encryption in SNFs, even though it offers more security
than what the user asked for. Therefore, it is natural to ask what
is a “good” SNF representation among all feasible solutions.
A good candidate reduces the query execution overhead that
may result due to processing over partitioned relations. As
a criterion for choosing a good partitioning, we develop the
notion of maximally permissive SNFs. a good partitioning.

Definition 3 (Maximally Permissive SNFs): Let R be a
relation, LP be the set of permitted leakages on R, and
R = R1,R2, . . . ,Rn be its representation that is in SNF. We

say R is maximally permissive, if for any sub-relation Ri ∈ R,
adding any additional attribute a ∈ R to Ri, or weakening the
cryptographic approach used to represent any attribute in Ri

leads to the relation Ri not being in SNF. ■
Maximally permissive representations are desirable, since

queries that are limited to a set of attributes that are stored
together can be implemented more efficiently compared to the
queries that span different sub-relations (and hence, require an
expensive join). Approaches to generating maximally permis-
sive SNFs will be discussed in Section IV.

III. SYSTEM DESIGN

In this section, we describe a possible design of a encrypted
database that exploits SNF to ensure security while supporting
multiple crytographic primitives. The envisioned system out-
sources data by transforming it into a corresponding secure
normal form. Queries are then transformed to execute over
the SNF representation. We discuss how the system generates
the SNF based data representation, followed by how queries
are processed in the system. We leave the discussion at a high
level and point out possible directions for realization while
deferring other interesting optimizations to Section V.

A. Transforming Relations into SNF

Given a relation R, a set of cryptographic techniques C over
attributes of R (which defines for us the set of permitted leak-
ages LP ), and a specification D of which attributes/attribute
values are independent (and hence cannot lead to leakage
through inference) or correlated (and could likely lead to
leakage), the system partitions R into a set of subrelations
that satisfy the SNF.

To compute SNF, first, a closure of a set of all leakages (both
permitted as well as unintended) that the current representation
may lead to, is computed (lines 1-2 of Algorithm 1). We
denote this closure by L+ and L+ = LP ∪ LU . Then,
a normalization algorithm is used to partition R (line 3)
to create a set of sub-relations {R1, . . . , Rn} such that the
only leakages in the partitioned representation correspond to
permissible leakages LP . Once a set of sub-relations have
been determined, a tid field is added to each sub-relation
Ri using which we can successfully reconstruct the original
relation (thus achieving the reconstructability requirement of
SNF). Finally, sub-relations are outsourced after attributes of
the relation have been suitably encrypted using cryptographic
techniques specified in C. The tid field added to each sub-
relation is encrypted using a strong encryption technique that
prevents unlinkability between sub-relations. We next discuss
several aspects of the above techniques further including how
to infer leakages and how to transform a relation into SNF.

Modeling Independence/Dependence in Data. Transforming
relation into an SNF requires as input specification of which
data/attributes are independent/correlated. Database literature
has a rich tradition of modeling dependence in the form of
data dependencies, such as functional dependencies, denial
constraints, conditional dependencies, aggregation constraints,
etc. In addition, probabilistic graphical models have been



extensively used to represent dependence and independence in
data. These include use of graphoids to describe conditional
independence [37], directed graphs (e.g., Bayesian model [38])
or undirected models (e.g., Markov model [39], [40]). Any
of these models, including their combination, could be used
in our context of representing data dependence/independence.
Furthermore, either data owners could specify data dependen-
cies using such models as part of specifying data semantics,
or data dependencies could be learnt/inferred from data [41].
While SNF-based approach for secure data processing works
either way, it does require that the specification of data
dependence/independence be complete — i.e., for any two data
objects, it should be algorithmically determinable if the data
items are independent or dependent.
Inferring Leakages. The Step 2 of our approach to trans-
forming data into SNF calls ANALYZELEAKAGECLOSURE
that takes as input the knowledge of (in)dependencies, the
schema, and the database, and outputs a closure of leakages
(i.e., L+ := LP ∪LU ). Implementing such a function requires
careful analysis of the properties of each encryption technique.
In particular, given the property revealing aspect of a weaker
encryption technique on one attribute, we need to carefully un-
derstand how it combines with the data dependencies to reveal
semantics of other attributes. For now, we do not differentiate
among different types of leakages and make a conservative
assumption that whenever an attribute is dependent upon
another weakly encrypted attribute, the leakage spreads to the
dependent attribute as well. Based on this assumption, we only
need to know the cryptographic technique for each column
and the dependencies between columns to derive the leakage
closure. Then, we can parse the schema specified originally
to obtain the permissible leakages based on the encryption
properties and determine if a given representation contains any
unintended leakages. Thus, determining unintended leakages
in a given representation reduces to the problem of determining
if two columns are independent or not which can be achieved
through algorithms discussed above.
Normalization/Partitioning Algorithms. The PARTITIONING
component takes as input the database R and a set of leakage
rules L+ obtained from the inference component and returns
a normalized database consisting of sub-tables {R1, . . . ,Rn}
that are in SNFs. A naı̈ve way to implement the normalization
algorithm is to use the chase [42] to generate every possible
partitioning and iterate over them by calling ANALYZELEAK-
AGECLOSURE function to determine the ones in SNF (i.e., if
for all sub-relation in a partition, L+ = LP , then this partition
is in SNF). However, this approach incurs an exponential
number of cases. We will design heuristics for partitioning,
based on the input leakage closure L+ in Section IV. Note
partitioning a database into SNF might, highly possibly, not be
unique. Among all candidates, we select maximally permissive
SNFs (see Definition 3), as our outputs of partitioning.

B. Executing Queries over SNF
We now turn our attention to executing secure query execu-

tion when data is represented using SNF. Let qi(Ai, . . . , Aj)

Algorithm 1: System Overview
Input: Database R(tid, A1, A2, . . . , An), A set of

cryptographic techniques C specified over the
schema of R

/* Data owner performs locally: */

1 D ← DEPENDENCYINFERENCE(R)
2 L+ ← ANALYZELEAKAGECLOSURE(R, C,D)
3 {R1, . . . , Rn} ← PARTITIONING(R,L+)
4 SNF := {R1, . . . ,Rn} ← ENCRYPTION({R1, . . . }, C)
/* Outsourcing SNF to the cloud, and the cloud

executes the following: */

5 Receive query qi(Ai, . . . , Aj)
6 if {Ai, . . . , Aj} ⊆ Rt then
7 return QUERYANSWERING(qi,Rt)
8 else
9 {Ri, . . . ,Rj} ← QUERYMATCHING(SNF, qi)

10 R← OBLIVIOUSJOIN({Ri, . . . ,Rj})
11 return QUERYANSWERING(qi,R)
12 end

be the query that the semi-honest cloud server receives from
a client, where Ai refers to an attribute. If all the attributes
referred to in the query qi(Ai, . . . , Aj) occur in a single sub-
relation, the system can directly execute the query. This is
the same situation as in existing encrypted database systems
wherein all fields in the query are collocated in the same
relation (lines 6-7). In contrast, if the attributes in the query
qi(Ai, . . . , Aj) do not exist in a single sub-relation, the sys-
tem may need to access fields across multiple sub-relations
Ri, . . . ,Rj (that together cover all attributes in the query) and
join the records in those sub-relations (lines 9-10) using the
tid column to reconstruct the necessary parts of the partitioned
records. After such a reconstruction the original query can
be executed and answers are returned to the user (line 11).
As mentioned in Section II, query execution can lead to
leakage by an adversary observing the execution of the query.
The query-time leakages or dynamic leakages can occur and
reveal which ciphertext is accessed during query execution
(i.e., access pattern attacks [43]) and/or observing the volume
of intermediate or final outputs produced [44]. Such leakages
coupled with background knowledge often can result in se-
mantic leakage. In the context of SNF representation, when the
query requires data stored in more than one sub-relation to be
accessed, unless the reconstruction is done carefully, adversary
may gain knowledge of the correspondence between records
stored across different sub-relations, leading to leakage. To
ensure that no leakage occurs due to SNF representation, we
need to prevent linkability among sub-relations from being
leaked during reconstruction. We, thus, need to perform the
reconstruction carefully to ensure that the adversary does not
gain insight on which tid values across two sub-relations
are equal. We can protect against adversary learning about
linkability in one of the following two ways:

Oblivious Reconstruction. We could use secure hardware such



as SGX [17], [18] in conjunction with oblivious random access
memory (ORAM) [45], [46] to reconstruct the original relation
from sub-relations. In particular, when tuples matching a user’s
query (e.g., selection on a particular attribute) have been
determined over a given sub-relation, the corresponding tid
of the relation can be decrypted in the secure hardware and
ORAM used to retrieve the corresponding parts of the tuple
stored in other sub-relations. Since ORAM techniques such as
[15], [36], [47]–[49] prevent the adversary from learning the
access pattern, linkability of records across sub-relations will
be prevented.
Query Binning. We could also prevent linkability among ta-
bles by using a query binning technique [50] developed in the
context of secure joint query processing over partially sensitive
data where sensitive and non-sensitive data was partitioned
into separate sub-relations. Retrieving a query, say a selection
query (e.g., a predicate such as A = 5) separately on sensitive
(stored in an encrypted representation) and non-sensitive data
(stored in plaintext) would clearly break the scheme since
the adversary would immediately learn which encryped tuples
refer to the plaintext in the query. To protect against such
a leakage, [50] explored a binning approach that carefully
retrieves data from both sensitive and non-sensitive tables
to prevent the adversary from gaining knowledge of such
correspondences. Depending upon the encryption technique
used for sensitive data, the percentage of data that is sensitive
versus which is not, [50] showed significant advantages in
terms of performance of the binning approach compared to
techniques such as Path-ORAM or oblivious computation.
The technique of binning, while designed to support secure
computation when data is partially sensitive, can nevertheless,
be generalized to our setting when reconstructing tuples from
different sub-relations.

Note that above, we have only discussed potential ap-
proaches to reconstruct records when data is stored in SNF.
How the reconstruction operation, executed obliviously, can
be integrated into a full-fledged query execution to prevent
dynamic leakage from the overall query execution remains an
important challenge going forward.

IV. SOLUTION SPACE FOR CONSTRUCTING SNFS

The core of SNF is the normalization algorithm. A database
relation can be partitioned vertically or horizontally, or via a
mixture of both. We first restrict our sight to only vertical par-
titioning to describe a few possible normalization algorithms
in this scope. We then describe the possibilities in considering
horizontal partitioning also to broaden the solution space for
better optimizations.

A. Preliminary Discussions on Partitioning Strategies

Given R and L+ on R, our goal is to transform R into a
representation R such that R is in SNF w.r.t. LP . To do so,
we perform partitioning over the relation R.

Vertical Partitioning. We say vp(R) = {R1, R2, . . . , Rk} is
a vertical partition of a relation R, if:

• ∀i ∈ [k] : attr(Ri) ⊆ attr(R), and

• R = R1 ▷◁ . . . ▷◁ Rk.
Each sub-relation with vertical partitioning contains the tid
attribute strongly encrypted with different cryptographic keys.
This ensures that we can reconstruct the original relation
R from the sub-relations, while the linkability among sub-
relations will not leak when data is stored at rest. Note that
there is always a trivial algorithm for vertical partitioning, as
follows:
Trivial Strategy. We represent R(A1, . . . , An) as a set of
n sub-relations: R(tid SE(ki),Ai),∀i ∈ [n], where ki is
the encryption key. Each attribute Ai is encrypted using an
appropriate cryptographic technique that is specified in the
pool of specified cryptographic techniques C.

While generating SNF for a given relation is simple with
the trivial strategy, our objective, as discussed in the previous
section, is to support a maximally permissive property. The
two naı̈ve approaches – encrypting all attributes of R using
strong encryption, or over-split R into sub-relations with a
single attribute from R – both are in SNF, but neither might
be maximally permissive. We consider the following two
normalization strategies, which are based on variants of the
hill climbing heuristic.
Strategy 1: Non-Repeating. We start with an unintended
leakage or a dependency that causes a leakage. We put the
corresponding attributes in the dependency into separate sub-
relations. For the rest of the attributes in the schema, we take
each attribute and iterate over the leakages closure. The goal
is to identify a candidate set of existing sub-relations for this
attribute. A sub-relation is put into this candidate set, if the
encrypted attribute does not incur unintended leakages with
existing attributes in this sub-relation. If the candidate set is
not empty, we add the attribute into any of the sub-relations
in it; otherwise, we create a new sub-relation to place this
attribute. This process will end when every attribute in the
schema is properly allocated to the sub-relations.
Strategy 2: Max-Repeating. This strategy is a variant of the
previous one, where the only difference is that each attribute
will be put into every sub-relation in the candidate set, such
that every sub-relation will be in SNF.

Note that the maximal permissiveness does not specify how
many times an attribute from R can repeat in R in SNF.
The two aforementioned strategies are at the far ends of the
solution space w.r.t. repetition of attributes. We empirically
evaluate them next in Section IV-B and discuss opportunities to
improve via workload-dependent optimizations in Section V.

Horizontal Partitioning. Implicitly, so far, we have assumed
that the notion of permissible leakages is defined at the
level of columns and data is encrypted at that level. Such
an assumption is not necessary. Consider the scenario when
data values are independent/dependent is an outcome of not
only the semantic meaning of the attributes but their actual
values. For instance, typically, one would expect income
level of a person and their education level to be correlated.



TABLE I: Preliminary experimental results. Query costs are
measured in terms of the number of oblivious joins required,
normalized by the number according to the Naı̈ve baseline.

Methods Storage #Partitions Query Cost
Naı̈ve 731 MB 231 1
SNF (non-repeating) 626 MB 66 0.726
SNF (max-repeating) 14110 MB 66 0.13
Strawman 461 MB 1 0
Plaintext 30 MB 1 0

However, such a correlation may not hold for people in certain
professions, such as a stockbroker. Likewise, data owners may
have different levels of tolerance to leakages for different
subsets of data belonging to the same column/attribute based
on its sensitivity. For instance, leakage of the name of a
disease such as cancer may be deemed significantly more
sensitive than say common cold. Given the above, data owners
may be willing to choose different encryption mechanisms to
protect different parts of the data. Both these observations
lead us to consider partitioned representation not just based
on a vertical partitioning of attributes, but also horizontal
partitioning. In particular, a relation may be partitioned into
a subset of sub-relations which may correspond to horizontal
or vertical partitioning. A partitioning would be valid as long
as we can reconstruct the original relation via a sequence of
join (based on the tid as discussed earlier in the context of
vertical partitioning) or union operators (in case of horizontal
partitioning). Such an expanded scope of partitioning signif-
icantly increases our repertoire of data representations. For
instance, we may partition a table horizontally based on a
data value, if it results in a given sub-relation to have a lesser
number of data dependencies (e.g., two attribute values are
dependent in general, but are independent based on a value
of some attribute, and the relation is horizontally partitioned
based on that attribute value). Now we may need to vertically
partition only one of the sub-relations leaving the attributes
collocated in the other horizontally partitioned subrelation.
Likewise, horizontal partitioning can also be exploited to keep
parts of data collocated if data’s sensitivity level depends upon
its value or that of other collocated attributes. In general, a
data representation may correspond to a partially ordered set
of horizontal and vertical partitioning and can be represented
as a tree and the space of partitioning becomes that of all
such trees. To handle horizontal partitioning in conjunction
with vertical partitioning, we need to extend the reasoning
of leakages, the definition of SNF, and also the concept of
maximally permissive leakage to such representations.

B. Preliminary Experimental Results

As a proof-of-concept, we implement and evaluate different
partitioning strategies in our system (as described in Algo-
rithm 1) to pitch the feasibility and potential interests of our
vision on secure normal forms.
Dataset. We present our preliminary empirical results on
the 2013 U.S. Census American Community Survey (ACS)
dataset [51]. The ACS dataset contains one-year survey re-

Fig. 3: Estimated query execution time cost over the joins
required, comparison among different partitioning algorithms.

sponses of individuals of 231 attributes and 153,589 records,
a larger version of this dataset being used in prior research [31]
to demonstrate the effectiveness of the inference attacks.
Partitioning Algorithms. The partitioning algorithms we im-
plement over ACE dataset are the trivial/naı̈ve partitioning and
the non-repeating and max-repeating strategies discussed in
the previous section. These algorithms are compared against
storing the database in plaintext and the strawman solution.
In the strawman solution, we have all encrypted-as-specified
columns in one single relation (simulating the naı̈ve usage of
CryptDB [6]). To do so, we randomly sample 172 attributes
to encrypt with weak encryption techniques such as DET and
OPE, and the rest of the attributes are encrypted with AES.
Query workload. For simplicity, we assume the queries in
the workload have the following template:

SELECT attr_1,
FROM relations(attr_1, attr_2, attr_3,..)
WHERE predicate(attr_2, attr_3)

To generate this query, which we call a 2-way point query,
we randomly select two columns that are weakly encrypted
and project to another random attribute. Likewise, we create
3-way point queries. We choose 100 different 2-way point
queries and other 100 different 3-way point queries to form
the workload.
Goals. With our experiments, we would like to discuss the
following:

• Overhead of the Partitioning Strategies. We first investigate
the storage overhead, incurred by encryption and different
partitions. Particularly, in this early study, we focus on
showing the tradeoffs among different partitioning methods
in the solution space, while comparing with strawman
solutions and trivial/naı̈ve baselines, (to inspire more future
research in this field). We relatively simplify the data
correlation and inference model of leakages by considering
only functional dependencies as the inference channel.

• Query Execution Cost. The query cost model estimates the
cost of executing the queries over the dataset in terms of
the number of oblivious “join” operations.

Exp 1: The Cost of Partitioning Strategies. Enabling encryp-
tion over ACS dataset using the “Strawman” solution incurs



15x storage overhead compared to storing the plaintext table
(“Plaintext”). As expected, the naı̈ve normalization strategy
almost doubles the storage cost than the strawman solution,
because it partitions every attribute into a single sub-relation
and properly adds the encrypted tid column, which results in
231 sub-relations. The two SNF strategies reduce the number
of partitions greatly from 231 to 66, and the storage overhead
varies between 626 MB to 14110 MB (0.85x – 19x compared
to the naı̈ve baseline), leaving a large space for optimization
and future improvement.
Exp 2: Query Execution Cost. From the workload per-
spective, every query executed over the naı̈ve partitioning
requires a 2-way or 3-way oblivious join. In contrast, the SNF
strategies (non-repeating and max-repeating) satisfy maximal
permissiveness and reduce the query execution cost to only
0.726x – 0.13x compared to the naı̈ve solution. We further
plot the estimated execution time, based on existing oblivious
join algorithms [52], for the join operators over the three
partitioning methods (see Figure 3). The discrepancy in terms
of the time cost between partitioning methods is observed
to be large, which shows opportunities for workload-aware
optimizations, discussed in the next section. We note that the
discussion only includes very preliminary results of SNFs.
Designing and implementing an optimal query execution plan
with respect to a given SNF which avoids any unintended
dynamic leakages is critical to the system performance and
security Opportunities to further optimize the system perfor-
mance when incorporating SNFs are observed and discussed
in the next section.

V. OPPORTUNITIES AND CHALLENGES WITH SNFS

The SNF vision opens the following opportunities for secure
data management and outsourcing, and challenges for the full
realization of a practical system.

A. Leakage Characterization

While in this paper, we do not distinguish leakages from
different weak encryption techniques but focus on the spread-
ing of leakages, the information leaked by different encryption
techniques can be measured in different ways. Prior work
in cryptography [53]–[55] has studied and listed a number
of syntactic leakages based on the structural properties of
different cryptographic algorithms (e.g., data volume, query
length, response size, etc.). However, such definitions, in
nature, are not compatible with database inferences based on
data semantics (e.g., functional dependencies, correlations).
While being difficult, we would like to develop an overarching
system to connect two types of leakages altogether through a
holistic modeling of leakages.

One way to achieve this is to characterize the leakages as
the result of cryptography precisely in the semantics sense.
We can define the leakages from the perspective of associ-
ation, relationship, and distribution. An association leakage
arises when the adversary is able to associate a ciphertext
representation with one plaintext value more confidently than
with another. Relationship leakages measure the leakage of

the l-ary relationship of any subset of plaintext values from
their ciphertext representations, whereas distribution leakages
characterize the leakage of plaintext distributions. Other types
of leakages can be developed as well. The leakage from one
cryptographic technique could comprise one or more leakages
from the ones defined above. Having this characterization can
devise a more fine-grained leakage analysis to replace the
simplified conservative assumption in the leakage inference
module and thus improve the final SNF representation.

Quantifying Leakages. Rather than measuring a leakage as
a boolean value, we can quantify it by the exact amount of
information learned by the adversary. Such quantification can
potentially speed up query execution or incur less number of
sub-relations in SNF when secure. Our previous work [56],
[57] on inference control over access control protected data,
based on a plausible deniability model, establishes a threshold
on how many elements of the domain could be allowed to leak.
Similar ideas could be explored in SNFs if leakages from dif-
ferent encryption techniques could be uniformly characterized.
With precisely captured partial leakages, SNF could provide
the knob to users who wish to tune between security and
desired functionalities/efficiency. And then, we may leverage
the state-of-the-art inference attacks [27], [31] to simulate an
adversary to measure the extent to which the data can be
recovered.

Acquisition of Knowledge. The correctness of our system
depends on the knowledge of dependence or independence.
Acquiring such knowledge, as discussed earlier, could be an
automatic learning process from data or human-generated rules
based on schema, or a mixture of both. Note that there could
be exponentially many dependencies among attributes in the
schema. Missing a dependency may leak more than required.
Therefore, an incomplete acquisition can affect the system’s
security or performance, depending on whether the system
assumes full dependence or full independence by default. We
would like to initiate a user interface or mechanism in the
system that opts to the user to choose to be pessimistic or
optimistic. It is interesting to explore the impact on how well
the adversary can perform an inference attack between these
two modes.

B. Partitioning and Enumeration

While our secure normalization is similar to database parti-
tioning [32], [33], [42], [58] in spirit, there are huge opportu-
nities in designing optimal secure normalization algorithms.
First, unlike partitioning in database design, SNFs allow
repetitions of data attributes to be encrypted using different
cryptographic techniques. This enlarges the solution space
even for vertical partitioning only. Furthermore, if we consider
vertical and horizontal partitioning, the solution space becomes
super-exponential. Our early experiments only empirically
demonstrate the two partitioning strategies, especially limited
to vertical partitioning only. While it remains exploration on
a normalization algorithm to perform vertical and horizontal
partitioning, the trade-off (i.e., a trade-off between 0.85x –



19x storage overhead and 0.726x – 0.13x workload execution
overhead) between the two vertical strategies has shown op-
portunities for optimization for a given workload.

Workload-Aware Partitioning. If we know in advance a rep-
resentative workload W that captures the queries to be asked
on the outsourced database in the future, we can partition the
database with the aid of this query workload. This is likely
to happen because, in the data outsourcing scenario, the data
owner is usually the same as the queried. Then the partitioning
process becomes solving an optimization problem

{R1, . . . , Rn} = argmin
Pi∈P

Cost(W,Pi), s.t. SNF properties

where Pi is a candidate partitioning representation from all
possibilities P . We would like to find a set of sub-relations
that minimize the estimated cost of executing the workload
over them while satisfying the properties of no unintended
leakages.

Migration to Other Workloads. However, chances are the rep-
resentative workload may change over time after the database
is outsourced. A natural research question is how to migrate
the partitioned database in SNFs to another SNF representation
optimized for the new workload. A naı̈ve answer to this
question may be re-doing the partitioning entirely and updating
the outsourced database, which will inevitably incur overhead.
While this leaves future exploration on algorithmic design to
solve the problem, it is noteworthy that the adversary can
observe the update process in which the query information
could be leaked. It remains an open question to defend against
such adversaries in the migration process.

SNF over Dynamic Databases. The data outsourced can
change over time (i.e., the database can grow or shrink when
data is imported, updated or deleted). Dynamic data update
is a challenging problem for encrypted databases. The current
design of SNF may require recasting and re-partitioning of
the encrypted data to be securely outsourced. Updating SNF
without such operations is an interesting open question for
future work.

C. Secure Query Execution

Data-Aware Sub-Relation Matching. Given a query, there
may be multiple collections of sub-relations in SNF to execute
on. For example, a database R(A,B,C,D) can be partitioned
in to R1(A,B), R2(B,D), R3(A,C). For query q(A,D), it
could be executed over R1 ⊗ R2 or R2 ⊗ R3. Selecting one
collection rather than the other may reduce some execution
costs, which would be preferred. This question is related to the
query-view answering problem [59] of finding a materialized
view to answer a given query. However, in our context, design-
ing proper data structures and protocols to enable an optimized
matching without leakage still requires further exploration.

Towards Multi-Relational Queries. We have considered SNF
when considering a relation being stored using multiple cryp-
tographic primitives. When data is stored in SNF, adversaries
cannot learn anything other than what the data owner specified

as permissible leakages based on the choice of encryption
they used. Furthermore, we have discussed how queries can
be executed by reconstructing (parts of) a relation needed to
answer the query without leaking linkability and thus ensuring
that no further leakage occurs other than those permissible.
A full solution, however, requires generalizing our approach
to support multiple tables, each in SNF based on appropriate
choice of cryptography, and moreover, to support techniques to
compose relational operators over multiple encrypted relations.
Our discussions have focused on preventing leakages in the
context of reconstructing a single relation from its partitioned
storage. We will need to generalize the approach to further
explore and prevent leakages when dealing with general multi-
relation queries.
Optimization and Trade-offs in Query Execution. As shown
in previous work [15], [48], [49] and our early results, execut-
ing the oblivious join operators is time-costly. Independent of
the oblivious processing and query binning thoughts, another
optimization may be enabling some local data structures that
help the server obliviously shrink the table sizes to be joined
with a few rounds of communication trade-off.

D. Towards Real-World Deployment

In the future, we would like to extend our SNF vision to
a fully functioning system that can be deployed in real-world
use cases. We identify a few challenges toward a usable and
practical system.
Visualizing Leakages. Understanding permissible leakages as
the nature of cryptographic techniques and how unintended
leakages can happen through data dependencies requires
domain knowledge. It may be challenging for non-domain
experts to explore data outsourcing or correctly specify the
amount and types of leakages they can tolerate. Building a vi-
sual interface that can allow users to specify database operators
and cryptographic techniques, and compare the leakages with
immediate system feedback through inference would make the
system more usable.
Language for Leakage on Representations. To visualize
leakages, one may require a uniform language to represent
leakages, given the heterogeneous nature of leakages from
different cryptographic techniques, as discussed earlier. We
envision such a language to bridge the gap between the
leakage/cryptography specification and the symbolic inference
rules for leakage reasoning.
Leakage as Indexing. From the query execution perspective,
the information leaked through the cryptographic technique
enforced over a column enables faster or cheaper database
operations on encrypted data. That said, leakages can be
viewed as “indexing” that user can explore to enforce in their
outsourcing database. Exploring this functionality may be able
to be implemented in our envisioned system.
Other Types of Leakages. We have so far discussed leakages
due to using multiple encryption techniques on data. To build
an end-to-end system, we need to deal with different types of
leakages, such as leakages from metadata [60], leakages from



the timing of the operations (e.g., inserting new data) [61],
leakages from database logs [62]–[64], leakage from authen-
tication algorithms [29], [30], leakages form commitment
algorithms [65], etc. Building new primitives for encrypted
meta-data to mitigate such leakages would make the system
more robust. How such techniques interact and compose with
SNF-based representation of data when multiple cryptographic
primitives are used in the same system would be an interesting
direction for exploration.
Beyond Relational Databases. The modern database designs
have gone beyond the relational tables. Data can be stored as
documents, key-value pairs, geo-location [66]–[68] node-edge
adjacency representations [69], or even vectorized embeddings
[69]–[72] in the databases. While the design of SNFs is
much inspired by the theoretical development of relational
database (integrity) constraints, the secure representation of
data should be independent of how data is stored. How to
answer queries securely over SNFs with data stored in a
non-relational database is still an unanswered and interesting
research question for future development.
System Deployment. Once a full prototype system is imple-
mented, deploying it in real-world use cases would be interest-
ing. In future work, we would like to integrate our system as a
middle-ware framework into Cisco’s cloud database product,
Panoptica [35], and test the system’s performance with real-
world query workloads. Panoptica supports cloud-based secure
solutions and several use cases. Extensive experimentation
may provide evidence of whether the system can efficiently
detect leakages, execute the partitioning algorithm, and answer
queries over SNFs. Thus, we can answer more research
questions, such as which cryptographic techniques can be used
under different leakages and database operators (e.g., SPJA
queries), given constraints on available system resources.

E. Relationship to Differential Privacy.

The connection between SNF and DP for databases [73]
can be seen in two dimensions. Firstly, prior work [74]–[76]
investigates weak encryption techniques with a differentially
private leakage, which can be easily quantified and composed.
Hence, we can build our SNFs on top of similar cryptographic
techniques with differential privacy guarantees. Secondly, ex-
isting effort in building a DP query processing system [77],
[78] has explored a differentially private representation of data
(i.e., a DP synopsis) so that queries can be processed without
consuming additional privacy budgets (i.e., post-processing).
Such a representation can leverage the correlations among
attributes [79], [80] or representative query workloads [77],
[81], which has a connection with our SNF. Unifying these
two lines of thought can be a charming direction for building
a database system.

VI. CONCLUDING REMARKS: LOOKING BACK AND
LOOKING AHEAD

Looking back on the past two decades of research on
encrypted databases, we believe the moment has arrived for
our community to embark on a new phase of integrating

piecemeal solutions into end-to-end systems. As additional,
and severe, leakages can happen in this integration process,
we call for special attention to this important topic, especially
approaches to systematically controlling leakages whilst not
much affecting system efficiency or functionalities, in this
new chapter of research. This paper describes our vision and
early research on understanding leakages when outsourcing
encrypted databases with different cryptographic techniques.
We propose secure normal form, a principled approach that
prevents unintended leakages through inference and restricts
leakage to only what the user explicitly specifies. A new
system is architected to support our secure normal form vision,
with a modular design of replacing several parts of the cur-
rent database, including partitioning, outsourcing, and query
answering. Our early empirical results show the potential
interests and usefulness of secure normal forms. Opportunities
and challenges are discussed toward fully realizing this system
so that it can be practically deployed in the current secure
cloud outsourcing industry.
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