Thwarting Longitudinal Location Exposure Attacks in Advertising Ecosystem via Edge Computing

Le Yu^{1†}, Shufan Zhang^{2†}, Lu Zhou¹ Yan Meng¹, Suguo Du¹, Haojin Zhu¹

1 Shanghai Jiao Tong University

2 University of Waterloo

Outline

Background

- Motivation
- System
- Evaluation

1

- Location-based Advertising (LBA)
 - Growing market (12.8% expected annual growth)
 - Finer-grained, personalized service
 - High return-on-investment (RoI) rate

- Location-based Advertising (LBA)
 - Growing market (12.8% expected annual growth)
 - Finer-grained, personalized service
 - High return-on-investment (Rol) rate
 - Business model

The business model and data flow of LBA

3

- Location-based Advertising (LBA)
 - Growing market (12.8% expected annual growth)
 - Finer-grained, personalized service
 - High return-on-investment (Rol) rate
 - Business model
 - Types of location targeting
 - Countries targeting
 - Areas targeting
 - Radius targeting (finest-grained)

Companies	Minimal Radius	Maximal Radius		
Google	5 km	65 km		
Microsoft	1 mile / 1 km	800 miles / 800 km		
Facebook	1 mile	50 miles		
Tencent	500 m	25 km		

- Location-based Advertising (LBA)
 - Growing market (12.8% expected annual growth)
 - Finer-grained, personalized service
 - High return-on-investment (Rol) rate
 - Business model
 - Types of location targeting
 - Countries targeting
 - Areas targeting
 - Radius targeting (finest-grained)
 - *Privacy* becomes prominent issue

1		
	ll R	
		X

Companies	Minimal Radius	Maximal Radius		
Google	5 km	65 km		
Microsoft	1 mile / 1 km	800 miles / 800 km		
Facebook	1 mile	50 miles		
Tencent	500 m	25 km		

Motivating Example

- People have stable mobility pattern
 - Location entropy
 - We can recover user's mobility pattern

88.8% of users' location entropy is less than 2

Related Work

- Location Privacy
 - Privacy protection with theoretical guarantee
 - Differential Privacy (DP) [DMNS06]

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to sensitivity in private data analysis. In *Theory of cryptography conference* (pp. 265-284). Springer, Berlin, Heidelberg.

Related Work

- Location Privacy
 - Privacy protection with theoretical guarantee
 - Differential Privacy (DP) [DMNS06]
 - Location trajectory synthesis (e.g., DPT [HCMP15])
 - Location obfuscation (e.g., Geo-IND [ABCP13])

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006, March). Calibrating noise to sensitivity in private data analysis. In *Theory of cryptography conference* (pp. 265-284). Springer, Berlin, Heidelberg.

He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C. M., & Srivastava, D. (2015). DPT: differentially private trajectory synthesis using hierarchical reference systems. *Proceedings of the VLDB Endowment*, 8(11), 1154-1165.

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November). Geo-indistinguishability: Differential privacy for location-based systems. In *Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security* (pp. 901-914).

Outline

- Background
- Motivation
- System
- Evaluation

Motivation

- Huge gap between theoretical Geo-IND and real-world privacy issues in LBA!
- <u>New attack</u>. Longitudinal location exposure attack

Motivation

One-time obfuscation mechanism:

• Planar Laplace mechanism / Geo-Indistinguishability [ABCP13]

Longitudinal location exposure attack

Andrés, M. E., Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2013, November). Geoindistinguishability: Differential privacy for location-based systems. In *Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security* (pp. 901-914).

Set-up:

• Raw location check-ins

Set-up:

- Raw location check-ins
- Obfuscate the location check-ins using planar Laplace mechanism

Set-up:

- Raw location check-ins
- Obfuscate the location check-ins using planar Laplace mechanism

Recover Top Location:

• **Step 1 Clustering:** Cluster locations check-ins based on connectivity (distance threshold)

Set-up:

- Raw location check-ins
- Obfuscate the location check-ins using planar Laplace mechanism

Recover Top Location:

- **Step 1 Clustering:** Cluster locations check-ins based on connectivity (distance threshold)
- Step 2 Trimming: drop out locations whose distance is larger than cluster radius

Cluster radius r_{α} , $\Pr[dist(p,q) > r_{\alpha}] \leq \alpha$

Outline

- Background
- Motivation
- System
- Evaluation

Permanent obfuscation

- Insight: users are refrained to their top locations
- Challenge: how to reduce utility loss

AOI : area of interestAOR : area of requestUtilization rate $UR = \frac{AOI \cap AOR}{AOI}$ Advertiser efficacy $AE = \Pr[ad \in AOI|ad \in AOR]$

Permanent obfuscation

- Insight: users are refrained to their top locations
- Challenge: how to reduce utility loss
- Multiple obfuscated locations

AOI : area of interest AOR : area of request Utilization rate $UR = \frac{AOI \cap AOR}{AOI}$ Advertiser efficacy $AE = \Pr[ad \in AOI|ad \in AOR]$

Privacy Definition

Generalize geo-IND to $(r, n, \varepsilon, \delta)$ -geo-IND

Mapping
$$p \rightarrow \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix}$$

r-Neighboring

For all pair of locations p_0 , p_1 , we say p_0 , p_1 are rneighboring if the Euclidean distance between p_0 and p_1 is less than r, that is *dist* (p_0 , p_1) < r.

System Overview

Edge-PrivLocAd

- User check-ins are **not directly** used for LBA
- Passively collect users' location data
- Compute top frequent locations

n-fold Gaussian Mechanism

• *n* independent Gaussian random variables $N(p, \sigma^2)$

$$(q_1, \dots q_n) = (p + X_1, \dots p + X_n)$$

Challenge: solving σ to satisfy $(r, n, \varepsilon, \delta)$ -geo-IND

$$\square \text{ Naïve composition:} \varepsilon' = \frac{\varepsilon}{n}, \delta' = \frac{\delta}{n}$$
$$\sigma = \frac{nr}{\varepsilon} \sqrt{\ln \frac{1}{(n\delta)^2} + \frac{\varepsilon}{n}}$$

n-fold Gaussian Mechanism

• *n* independent Gaussian random variables $N(p, \sigma^2)$

$$(q_1, \dots q_n) = (p + X_1, \dots p + X_n)$$

Challenge: solving σ to satisfy $(r, n, \varepsilon, \delta)$ -geo-IND

$$\Box \text{ Naïve composition:} \varepsilon' = \frac{\varepsilon}{n}, \delta' = \frac{\delta}{n}$$
$$\sigma = \frac{nr}{\varepsilon} \sqrt{\ln \frac{1}{(n\delta)^2} + \frac{\varepsilon}{n}}$$

Sufficient Statistics

The following statements are equivalent:

- Releasing $(q_1, ..., q_n)$ satisfies $(r, n, \varepsilon, \delta)$ -geo-IND
- Releasing the sufficient statistic of $(q_1, ..., q_n)$ satisfies $(r, 1, \varepsilon, \delta)$ -geo-IND

$$\sigma = \frac{\sqrt{n}r}{\varepsilon} \sqrt{\ln \frac{1}{\delta^2} + \varepsilon} \quad \mathbf{T}$$

fighter error bound!

Outline

- Background
- Motivation
- System
- Evaluation

Evaluation

Dataset

- We collect 37,262 mobiles users in Shanghai from June 1, 2019 to May 31, 2021
- The size ranges from 20 to 11,435 check-ins per user.
- The dataset are from a realworld RTB transaction-log dataset

Parameter settings.

- $\delta = 0.01$ and $\varepsilon \in \{1, 1.5\}$
- The indistinguishable radius r = 500 m, 600 m, 700 m, 800 m.
- The targeting radius we choose is R = 5 km

What's the Attack success rate in one-time obfuscation and permanent obfuscation?

Observation 1

Attack success rate of one-time obfuscation (200 m): top-1 locations: 75% for $l = \ln 2$, 90% for $l = \ln 4$ and $\ln 6$, top-2 locations: more than 50% for $l = \ln 4$ and $\ln 6$.

What's the performance of the n-fold Gaussian mechanism?

(a) *n*-fold Gaussian mechanism. (b) Post-processing mechanism.

(c) Plain DP composition.

Observation 2

The *n*-fold Gaussian mechanism outperforms the naïve post-processing mechanism and the plain DP composition-based Gaussian mechanism. **Parameters**: $r = 500, \varepsilon = 1, \delta = 0.01$

What's the impact of the obfuscation number n and privacy parameters?

Observation 3 The utilization rate increase with *n* **Parameters**: $\varepsilon = 1 \text{ or } 1.5, \delta = 0.01$

What's the efficacy of Edge-PrivLocAd?

Observation 4 The efficacy do not significantly decrease with *n* **Parameters**: $\varepsilon = 1, \delta = 0.01$

Scalability of Edge-PrivLocAd

• Emulation with Raspberry Pi 3

TABLE II: Obfuscation processing time.

Number of Users	2000	4000	8000	16000	32000
Processing Time (s)	340	627	1166	2090	4014

TABLE III: Output selection time.

Number of Users	2000	4000	8000	16000	32000
Processing Time (ms)	90	175	350	698	1377

The emulation shows our system is scalable in edge environment

The processing time for obfuscation and output selection is reasonable

Takeaways

- *New Attack*. Existing geo-IND mechanisms cannot be directly applied to long-term location exposure settings, e.g., LBA.
- New Mechanism. The n-fold Gaussian mechanism is proposed to achieve tight composition bound (optimized utility) when releasing n locations simultaneously.
- *New System*. Edge-PrivLocAd is built to provide long-term location privacy management for LBA.
- Extensive experiments have shown the effectiveness and the efficiency of the proposed system.