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Abstract—As Internet censorship grows pervasive, users often
rely on covert channels to evade surveillance and access restricted
content. Web protocol tunneling tools use websites as proxies,
encapsulating covert data within web protocols to blend with
legitimate traffic to avoid detection. However, existing tools are
prone to detection via traffic analysis, enabling censors to identify
the use of such tools via fingerprinting attacks or due to the
generation of abnormal browsing patterns.

We present Huma, a new web protocol tunneling tool that
addresses existing detection concerns. By deferring covert data
transmissions, Huma allows a website participating in circum-
vention to first respond with unmodified content, while responses
embedding covert data are prepared in the background and
delivered during the client’s next request, thus avoiding timing
anomalies that facilitate fingerprinting. By relying on an overt
user simulator modeled after realistic browsing activity, Huma
also follows users’ expected browsing behaviors. Lastly, Huma
prevents adversary-controlled websites from tying communica-
tion endpoints together, enabling straightforward extensions to
enable covert communications in Intranet censorship scenarios.

I. INTRODUCTION

Driven by political and strategic interests, state-level actors
are known to actively enforce Internet censorship, particularly
during periods of instability, elections, or civil unrest [1]. To
suppress dissent and control public discourse, governments
deploy multiple technical measures such as social media
content moderation [2], [3], keyword filtering [4], [5], DNS
tampering [6], [7], IP-based blocking [8] and throttling [9],
[10], or the blocking of selected protocols [11], [12].

To bypass censorship, users rely on circumvention tools de-
signed to evade blocking mechanisms [13]–[15]. Most circum-
vention tools rely on intermediary infrastructure to conceal the
destination of user traffic, allowing access to blocked content
by disguising it as legitimate/innocuous communication [16].

Among these, protocol tunneling circumvention tools
emerged as a compelling alternative. They encapsulate covert
data within allowed protocols (e.g., VoIP [17], video [18],
games [19], e-mail [20], web [21]), adhering to legitimate

traffic patterns, making it hard for censors to identify circum-
vention activity among typical protocol usage. Recent research
improved the resistance of such tunnels against detection [22]–
[26], pushing the boundaries of unobservable communications.

Tunneling techniques based on web protocols have shown
promise in resisting blocking attempts. Tools such as Bal-
boa [23] and WebTunnel [27] (inspired by HTTPT [21])
encapsulate covert data within HTTPS and/or WebSockets,
blending seamlessly with legitimate interactions towards overt
and popular websites that deploy circumvention proxy back-
ends via plug-in software modules. These tools rely on the
assumption that censors risk substantial collateral damage [28]
if they block/interfere with web traffic, as doing so may disrupt
access to essential services or widely used platforms, raising
the political and economic cost of censorship [21], [23].

Despite leveraging high-value collateral in the hopes of
evading blocking, web protocol tunneling tools remain vulner-
able to detection via network traffic analysis techniques. Since
WebTunnel/HTTPT does not shape traffic patterns (e.g., mod-
ulation of flows’ characteristics such as inter-packet timing,
burst patterns, or response sizes) [21], a censor can use traffic
fingerprinting techniques to distinguish accesses to covert
destinations from legitimate pages fetched from the overt web-
site [29]. Balboa enhances protection against fingerprinting by
directly replacing any legitimate HTTP content (e.g., HTML,
CSS, images) found within TLS records exchanged with the
website. However, this process adds non-negligible timing
differences, enabling censors to identify Balboa’s activity with
up to ∼90% accuracyover different network conditions [23].

Further, existing web protocol tunneling tools fail to provide
behavioral realism [25], i.e., to generate user interaction
patterns that are consistent with realistic browsing behaviors.
Thus, while web protocol tunneling raises the cost of cen-
sorship by riding on top of critical web infrastructure, current
solutions fall short of hiding both the network-level and behav-
ioral signatures required for effective covert communication.

In this paper, we present Huma1, a new censorship cir-
cumvention tool that addresses the unobservability challenges
of existing web protocol tunneling solutions by coalescing

1Huma (or Homa) is a mythical Persian bird known to live its entire life
flying invisibly high above the Earth.
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strong traffic fingerprinting resistance and behavioral realism.
To resist traffic fingerprinting, Huma operates a traffic re-
placement scheme similar to that of Balboa [23], replacing
websites’ leaf elements with covert data. However, Huma
operates in a deferred fashion; instead of performing data re-
placement operations directly at each data exchange, websites
immediately respond to Huma users’ requests with legitimate
content, while covert data is prepared in the background.
Covert data is then delivered in response to the same client’s
next request, ensuring that no noticeable delays are introduced
in the communication. To enforce behavioral realism, Huma
relies on an overt user simulator (inspired by OUStral [30] and
Raven [25]) that models users’ realistic web browsing activity.

Beyond enhancing the covertness of web protocol tunneling,
Huma addresses two dimensions that are often overlooked in
prior circumvention research. First, Huma provides native pri-
vacy safeguards against Sybil proxies, ensuring that the covert
destination contacted by a user (as well as that communica-
tion’s contents) remain hidden, even when a Huma-enabled
website is controlled by an adversary. Huma achieves this by
having users encrypt their messages such that only a trusted
intermediary node—located beyond the website itself—can de-
crypt them, ensuring that the website’s operator cannot access
or infer meaningful information. This helps mitigate attacks
where censors may compromise Huma-enabled websites or set
up honeypot websites to log user activities for strengthening
evidence which may lead to later prosecution [13].

Second, Huma is designed to operate as a fallback covert
communication tool within rising national Intranet environ-
ments [31], [32], such as those tested in Russia [33], [34]
and Iran [35]–[37]. Intranets isolate domestic users from the
global Internet, allowing access only to a limited set of
government-approved services [38]. In this scenario, Huma
facilitates covert communications between users within the
censored region, despite the censor’s full visibility over the
national routing infrastructure. This functionality is enabled
by Huma’s traffic replacement scheme, which lets users submit
encrypted messages to be stored by the Huma-enabled website,
and a private information retrieval (PIR) enabled key-value
store [39], which allows users to retrieve messages addressed
to them without revealing which messages they are accessing.

We implement a prototype of Huma and evaluate it across
multiple dimensions. First, we assess Huma’s resistance to
content fingerprinting, examining whether covert data relayed
by Sybil nodes can leak information to an adversary. Then,
we examine whether covert communications can be distin-
guished from legitimate web activity. Lastly, we assess Huma’s
network performance, quantifying its latency and bandwidth
overheads, as well as expected content download rates when
enforcing behavioral realism through overt user simulators,
which aim to replicate web browsing activity patterns.

II. INTERMEDIARY-BASED CIRCUMVENTION TOOLS

We now examine the landscape of censorship circumvention
tools that rely on intermediary nodes to fetch blocked content,
such as proxies or specialized routers that inconspicuously

redirect user traffic. We classify prominent tools based on three
dimensions that reflect their security features and operational
deployment needs (see Table I), aiming to showcase whether
and how each tool: a) resists detection against traffic analysis;
b) provides privacy safeguards against Sybil proxies, and
c) enables for a straightforward deployment while providing
reasonable collateral damage. Throughout our analysis, we
establish a suite of design goals Huma is set to achieve.

A. Traffic Analysis Resistance

Unobservability. Regarded as the ability for circumvention
tools to resist traffic fingerprinting [59], unobservability is typ-
ically achieved by having circumvention tools generate traffic
patterns that blend in with those of legitimate (and incon-
spicuous) applications. Though mostly passive, fingerprinting
may also rely on the manipulation of network conditions [59]
or interaction with suspected circumvention endpoints [60],
[61] to elicit inconsistencies between the traffic generated by
circumvention tools and that of legitimate applications [59].

Refraction networking systems rely on backbone routers
provided by friendly Internet service providers (ISPs) to re-
lay steganographically-marked packets aimed at covert des-
tinations while seemingly connected to an unblocked overt
destination [62]–[64]. Slitheen [40] resists traffic fingerprinting
by hiding covert content within the leaf HTTP elements
of an overt website’s response. Follow-up systems consider
traffic fingerprinting attacks [41], allowing compatibility with
existing defenses (e.g., as in the case of Conjure [42]).

CDN-assisted tools make use of content delivery networks
(CDNs) to evade detection. CacheBrowser [43] enables access
to censored content stored in CDN caches, but is susceptible
to fingerprinting. CDN Reaper [44] added a scrambling unit
that alters the volume of traffic exchanged between clients
and endpoints. Domain fronting [45] hides covert traffic in-
side HTTPS connections seemingly targeted at allowed hosts
on CDN domains, but is also fingerprintable [65]. Similar
alternatives, e.g., domain shadowing [46], provide hypothetical
solutions against these attacks by segmenting data requests.

Moving target defenses such as SpotProxy [49] and Net-
Shuffle [48] aim to change proxy endpoints faster than the
censor can block them. While compatible with traffic shap-
ing [66], these tools do not inherently resist traffic finger-
printing. Snowflake’s WebRTC traffic patterns can be identi-
fied [67], [68], but considerations exist to obfuscate them [47].

Fully encrypted protocols (FEPs) shroud arbitrary data
within a layer of encryption, making generated traffic look
random. Modern FEPs shape these random bytes to look sim-
ilar to usual traffic (e.g., HTTPS), aiming to resist traffic fin-
gerprinting. Yet, widespread tools such as Shadowsocks [51]
and Lyrebird can be detected via entropy tests [12], [65], [69].

Programmable frameworks disguise covert traffic as con-
figurable protocols. Proteus [52] enables developers to define
custom protocol behaviors to bypass blocking. WATER [53]
packages evasion techniques as portable modules, allowing
different tools to deploy new circumvention transports without
changes to the underlying applications. UPGen [54] generates

2



TABLE I
CATEGORIZATION AND CLASSIFICATION OF CENSORSHIP CIRCUMVENTION TOOLS RELATED TO HUMA.

Category Circumvention System Traffic Analysis Resistance Safeguards against Sybil Proxies Deployment Environment

Unobservability Behav. Real. Dest. Conceal. Dest. Conceal. Inf. IRI CEI WEB SERV/END

Refraction Networking
Slitheen [40]
Waterfall of Liberty [41]
Conjure [42]

CDN-Assisted

Cache Browser [43] -
CDN Reaper [44] -
Domain Fronting / meek [45]
Domain Shadowing [46]

Moving Target Defenses
Snowflake [47]
NetShuffle [48]
SpotProxy [49]

Fully Encrypted Protocols obfs4 / Lyrebird [50]
Shadowsocks [51]

Programmable Frameworks
Proteus [52]
WATER [53]
UpGen [54]

Protocol Mimicking

StegoTorus [55]
SkypeMorph [56]
FTE [57]
Marionette [58]

Protocol Tunneling

Protozoa [22]
Camoufler [26]
Telepath [24] -
Raven [25] -

Web Protocol Tunneling
WebTunnel [27]
HTTPT [21]
Balboa [23]
Huma

swaths of plausible encrypted protocols that resemble typical
encrypted traffic but which are distinct from known protocols.

Protocol mimicking tools imitate popular protocols. For
instance, Skypemorph [56] mimics videoconferencing traffic,
while StegoTorus [55] imitates HTTP traffic. However, they
failed to account for implementation quirks that could be
exploited to find inconsistencies in the mimicked traffic, ren-
dering them observable [59]. FTE [57] generates ciphertexts
that conform to the expected format of an allowed protocol,
but is vulnerable to entropy tests [65]. In later efforts, Mari-
onette [58] offers programmable mimicry of stateful protocols;
however, imitation involves a labor-intensive effort [59].

Protocol tunneling tools directly embed data into the inputs
of a cover protocol. For instance, FreeWave [17] modulated
covert data into audio transmitted via VoIP calls. However,
despite adhering to the cover protocol’s specification, mis-
matches between the characteristics of legitimate/covert inputs
transmitted via the cover protocol could still reflect on abnor-
mal traffic patterns, making this and other similar tunneling
approaches vulnerable to detection [70], [71]. Recent tools
enhanced tunneling mechanisms, ensuring that the injection
of covert data will not lead to the cover protocol to produce
abnormal traffic patterns. They rely on applications such as e-
mail (Raven [25]), videoconferencing (Protozoa [22]), games
(Telepath [24]), or instant-messaging (Camoufler [26]).

Web protocol tunneling tools can be perceived as a sub-
category of the aforementioned systems and aim to circumvent
censorship by embedding data in overt web requests to web-
sites that act as proxies to covert destinations. In HTTPT [21]
and WebTunnel [27], the client initiates a standard TLS con-

nection, then upgrades it to a WebSocket while embedding the
covert destination’s address in the upgrade request. The overt
website relays this to the covert destination and completes
the WebSocket handshake, enabling the client to communicate
with the covert server through the established WebSocket
channel. Although these methods aim to blend with legitimate
traffic, they modify the expected communication behavior
with the overt website, failing to preserve expected traffic
patterns [21], [72]. Similarly to Slitheen [40], Balboa [23] ex-
changes leaf content on TLS-protected elements to resist traffic
fingerprinting. However, data replacement introduces timing
variations which may allow censors to detect Balboa [23].

Behavioral realism. This property prescribes that the observ-
able behavior of a cover application used for circumvention
should be similar to its typical, genuine usage [25].

Few existing circumvention tools account for behavioral
realism. Raven [25] operates via e-mail exchanges and targets
a realistic e-mail usage inspired by users’ historical behavior;
it accomplishes this by training a generative model based
on existing datasets of e-mail exchanges (considering their
frequency, length, and sending times), restricting covert data
exchanges to follow these patterns. OUStral [30] is an add-on
meant for web traffic replacement systems (e.g., Slitheen [40],
Balboa [23]) which generates activity patterns by following
probabilistic models designed after human browsing studies
(e.g., [73]–[75]). OUStral can bypass bot detection filters, but
does not adhere to users’ historical browsing profile.

Design goal 1. Protect against traffic fingerprinting attacks
and provide behavioral realism guarantees.
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B. Safeguards against Sybil Proxies

The deployment of strong privacy safeguards against Sybil
proxies is a desirable (but often overlooked) requirement in
scenarios in which a censor may be willing to deploy its own
proxies among the legitimate circumvention infrastructure.
The lack of these safeguards allows censors to temporarily
allow user connections to blocked destinations while silently
observing user activities, thus potentially collecting incrimi-
nating evidence that could be used for prosecution [13].
Destination concealment. This property refers to a privacy
protection offered to the users of circumvention tools, in
which the identity of the intended destination of circumvention
traffic is hidden from the proxy handling the user’s traffic.
Most intermediary-based circumvention tools acknowledge
this risk, treating proxies as untrusted, but relegate destination
concealment to auxiliary schemes—typically onion routing via
Tor [76]. In this deployment model, client traffic is encrypted
and routed through Tor, preventing proxies from directly
identifying a user’s final destination. Secure connections to
the Tor network can be established twofold [77]: a) directly,
having the proxy act as the first hop in a Tor circuit—such
as in Conjure, meek, Lyrebird, or WebTunnel; or b) indirectly,
first to the proxy server itself, and then through Tor for a
total of four hops between client and destination—such as in
Shadowsocks, Snowflake, or Camoufler. While this form of
destination concealment is not intrinsic to the circumvention
tools themselves, most tools mentioned in Table I support it.

Despite aiding in destination concealment, Umayya et
al. [77]’s study reveals that pairing Tor with existing circum-
vention approaches is rather slow and unreliable. Moreover,
given some tools’ (e.g., Telepath, Raven) focus on achieving
strong traffic analysis resistance, they lack the throughput and
latency requirements to establish connections via Tor, and thus
to achieve destination concealment through it.
Destination concealment against inference. While desti-
nation concealment mechanisms ensure that the destination
of circumvention traffic is not outright revealed to a proxy
operator (e.g., should circumvention traffic be forwarded via
Tor), a censor who controls a proxy may still deduce a
circumvention tool user’s destination using techniques such
as website fingerprinting [29]. This is similar in spirit to
attacks that assume an adversary may become a guard node
for a user’s Tor traffic, thus being in the position to launch
this kind of traffic analysis attacks [78]. A tool offering
destination concealment against inference would explicitly
thwart such attacks. Yet, as we can observe in Table I, no
existing circumvention tool provides these safeguards.
Design goal 2. Develop native privacy safeguards against
Sybil proxies for censorship circumvention tools.

C. Deployment and Collateral Damage

We define deployability as the extent to which a circum-
vention tool can be operated by entities involved in the
anti-censorship enterprise, ranging from requiring significant
industry support to being fully self-deployable by volunteers.

Internet routing infrastructure (IRI). Refraction networking
tools depend on the cooperation of routing infrastructure op-
erators, typically ISPs, who are willing to operate and support
the service’s costs [79]–[81]. However, this dependence on
broad ISP participation poses a significant deployment chal-
lenge, as the associated costs can be substantial [82], and ISPs
may be hesitant to align themselves with circumvention initia-
tives [48]. Still, if successfully and widely deployed, refraction
networking becomes difficult to disrupt; censors attempting to
divert network traffic away from Internet routes that deploy
refraction networking face high operational costs [81], [83].
Cloud- and edge-native infrastructure (CEI). Some cir-
cumvention tools exploit features provided by CDNs and
cloud platforms in unintended ways, leading service providers
to remove key features used for circumvention (e.g., the
disabling of domain fronting by some CDN providers [84],
[85]). While new tools adapt to such changes (e.g., domain
shadowing [46] on CDNs, or high-rotation proxies [49] on
transient cloud instances), their reliance on undocumented or
prone-to-change platform behaviors places these tools near the
end of the deployability spectrum. Tools like NetShuffle [48]
rely on edge network operators, making them easier to deploy
than industry-backed CEI infrastructure. Overall, CEI-based
circumvention imposes a significant collateral, as censors often
need to block CDNs or entire IP address blocks to deter it.
Websites (WEB). Other circumvention tools depend on the
cooperation of website operators, but demand for specific func-
tionalities as deployment prerequisites, potentially limiting the
pool of websites suitable for supporting circumvention. For
instance, HTTPT [21] and WebTunnel [27] require websites
that support WebSocket to establish a covert channel (§II-A).
Yet, WebSocket is mostly used for real-time communication
workloads and its deployment has stagnated, with an adoption
rate as low as 6.3% in 2021 [86]. Instead, tools such as
Balboa [23] or cloak [87] are straightforward to deploy. Tools
in this category pose a moderate risk of collateral damage
for censors; the more popular the cooperating website is, the
greater the collateral the censor may incur by blocking it [21].
Commodity servers and endpoints (SERV/END). The most
basic requirement for a proxy-based circumvention tool is
simply the availability of a server. As a result, most tools
within traffic mimicking, traffic tunneling, and fully encrypted
protocols belong to this category—requiring only a machine
capable of running the proxy, whether it’s a dedicated server
or a temporary, ad-hoc endpoint such as a laptop [47]. Thus,
tools in this category are generally the most straightforward to
deploy by volunteers, requiring no third-party support. How-
ever, ad-hoc proxy support—such as that provided by friends
or family members operating protocol tunneling proxies [22],
[26]—limits broader accessibility, leaving the majority of users
in need of circumvention without viable options. Moreover,
should a censor find reliable methods to identify these proxies,
it can block them with little to no collateral damage [48].
Design goal 3. Enable reasonable collateral and low 3rd-
party dependence circumvention via Web deployments.
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III. HUMA

We now introduce Huma, a new censorship-resistant com-
munication tool based on website deployments. This section
describes Huma’s threat model, architecture, and workflow.

A. Threat Model

Adversary’s capabilities. We consider a state-level adversary
whose main goal is to identify any Internet-based information
flows it deems sensitive, and which traverse both within and
across the country’s border. This adversary controls all ISPs
within the censored region, enabling passive interception of
all network traffic within and across national borders. In
practice, real-world adversaries are known to deploy traffic
analysis apparatuses at cross-border [88], regional [89], and
AS-level [90] vantage points. The adversary can deploy deep
packet inspection (DPI) filters to detect objectionable content
and apply advanced traffic analysis techniques, e.g., based on
machine learning, to identify the use of circumvention tools.

Instead of immediately blocking information flows deemed
objectionable, we consider our adversary to be interested in
learning about the Internet destinations and/or contents that
circumvention tools’ users might access, to later prosecute
them with aggravating legal grounds. Thus, the adversary may
compromise existing proxy-based circumvention infrastructure
and/or deploy Sybil circumvention proxies to tap on users’
connections and unveil the destination of circumvention traffic.
This concern is supported by the study of Xue et al. [13],
where participants expressed concerns that circumvention tools
could be operated as honeypots designed to monitor user activ-
ities. Also, should the circumvention tools leveraged by users
provide destination concealment (see §II-B), the adversary will
attempt to fingerprint the encrypted connections established
through proxies under its control to infer users’ destinations.

Lastly, we admit that the adversary will choose to block
any information flows it deems objectionable should it be
unable to inspect their contents or observe/infer their intended
destination. This will be the case should: a) the adversary be
able to compromise the proxy infrastructure, but users lever-
age circumvention tools that provide destination concealment
against inference, or; b) in cases where the adversary has no
control over proxies, and may only resort to traffic analysis to
identify (and then block) circumvention tools.
Adversary’s limitations and out-of-scope attacks. We as-
sume an adversary that seeks to minimize collateral damage
from coarse-grained measures such as applying a blanket ban
to HTTPS connections. The adversary is also computationally
bounded and unable to break standard cryptographic primitives
(e.g., allowing it to snoop into TLS-protected traffic). Like
other web protocol tunneling tools (e.g., Balboa [23]), Huma
also relies on the assumption that TLS connections are not
intercepted by censors. In adversarial environments where the
use of TLS is man-in-the-middled (e.g., by forcing users to
install rogue root certificates) [91], the usage of Huma would
become detectable. However, such scenarios remain relatively
rare due to the high operational complexity involved and
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Fig. 1. Overview of Huma’s architecture and high-level workflow.

pressure from international peers. For instance, Kazakhstan’s
earlier attempts at traffic interception led the local government
to face lawsuits from ISPs, banks, and foreign entities, all
concerned that intercepting TLS traffic would undermine the
security of all Internet communications originating from the
country and jeopardize related commercial interests [92].

B. Core Architectural Components

This section introduces Huma’s main architectural compo-
nents, which are illustrated as purple boxes in Figure 1.
Huma authority. The Huma authority (HA) is located outside
the censored region and free from adversarial influence. It
embodies a trusted component of Huma, and is the initial point
of contact for: a) new users interested in leveraging Huma to
circumvent Internet censorship, and b) volunteer website op-
erators hoping to contribute to Huma’s infrastructure (§IV-A).

While bootstrapping communications into central points-of-
trust is a well-known challenge for circumvention [93], low-
bandwidth channels such as e-mail and instant-messaging have
succeeded in practice, e.g., Snowflake [47] bridge acquisition
via Rdsys. Our design also assumes that the HA leverages a
robust proxy distribution service (e.g., Lox [94]), precluding an
adversary from registering as multiple users and successfully
enumerating the entirety of the Huma proxy infrastructure.
Secure proxies. Huma relies on two interconnected compo-
nents that provide a secure proxy abstraction: a) volunteer-
operated Decoy Websites (DWs), and b) trusted Shade Proxies
(SPs) maintained by Huma operators. Decoupling proxy func-
tionality among these components allows Huma to achieve
resistance against Sybil proxies (see §IV-C).

Similar to WebTunnel bridges [95], DWs appear as ordinary,
benign websites, which serve as entry points into Huma.
While providing legitimate content to typical web users, DWs
inspect incoming traffic for steganographic tags embedded
within HTTP payloads that signal that a message is intended
for the Huma sub-system—in such cases, DWs explicitly
interface with SPs for mediating users’ circumvention data. In
practice, SPs are responsible for fetching the actual contents
requested by Huma users (from their intended destinations),
while shrouding this information from DWs, thus tackling
content/destination fingerprinting concerns (§II-B).
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Huma proxies are geared towards providing access to
web content (mainly webpages and their associated assets).
Streaming workloads are expected to reduce the interactivity
of Huma’s covert channel, thus being more adequate for
covert bulk downloads, whereas high-interaction tasks with
short message exchanges and tight latency requirements may
introduce constraints on the efficiency of traffic replacement
operations, instigating an interesting direction for future work.
Huma client. Huma users run a client assigned with two main
tasks: a) encrypting and embedding a user’s circumvention
requests into benign-looking encapsulating HTTP requests
sent to SPs via DWs (§IV-B1), and b) retrieving the requested
data from the DW backend via a double-request receive
protocol (§IV-B2). When Huma is run by a user, her browsing
patterns—towards DWs and the web in general—are ruled by
an overt user simulator (OUS) (§IV-B3), which ensures that
the user’s browsing patterns are consistent with her typical
behavior. This OUS is informed by historical browsing data,
helping Huma achieve behavioral realism (§II-A).

C. Overview of the Huma Workflow

This section outlines Huma’s operational workflow, whose
individual steps (in yellow Y ) are also illustrated in Figure 1.
User registration and fetch of Huma credentials. To issue
a registration request (§IV-A1), Alice first generates a key
pair and queries the HA for obtaining a set of bootstrapping
data for providing her access to the system (step 1 ). Once
the HA has validated Alice’s request, it will reply with the
requested bootstrapping data, which includes a user identifier
for accessing Huma-enabled websites, cryptographic materials
required to participate in the bridge distribution protocol (e.g.,
anonymous Lox credentials if using Lox [94]), together with
a list of DW addresses and key-exchange material that enable
Huma proxy-based circumvention. After responding to Alice,
the HA distributes Alice’s public key and her identifier to her
assigned DWs and SP, while also sending her key-exchange
material to the SP (step 2 ). This ensures that DWs can
validate Alice’s authorization to access the system, and that
SPs can conceal the contents and destination of Alice’s covert
communications from DWs themselves.
Placing requests towards Huma proxies. To issue a covert
request for an otherwise blocked website’s content (e.g.,
cnn.com), Alice encrypts the request intended to be read
by the SP using a symmetric key exchanged with the SP via
the HA during registration (see §IV-A1). Alice then embeds
this encrypted payload, along with her public key and the user
identifier given by the HA, within the body of a benign-looking
HTTPS request (see §IV-B1) directed to a DW (step 3 ).

To ensure that timing anomalies (which could reveal the
covert channel [23]) are avoided when processing this special
request, the DW immediately processes the encapsulating
HTTP request, replying with a legitimate webpage to the client
(see §IV-B2). However, after replying, the DW forwards the
original HTTP payload to its local Huma backend, where the
request is scanned for Huma-related content (step 4 ).
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Fig. 2. Bootstrapping data shared by the Huma authority during user
registration. Each phase is color-coded: blue for issuing user credentials, red
for provisioning servers with client information, and green for key agreement.

Once the Huma backend receives a request for analysis, it
authenticates the user using her credentials (i.e., the public
key and identifier facilitated by the user), terminating silently
if authentication fails (§IV-A1). If the user’s credentials are
correctly validated, the DW forwards the user’s request to
the paired SP, where it is decrypted and processed (step 5 ).
Throughout this process, a DW operator does not learn any
details about the contents or destination of a user’s request—
only whether a specific user can access Huma (§IV-C).

Once the SP processes the request and fetches the user’s
desired content, it encrypts the response using the symmetric
key shared between Alice and the SP, before padding and
returning it to the DW (step 6 ). The DW must then allow
the client to retrieve this response. To this end, the response
is processed by a double-request receive (DRR) handler that
prepares Alice’s data to be fetched (§IV-B2).
Retrieving responses from Huma proxies. The DRR handler
embeds Alice’s encrypted response within a copy of a legiti-
mate webpage served by the DW, following a data replacement
scheme akin to that of Slitheen [40] or Balboa [23]. This
modified page retains the size and format of the original
page, appearing unchanged to an adversary observing the
encrypted HTTPS traffic (§V-D. Once the modified page is
prepared, the DRR handler signals Huma’s request processor
to serve Alice’s upcoming request using the modified webpage.
When Alice sends her next request, whether benign or Huma-
embedded, the DW immediately replies with the prepared
response, thus fulfilling the original request and finishing DRR
(step 7 ). This immediate response is made possible through
a fast key-value store that the DW always checks before
responding to any legitimate or Huma request (§IV-B2).

IV. DETAILS ON HUMA’S OPERATIONS

A. Managing Users and the Infrastructure

1) User Registration and Credential Distribution: Figure 2
illustrates the bootstrapping process followed by a new Huma
user. This process includes three main phases, responsible for
a) issuing credentials to users; b) provisioning DWs and SPs
with necessary information to authenticate Huma users, and
c) establishing a shared key among the user and the SP.
Credential issuance. To access Huma, a user must first
generate a key pair (UPub, UPriv) to enable her authentication
before the system through the use of cryptographic signatures.
The authentication scheme used in each region is selected by
the Huma authority (HA) based on local network conditions.
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In low-bandwidth regions, compact schemes like EdDSA [96]
are preferable, while high-bandwidth regions can use faster
RSA-based signatures [97] to reduce DW load.

After generating her key pair, Alice registers with the HA
using her UPub. The HA responds with a unique user ID
(UID), credentials for participating in the bridge distribution
protocol, and a list of DW domain names—each corresponding
to an entry point into the Huma that the user can now access.
Provisioning DWs and SPs with authentication material.
To complete the registration workflow, the HA must ensure
that both DWs and SPs are equipped to authenticate and
authorize requests from the new user. For each DW in the
user’s list, the HA shares the required data for validating the
user’s credentials, which includes the user’s ID (UID) and her
public key (UPub). The HA also shares this info with the SPs.
Key agreement between users and SP. The HA will also
act as a secure intermediary between the user and a given
SP, allowing them to run a key agreement protocol (such as
Diffie-Hellman) to produce a symmetric key for their future
communications, without requiring the user and SP to directly
contact each other. This allows DWs to act as blind relays,
preventing them from observing or modifying the encrypted
data flowing between the user and SP (§IV-C). The shared
secret key can be ratcheted [98] to provide forward secrecy.

2) DW Registration and DW-to-SP Assignment: Operators
who wish to volunteer and turn their websites into DWs must
first register with the Huma authority (HA).
Website ownership verification. The registration process
begins with the operator initiating contact and providing
verifiable proof of domain ownership. To prevent malicious
registration attempts, Huma requires that website operators
provide evidence of control over the website they wish to
enroll. A simple and effective mechanism is to request that
the operator produce a signature over a challenge message
using the private key associated with the website’s HTTPS
certificate. This signature can then be verified by the HA using
the public key embedded in the website’s certificate.
Centralized DW-to-SP assignment. Once ownership is ver-
ified, the HA assigns an SP to the newly registered DW.
Important to Huma’s resilience against Sybil proxies, SPs are
not chosen by operators. Instead, they are centrally managed
by the HA, thus ensuring that each DW–SP pair operates in-
dependently. The aim is to prevent the possibility of collusion
between DWs and SPs, which could lead to compromising
confidentiality and destination concealment (§II-B).
Scalable SP deployment. The costs of deploying SPs can
be amortized by hosting them as lightweight proxies atop
existing cloud infrastructure or embedded within systems
like SpotProxy [49], which substantially reduce the costs of
operating cloud proxies via cloud spot instances. In addition,
a single SP can support users connecting through multiple
DWs. Because SPs operate from network locations outside
the censor’s control, compromising one DW may allow the
censor to block its connection to the SP, but it does not affect
the ability of other DWs to reach the same SP.

B. Achieving Resistance against Traffic Analysis

1) Huma Request Generation and Authentication: When
placing an encrypted request R towards a SP (via a DW), Alice
generates and includes a signature of this request SigUPriv

(R)
alongside her UID. This data is then embedded into a benign-
looking request sent to a valid DW endpoint. Next, we detail
how Huma users covertly embed encrypted request data and
how DWs can authenticate the requests sent by users.
Request generation and embedding. Similar to Nasr et
al. [41], Huma clients periodically send and collect benign
requests to DWs when no Huma requests are pending to
sent out, recording relevant metadata such as request size and
format. This data later serves as a template for embedding
Huma content to help maintain consistency in request size
and structure. For instance, a DW may offer HTTP POST
endpoints for actions such as commenting, posting reviews,
or uploading files. A Huma client that has recorded past inter-
actions with these endpoints can select the most appropriate
one for embedding a covert request based on the content size,
adhering to benign activity patterns before the DW.
Requests and credential verification. After preparing and
embedding her covert request, Alice will send it to the DW.
Upon responding to Alice with a benign response as per
the deferred reply protocol (see §IV-B2), Alice’s request is
forwarded to the Huma backend, where the encapsulated
information is used to verify her authorization to access the
DW. To this end, the DW checks if the UID included as part of
the user’s request had been communicated to it by the HA, and
then verifies whether SigUPriv

(R) can be validated using the
UPub matching that UID. If any of the above checks fail due to
missing (as in the case of typical web users) or invalid UID and
SigUPriv

(R) information (as in the case of probing attempts
by censors), the DW will simply silently fail. This prevents
active probing attacks from Huma-aware censors who may
send Huma-compatible requests to websites at large, hoping
to elicit website behavior leading to the identification of DWs.

2) Secure Data Retrieval Via Deferred Replies: To resist
timing-based fingerprinting, Huma adopts a deferred reply
strategy where all DWs reply immediately to incoming re-
quests, regardless of whether the request carries covert Huma
traffic. Any additional processing—such as authenticating the
user (§IV-B1) or querying the SP—is deferred to a backend
that operates asynchronously. Unlike Balboa [23], this ensures
that Huma-related requests are indistinguishable from legiti-
mate traffic based on response timing alone, thus eliminating
telltaling cues that a DW may be serving circumvention traffic.
Double-request receive. The deferred reply processing model
lays the foundation for Huma’s double-request receive (DRR)
protocol for data delivery, depicted in Figure 3. DRR starts
when Alice requests a covert webpage through a DW (step 1 ).
The DW will always immediately respond to the user, per the
deferred response processing protocol. To respond to users,
the DW always queries a local key-value (KV) cache to check
if the requesting user has a modified page in-store for them.
Since Alice is just issuing a request, we assume that she has
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Fig. 3. Deferred processing mechanism applied to double-request receive.

no modified page in-store for her and her cache will miss, thus
immediately receiving a benign page upon request (step 2 ).

After responding to Alice, her request is forwarded to the
Huma backend for authentication (§IV-B1). Upon successful
verification, her request will be forwarded to the SP for
fulfillment (step 3 ). Then, the SP attempts to decrypt Alice’s
request using the agreed-upon symmetric key (§IV-A1), failing
silently if decryption is unsuccessful or no key is found for the
user. It then acts as a proxy, fetching the requested content,
padding and encrypting the response, before splitting it into
predetermined chunk sizes (§IV-C). Finally, the encrypted
chunks of data are submitted back to the DRR handler at the
DW, where they are prepared for retrieval by the user (step 4 ).

The DW’s DRR handler prepares the response using the
following steps. First, it samples a copy of a legitimate
webpage served by the DW along with all its leaf nodes (e.g.,
media content and scripts). This page will act as a cover
for delivering the actual response. If the combined size of
the leaf nodes on this page is insufficient to hold the full
response, Huma falls back on one of its multi-page delivery
mechanisms (§IV-B4). Otherwise, the DRR handler overwrites
the encrypted response chunks into the leaf files, ensuring that
the resulting objects preserve the original file sizes. Thus, from
the perspective of a network eavesdropper, the TLS records
generated by the website when conveying covert data remain
indistinguishable from those of an ordinary webpage fetch.
Each leaf node includes metadata tags indicating its order and
content length, allowing the Huma client to reconstruct the
response. Leaf nodes are written to disk on the DW, as if
they were legitimate leaf contents. The HTML of the sampled
page is then modified to reference the newly created leaf files,
resulting in a complete response page. Finally, the path to this
page is added to Alice’s queue in the KV store (step 5 ).

When Alice issues another request, either benign or Huma-
embedded (step 6 ), the DW immediately attempts to respond
to her request as per the deferred reply strategy. As previously
described, the DW will first query the KV cache using a uuid
key included in all users’ cookies (Huma or otherwise). This
time, the cache query results in a hit, as covert content is
available for Alice. Ultimately, the DW responds using the
cached webpage (step 7 ) and removes it from Alice’s queue
by popping it from the key-value store. If Alice’s request
is Huma-embedded, it is forwarded as usual to the Huma
backend (step 3 ) and re-initiates the deferred reply cycle.

Appendix A takes a closer look at the DRR protocol, mak-
ing exchanged message contents and entities’ roles explicit.

3) Behavioral Realism via Overt User Simulation: Huma
ensures that all client-to-DW interactions resemble those of
ordinary web users. This is achieved through an overt user sim-
ulator (OUS), which intercepts client-initiated communications
and wraps them in realistic browsing activity. Without such
a mechanism, clients could inadvertently issue an unusually
high number of requests to a small set of DWs, representing
anomalous behavior that censors can detect through statis-
tical modeling. Huma’s OUS emulates human browsing by
orchestrating benign-looking requests that blend Huma with
legitimate HTTPS traffic. It draws inspiration from prior work
on the synthetic generation of plausible user behavior [25].
Huma’s OUS training and deployment modes. Huma sup-
ports two deployment modes for its OUS: a) a personalized
training mode, and b) a pretrained mode.

First, in the personalized mode, the user runs the OUS in a
“learning phase” over several days, allowing it to record their
natural browsing habits passively. This results in a customized
behavior model that helps provide strong resistance against
profiling-based attacks by reflecting characteristics such as
realistic inter-request timing and website revisiting patterns.
Notwithstanding, a user could avoid having sensitive destina-
tions replayed by the OUS by selectively excluding them from
the set of browsing sessions used as training input to the OUS.

Second, users may download a pretrained OUS instance
during their registration process with the Huma authority. This
model aims to reflect typical usage patterns of users within a
given region or demographic, and could be used without a
warm-up phase. While convenient and lowering the barrier
of entry to new Huma users, it may present higher risks of
steering away from a user’s typical browsing patterns. Huma
delegates the choice of deployment mode to the user, allowing
them to trade off between behavioral fidelity and ease of setup.
Huma OUS’ runtime behavior. The core of the OUS is a
headless browser that simulates user behavior such as page
visits, clicking internal and external links, and revisiting previ-
ously accessed content. The OUS schedules outgoing requests
based on a behavior script derived from its model, issuing
benign requests to DWs even when no covert data is pending.

When Huma users wish to place requests (or retrieve
covert data from requests placed in the past), the OUS draws
from a queue of pending Huma requests and embeds them
into realistic browsing sessions. Requests are delayed and
issued only when a behavior rule allows, thereby preventing
anomalous browsing patterns that might reveal the presence
of hidden communication. The integration of the OUS with
Huma’s deferred content replacement and request scheduling
ensures that operations tied to cross-site multi-page responses
(§IV-B4) are hidden within a flow of plausible user behavior.

4) Multi-page Fallback Mechanisms: Ideally, a user’s
covert response fits within a single webpage’s leaf objects.
When it exceeds this capacity, Huma resorts to two fallbacks.
Same-site multi-page fallback. If the size of the leaf objects
of the originally sampled page is insufficient to carry the entire
SP response, Huma allows the DW to split the user’s response
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across multiple requests by selecting additional webpages from
the same DW and performing the same substitution process.
The Huma client software is aware of the mapping between
requests and response fragments, allowing it to reassemble the
complete response after fetching all necessary pages.
Cross-site multi-page fallback. To reflect plausible browsing
behavior and avoid raising suspicion through repeated accesses
to the same DW, Huma’s overt user simulator (§IV-B3) will
direct users to visit other seemingly unrelated, legitimate
websites. However, this would prevent a user relying on same-
site multi-page fallback from gathering her intended response
by repeatedly querying the DW she is currently connected to—
at least, until the OUS instructs the user to revisit the website.

To tackle this issue, Huma allows users to retrieve different
segments of a response by visiting multiple DWs, which
are all linked to the same SP. This process calls for two
requirements: a) the SP stores the entirety of the response
to a user’s request locally for a predetermined period, and
b) the client includes a progress counter that keeps track
of how many data segments it has received in each DRR
request placed towards a DW. If a user switches to a different
DW before fetching the entirety of a response, the new DW
can query the SP for only the remaining segments the user
has yet to receive. The combination of these mechanisms
allows clients to switch between DWs, possibly accessing
them in any order, while still correctly reassembling the full
response. Altogether, this cross-site fallback mechanism can
improve both covertness and reliability: it is compatible with
behavioral realism enforcement by distributing access patterns
across different DWs while being robust against the potential
temporary downtime (or even blocking) of any individual DW.

To avoid starving SPs’ storage resources, SPs keep re-
sponses to user requests for a short tunable period (e.g.,
30min), deleting them either when the user fetches the re-
sponse completely or the above period elapses. In the former
case, DWs are expected to cooperate with the SP, signaling
whether a user has finished fetching a pending response.

C. Achieving Resistance against Sybil Proxies

To protect user privacy, Huma separates duties between
DWs and SPs. Untrusted DWs relay encrypted messages and
serve data, while trusted SPs decrypt requests and contact
covert destinations, preventing user-destination linkage.
Encrypted communication and write obfuscation. After
an SP fetches a response for a user’s request (§IV-B2), it
pads and splits the data into fixed-size data chunks before
encrypting the result and submitting that back to the DW.
This mechanism provides an important layer of protection
against malicious DWs. Each data chunk is padded to a
uniform size, complicating content-based fingerprinting. The
chunk size is controlled by a configurable parameter that
balances resistance to fingerprinting against network overhead;
we evaluate various settings in §V-C. As a result, a DW only
learns the number of padded chunks (and the sum of their size)
retrieved by the user; our evaluation shows this knowledge can
be made rather uninformative for a fingerprinting adversary.

Curtailing the attack surface with compromised DWs. We
assume that a Huma user is identifiable by DWs through their
IP address and public key used for authenticating requests.
Nevertheless, even if a DW is compromised by a censor,
the censor gains no visibility into what information is being
exchanged or which covert destinations are being accessed
by users. Although the SP can decrypt user requests, it
possesses access only to a user’s randomly assigned UID, but
no network-layer information about the user for whom it is
resolving requests. Even if a rogue DW deliberately sends such
information to the SP, SPs are considered trusted elements of
the Huma infrastructure and are configured to simply ignore
supplemental data conveyed to them, other than a user’s UID

and the network destination to access and fetch content from.

D. Deployment within Intranets

Re-purposing Huma for Intranet scenarios. Unlike tra-
ditional anonymous messengers (e.g., Riposte [99], Ex-
press [100]), Huma can help ensure user privacy and blocking
resistance, protecting users not only from potentially malicious
messaging servers but also from adversaries attempting to
detect or disrupt covert communication altogether.

The main architectural change in Huma’s Intranet mode is
the removal of SPs and the integration of private information
retrieval (PIR) databases in DWs to serve as user mailboxes.
This prevents DWs from learning communication patterns or
metadata about conversation participants. We adopt Pung [39]
as our PIR database due to its key-value store design.
Modified client exchanges in Intranets. In this setup, Huma
users can write encrypted messages to the DW. In Pung, users
are assumed to possess each other’s public keys, a requirement
fulfilled in Huma via the HA. Following the Pung protocol,
users can derive [101] shared secrets KL and KE used for
mailbox label generation and message encryption, respectively.

In the Intranet scenario, each Huma user request includes
the encrypted message R = EncKE

(M), the sender’s UID,
a label for sending the message labelS(r), a PIR query
Q = Query(labelR(r)) to retrieve incoming messages, and
the signature SigUPriv

(R||Q||UID||LabelS(r)). Mailbox la-
bels are deterministically generated using KL and the current
round number r [39]. Private query Q is generated as part
of the PIR scheme, which enables private message retrieval
without revealing what content was accessed. As a result, each
Huma request performs both a write and a read simultaneously,
in accordance with Huma’s deferred processing (§IV-B2).

After the DW immediately responds to Alice, it will send
the Pung request to the Huma backend. There, Alice’s message
R is written to Pung’s private key-value store, while her PIR
query Q is executed in Pung to retrieve messages from her
mailbox. The resulting response is then sent to the DRR
handler to be prepared for retrieval. With each subsequent re-
quest, Alice receives the response to her previous query while
simultaneously submitting new read and write operations. If
a user’s OUS (§IV-B3) sends a request to a DW when their
outgoing message queue is empty, the Huma client generates
random messages addressed to random mailboxes as chaff.
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V. EVALUATION

We now detail our evaluation goals (§V-A) and experimental
testbed (§V-B). Then, we assess Huma’s resistance against
content (§V-C) and traffic (§V-D) fingerprinting, followed by
an assessment of its throughput with and without a Raven-
based OUS that enforces behavioral realism (§V-E). Lastly,
we study Huma’s scalability as users join the system (§V-F).

A. Evaluation Goals

Resistance to content fingerprinting. We wish to assess
whether the data chunks relayed by DWs convey useful
information about the browsing habits of Huma users. To this
end, we devise an experiment that exposes DWs to a pool of
content of interest (e.g., payloads requested by Huma users)
transmitted by SPs under different chunk sizes. A classifier
trained to distinguish different webpages based on the number
of received chunks should then be unable to correctly pinpoint
the website fetched by a given Huma user. We leverage
classification accuracy as the metric for this experiment.
Resistance to traffic fingerprinting. The network fingerprint
generated when fetching Huma-relayed content from a DW
should match the fingerprint generated by a benign TLS
connection towards the same website. This includes both
volumetric characteristics about the connection (e.g., number
of transmitted packets, total bytes exchanged), but also timing
characteristics (e.g., verifying the absence of noticeable delays
introduced by Huma when serving content hosted by the DW).
A traffic classifier trained to distinguish benign data fetches
from Huma data fetches should achieve a low accuracy. For
asserting behavioral realism, a classifier trained to identify
Huma-generated browsing sessions among real ones should
not be able to meaningfully separate between both classes.
Network performance. Lastly, we wish to assess the network
bandwidth and latency overheads imposed by Huma when
fetching webpages. Latency overhead is defined as the addi-
tional time required to load a page, while bandwidth overhead
refers to the amount of extra bytes required to download a page
via Huma. We also wish to assess the rate at which users can
access content via Huma when deploying an OUS.

B. Experimental Testbed

Huma prototype. We implement our prototype [102] for
Huma clients, DWs, and SPs using 4 200 lines of Python
code. We develop the Huma DW using the Django-Rest
framework [103], which uses a local instance of Redis [104]
as its KV store. We chose Redis due to its performance and
support for atomic queue operations. We created the SP as a
light Flask [105] web app. Lastly, we built the Huma client
using Python code, coupled with an OUS which, similarly to
Wails et al. [25], uses the SDV library [106] for synthetic
user behavior generation. We also use PyCryptodome [107] to
perform our cryptographic computations for all components.
Hardware and network deployment scenario. We deployed
three clients, one DW, one SP, and one webserver hosting a
static website using VMs on DigitalOcean, each provisioned
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Fig. 4. Trade-off on content fingerprinting accuracy and bandwidth overhead
(Tranco top-100) when storing responses in differently-sized data chunks.

with 4GB RAM and 2 vCPUs running Ubuntu 24.04. The DW
and SP are co-located in San Francisco (U.S.), while the clients
are geographically distributed across San Francisco (U.S),
Frankfurt (Germany), and Bangalore (India). The webserver,
which acts as the target of user’s Huma requests, is placed
in Toronto (Canada). This setup allows for comparisons that
take advantage of the clients’ locations to analyze the impact
of WAN network conditions on Huma’s performance, while
isolating them from DW-SP interactions. By co-locating the
DW and SP, we focus on assessing the effects of client-to-
infrastructure distance, rather than intra-infrastructure coordi-
nation, as Huma’s HA can assign users with DW-SP pairings
that intentionally decrease the latency experienced by users.
DW and target destination page sizes. Evaluating Huma’s
network performance entails understanding the trade-offs be-
tween the page sizes of DWs and those of the websites of
interest to users (referred to as target websites), as well as the
size of the data chunks exchanged between users and SPs (via
a given DW). To reduce the computational overhead of evalu-
ating all possible combinations of DW and target destinations’
content sizes within an arbitrary range, we grouped page sizes
into three tiers. Specifically, we measured frontpage resource
sizes for the top 100 Tranco websites [108] (which served a
frontpage via HTTP, as of March 2025), and used the 25th,
50th, and 75th percentiles of the resulting distribution to define
small, medium, and large page sizes, as 1.3MB, 3.2MB, and
9.2MB, respectively. We select DW and target page sizes from
these tiers, allowing us to explore multiple combinations of
parameters during our experiments. For instance, we evaluate
the impacts involved in having a DW with a large frontpage
while covertly downloading a small target website.
Web browsing behavior dataset. To drive our Raven-style
OUS, we rely on the real-world dataset of web browsing
behavior provided by Kulshrestha et al. [109], collected from
2 148 German users over the course of October 2018. The
dataset captures 9.1 million URL visits across nearly 50 000
unique domains and includes, for each user, the anonymized
URL and domain of each visited page. Using this dataset,
Kulshrestha et al. [110] found that individuals’ Web routines
are rather repetitive, with variation across users partly ex-
plained by their demographic and behavioral traits, supporting
the dataset’s realism as a model of human browsing behavior.

C. Resistance to Content Fingerprinting

In our first experiment, we aimed to understand the impact
of our configuration of data chunk sizes (written by the SP on
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the DW, and then later fetched by Huma users) on the ability
of an adversary controlling a malicious DW to fingerprint
the contents retrieved by users. To this end, we trained an
XGBoost [111] classifier for identifying the correct website
fetched by a client, when having the SP split (and potentially
pad) a target website’s data according to chunk sizes in the
range of 64KB to 16MB. We conducted this experiment by
having the adversary attempt to identify the original website
pages contained in our Tranco top-100 list, by leveraging the
total combined size of chunks used to transmit a page as the
only feature discernible by an adversary (e.g., for a target
website of size 1.5MB and a chunk size of 1MB, the SP
would write two 1MB blocks for a total size of 2MB). Besides
content fingerprinting protection, one must also consider the
overhead involved in defining the chunk sizes; while larger
chunk sizes may provide better protection, they are expected
to increase the network bandwidth consumed by Huma clients.

The results of our experiment are illustrated in Figure 4.
Without any chunking, the classifier can identify websites
with 91% accuracy. However, with chunking, we observe the
general trend that larger data chunks provide better protection
against fingerprinting. For instance, larger blocks (e.g., 16MB)
approximate the classifier’s accuracy to random guessing,
while even relatively small blocks offered some degree of
protection (e.g., small chunks of size 64 KB decrease the
classifier’s accuracy to 64%). From the figure, we can gather
a sweet spot between content fingerprinting protection and
modest bandwidth overhead. For instance, chunks of size 2MB
decrease the classifier’s accuracy to 12%, while adding a
limited bandwidth overhead of 21.3%. For this reason, we use
this chunk size (2MB) for the remainder of our experiments.

D. Resistance to Traffic Fingerprinting

We now verify whether Huma can defend against traffic
analysis attacks aimed at distinguishing Huma users from
legitimate users visiting a DW website. Then, we assess
Huma’s behavioral realism when using a Raven-inspired OUS.
Unobservability. In this experiment, we configured our DW
with a medium page size, and configured a target website of
small size in our webserver, such that the entirety of the target
website can fit within a single covert page fetched by the Huma
user. This suffices for experimenting with the assessment of
Huma’s unobservability since, when the target website page is
larger than the DW one, the user will simply issue additional
page fetches from the DW (which all undergo the same leaf
content replacement for each individual page fetch).

We built three datasets of 200 TLS network traces each,
referring to each of the three clients placed in different network
locations. For each client, we collected 100 traces where it
behaves as a legitimate user fetching the DW’s frontpage, and
100 traces where it runs Huma and fetches the same frontpage
but with its leaf contents replaced by data from the target
website. We evaluate traces’ similarity using two methods.

First, we leverage the machine learning-based covert chan-
nel detection classifier of Barradas et al. [71]. This classi-
fier is fueled by XGBoost and contains over 150 manually-

TABLE II
CLASSIFIER ACCURACY AND KS SIMILARITY ACROSS CLIENT LOCATIONS

Client Location XGBoost Acc. KS Statistic

San Francisco (U.S.) 53± 5% D=0.03, p-value=0.98
Frankfurt (Germany) 52± 1% D=0.06, p-value=0.47
Bangalore (India) 54± 4% D=0.05, p-value=0.76

engineered traffic features comprising summary statistics that
characterize different dimensions of network traces, including
fine-grained information about packet sizes and inter-arrival
timings, as well as statistics about a trace’s communication
volume. In addition, we extended the feature set of the
classifier to consider the timing information of page loads (by
adding features such as total page loading time and percentiles
of page load time), which are required to evaluate Huma’s
robustness to attacks based on page loading timing anomalies
that afflicted previous web protocol tunneling systems.

Second, we use the two-sided Kolmogorov-Smirnov (KS)
test [112] applied explicitly to absolute page load timing
distributions, as used before by Nasr et al. [41] to screen
for timing anomalies introduced by leaf content replacement
primitives used in refraction networking systems.

The results of our experiments are showcased in Table II.
We can observe that the XGBoost classifier can only distin-
guish between Huma flows and benign flows with an accuracy
of at most 54%, approximating random guessing. The results
of the KS test further suggest that an adversary cannot feasibly
distinguish between the kinds of flows as their distributions
are tightly overlapped. For instance, the KS test conducted
over the TLS traces generated by the client located in San
Francisco yielded a D-value of 0.03 with a P-value of 0.98;
for reference, the indistinguishability results of Waterfall of
Liberty [41] obtained only a D-value of 0.11 under a less
strict P-value of 0.5. These results suggest that both the ML-
based classifier and the KS test fail in distinguishing between
regular and Huma connections with significant confidence.
Behavioral realism. This experiment gauges the ability for
an adversary to identify Huma among real browsing sessions.
We started by splitting the raw browsing activities of each
user contained in the Kulshrestha et al. [109] dataset, rep-
resented as ⟨URL, access time, date⟩, into day-long browsing
sessions. Then, we condense these browsing sessions into daily
summaries with the help of 4 features: day-of-week, number
of unique URLs visited, total number of URL visits, and
average inter-website visit times. We use these features to train
Huma’s behavioral model consisting of two tabular variational
autoencoders (TVAE) [113] operating in sequence: one trained
to generate synthetic daily summaries, and another to generate
synthetic (i.e., Huma) browsing sessions based of the gener-
ated daily summaries. Appendix B provides additional details
on our synthetic browsing data generation pipeline.

To build our classifier, we start by randomly sampling 100
users studied by Kulshrestha et al. [109] data, ensuring that
each of these users had at least 18 days of browsing data – the
median reported by Kulshrestha et al. [110]. For equalizing
the data contributed by each user in our experiments, we
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Fig. 5. XGBoost classifier’s ROC curve when identifying Huma sessions.

sample 18 daily browsing sessions from each of the 100
users and include half of these in our dataset for training.
These sessions are used both as genuine samples part of
the classifier’s training set, and also used as input for the
TVAE to generate an equal number of synthetic samples to
be added to the classifier’s training set. The second half of the
users’ browsing sessions are included in the classifier’s test set,
together with an equal number of synthetic sessions generated
from the same data. Thus, both the training and test sets are
balanced, each containing equal proportions of genuine and
synthetic samples. This represents the best case scenario for
an adversary as it eschews base rate concerns tied to a realistic
Huma deployment [25]. Lastly, we fit an XGBoost classifier
to distinguish between genuine and synthetic sessions using
an augmented set of features with respect to the one used to
train Huma’s behavioral model–i.e., in addition to the day-of-
week, number of unique URLs visited, the total number of
URL visits, and the average inter-website visit times, we add
3 percentiles (25th, 50th, 75th) of per-site visit counts, and the
median of a user’s most active time of the day. We evaluate the
classifier’s performance by averaging the results of 10 random
splits of the users’ sessions used as basis for the train/test sets.

Figure 5 presents the receiver operating characteristic (ROC)
curve of the classifier. The x-axis shows the false positive
rate (FPR)—fraction of genuine sessions misclassified as
Huma’s—and the y-axis shows the true positive rate (TPR)—
fraction of Huma sessions identified correctly. The classifier
achieves a mean AUC of 0.87, suggesting that some Huma
sessions can be identified correctly. Yet, achieving high TPR
(e.g., ≥0.9) imposes a prohibitively high FPR (≥0.3), indicat-
ing that reliably detecting Huma remains difficult in practice.

Beyond our analysis, we argue that further work is re-
quired to apprehend whether supplemental information such
as site-level navigation paths [114], cross-site navigation pat-
terns [115], or user routines [116], may provide additional
leverage for supporting more effective classification strate-
gies. Relatably, advances in tabular data synthesis (e.g., Tab-
Syn [117], TabEBM [118]) show that generators are improving
at modeling complex patterns. Incorporating these techniques
into OUSes could further increase the realism of synthetic
browsing traces and provide a more challenging testbed for
benchmarking web protocol tunneling detection methods.

E. Network Performance

The following experiments gauge Huma’s network per-
formance. First, we are interested in uncovering the raw
bandwidth and latency overhead introduced by Huma when

TABLE III
HUMA’S LATENCY AND BANDWIDTH OVERHEADS FOR THE INDIA CLIENT
WITH DIFFERENT DW AND TARGET WEBSITE PAGE SIZE COMBINATIONS.

DW Size Target Size Fetch
Count

Latency
OH Fetch time (s) BW

OH Bytes

Small Small 2 214%±30 7.29±0.71 100%
Small Medium 4 385%±25 12.97±0.68 62%
Small Large 8 712%±46 24.95±1.43 13%
Medium Small 1 105%±37 4.77±0.86 146%
Medium Medium 2 198%±30 7.98±0.82 100%
Medium Large 4 396%±28 15.25±0.86 39%
Large Small 1 139%±30 5.55±0.70 607%
Large Medium 1 114%±33 5.74±0.88 187%
Large Large 2 248%±41 10.69±1.27 100%

fetching a target webpage, assuming no OUS is deployed.
Then, we assess the rate at which users can access content
via Huma when deploying the Raven-based OUS (we report
the performance of the OUStral-based OUS in Appendix C-B).

We guide our exposition using results from the client in
India, which is hosted on a different continent from where the
Huma infrastructure is situated. Results from clients in other
locations, showing similar trends, are shown in Appendix C-A.
Raw overheads (no OUS). Table III shows Huma’s latency
and bandwidth overheads for the India client, when assessing
combinations of DW and target website page sizes, covering
the small, medium, and large size tiers (§V-B). Each number
in the table is obtained as the avg. of 100 fetches of the
webpage in each configuration. We include std. dev. for latency
overheads, while bandwidth overheads are fixed since response
sizes do not change for our statically-sized target pages.

In general, reducing the number of requests required to
download a page also reduces the overhead introduced by
Huma. For a small DW page and a small target, a Huma client
must place two requests to fetch a complete response, resulting
in a latency overhead of 214%. However, when the setting is
changed to a medium sized DW, which can satisfy the request
within a single fetch, the latency overhead substantially drops
to 105%, while the bandwidth overhead increases from 100%
to 146%. However, once the DW size is large enough to fulfill
the request with a single fetch (e.g., large DW for small target
page), further increasing the page size increases bandwidth
overhead and provides no additional latency savings.
Daily page fetches w/ Raven-style OUS. For setting up this
experiment, we sorted the users included in Kulshrestha et
al. [110]’s dataset along three usage profiles, based on their
average number of page visits per day. We selected the 25th,
50th, and 75th percentiles as representatives of lightly to very
active users (see Appendix D for profiling details). Further, we
assume that a) all Huma users’ visits to DWs are intended to
fetch covert data, and b) that DWs’ frontpage sizes follow a
distribution of 25% small, 50% medium, and 25% large DWs.

Figure 6 shows the number of pages of varying sizes that can
be fully fetched (per day) as a function of available DWs when
Huma is used with the Raven-based OUS relying on different
user profiles. The figure reveals that the number of small pages
that lightly active and medium active users can fetch eventually
plateaus. This occurs when the number of available DWs ex-
ceeds the number of unique page visits they can make per day.
Another notable observation is that the medium active user
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Fig. 6. Pages fetched via the Raven-based OUS, with varying page sizes, as
a function of available DWs across different user profiles.

performs better than others when fewer DWs are available.
This is due to their browsing pattern, visiting fewer websites
but doing so with higher frequency. Given the overhead of
accessing a new DW, caused by sending the first request of the
DRR process (see §IV-B2), users with more visits per unique
website can utilize each DW more efficiently to complete more
page retrievals by using fewer requests. After issuing the first
fetch request to a website, Huma clients can use the second
request to ask for another endpoint, thereby chaining fetch
requests. This technique allows users to maximize the utility
of a single DW. However, users with lower average visits per
day eventually reach their maximum throughput. In contrast,
heavily active users, who visit enough unique websites per
day that can match the number of available DWs, can use
their heavy usage to their advantage to load higher volumes
of content per day as more DWs become available.

F. Scalability

We now assess the overheads inflicted upon Huma’s server-
side components when supporting multiple users (we deploy
up to 256 clients). In this experiment, we used the same DW,
SP, and target website software/hardware settings mentioned
in §V-A, noting that the Django-Rest-based DW prototype is
built as a development server that runs on a single-process.
Towards stress-testing our server components, we configure
each of our clients to simultaneously place a covert data
request for a small-sized target website via the same DW-SP
pair. We measure the CPU and RAM consumption on these
server-side components, together with the clients’ response
preparation times; this involves measuring the time spent
between receiving a client request at the DW and having the
DRR handler successfully packaging the corresponding reply.

Figure 7 depicts the results of our measurements. Fig-
ures 7(a) and 7(b) suggest that both DWs and SPs can easily
handle up to 32 simultaneous clients, with both median CPU
and RAM usage sitting under 14% and 17%, respectively.
For these many clients, Figure 7(c) reveals that all clients’
replies can be acquired and prepared by the DRR handler
under 3.5s. (In our experiments, the time spent by the SP
to request and fetch the target website page sits at an average
0.62s±0.11). For additional clients, the DW begins to queue
requests; though the system can still handle between 64 and
256 simultaneous clients, this imposes an increased covert
response preparation time (e.g., from a median of 6.3s when
64 clients connect, up to a median of 18.5s for 256 clients).
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Fig. 7. Overhead on a Huma DW and SP as the number of clients increase.
Each boxplot combines the measurements obtained from 5 experimental runs.

In practice, two optimizations are expected to help reduce
DWs/SPs’ load: a) DWs can rely on standard load-balancing
infrastructure to route clients to multiple servers hosting the
same site, thus scaling horizontally, and; b) the HA can aim
for evenly distributing clients across available DW-SP pairs.

VI. SECURITY ANALYSIS

Robustness against traffic fingerprinting. Huma’s deferred
traffic replacement limits the effectiveness of classifiers that
may be deployed for pinpointing TLS-based proxy traffic
(§V-D-Unobservability). Regardless, though current censors
may struggle to model the evolving TLS-based proxies’ land-
scape, Wails et al. [119] showed that behavioral cues such
as repeated interactions with proxy endpoints enable censors
to detect circumvention flows with high precision, even when
covert transport protocols blend with the long tail of innocuous
traffic. Huma addresses this concern since OUS-generated
browsing traces can reproduce realistic user behavior towards
web hosts, including DWs (§V-D-Behavioral realism).
Resistance against Sybil proxies. Huma achieves destination
concealment (§IV-C) by decoupling proxy functionality into
DW and SP components, preventing compromised DWs from
observing users’ intended destinations. Further, by having
SPs obfuscate retrieved content, Huma hinders fingerprinting
attempts that could reveal users’ web activity (§V-C).
Resilience to active probing. To thwart censors’ active prob-
ing, Huma ensures that DWs fail silently and respond like any
legitimate website (§IV-B1) whenever: a) a request carries a
UID not included in the authorized user list distributed by the
trusted HA, or; b) if a user’s signature over a request cannot
be validated using the UPub matching the provided UID.

VII. CONCLUSION

This paper introduces Huma, a censorship circumvention
tool that addresses existing traffic fingerprinting issues afflict-
ing web protocol tunneling tools through its novel deferred
reply processing model. Huma-embedded TLS traffic is indis-
tinguishable from legitimate web trafic, and Huma’s bandwidth
and latency overheads sit within acceptable bounds, even
when covert data transfers are guided by overt user simulators
aimed to achieve behavioral realism. Lastly, we detail how
Huma’s design can also be extended into a censorship-resistant
anonymous messaging platform for Intranet scenarios.
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APPENDIX A
PROTOCOL DESCRIPTION

Figure 8 depicts a diagram of Huma’s double request-
receive protocol, highlighting what actions are taken by each
entity and the content of the exchanged messages.

APPENDIX B
OUS TRAINING PIPELINE DETAILS

Figure 9 shows the training pipeline for Huma’s OUS, con-
sidering the OUS’ operation in personalized mode (§IV-B3)
for a given user. Below, we describe this 5-staged process.
1. From raw browsing data to daily browsing sessions. We
start by grouping a user’s browsing data into daily browsing
sessions, using midnight (00:00) as the session boundary
(step 1 ). The top left corner of Figure 9 shows three of such
sessions in different colors. For simplicity, we abstract each
unique URL visited by the user with a different alphabet letter.
2. Condensing daily browsing sessions into daily summaries.
Each daily browsing session is condensed into a daily sum-
mary that describes it at a coarse granularity (step 2 ). These
summaries, comprised of a ⟨day of week, number of unique
URLs, total number of visits, avg. time between visits⟩ tuple,
are used as blueprints for new synthetic browsing patterns.
3. Generating a synthetic daily summary. TVAE #1, trained on
a user’s historical daily summaries, allows Huma to bootstrap
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Fig. 8. Huma DRR protocol message sequence chart.

its activity for the current day, by conditionally sampling a
synthetic daily summary for the corresponding day of the week
(step 3 ), capturing high-level behavior consistent with the
user’s browsing history. Briefly, the number of unique URLs
and total number of URLs in the synthetic daily summary
should reasonably match the values of these fields in the user’s
past daily summaries (for the same week day). We also ensure
that the number of unique URLs sits within a reasonable
boundary with respect to the total number of visits. We first
compute the user’s average ratio of unique sites to total visits
(mean ± std dev.). If a generated day exceeds this range, we
clip the ratio to (mean + std. dev), with a small (5%) random
perturbation to avoid deterministic behavior.
4. Projecting the synthetic daily summary back into a synthetic
daily browsing session. Once the synthetic daily summary is
generated, TVAE #2—trained on the user’s historical daily
browsing sessions—samples a fully synthetic daily browsing
session containing the same number of rows as the total URL
visits specified in the summary (step 4 ). This daily browsing
session may however not correctly adhere to the number of
unique URLs included in the synthetic daily summary.
5. Enforcing URL constraints on the synthetic daily browsing
session. We enforce consistency between the synthetic daily

# URL Access Time Date
1 A 22:04:46 2025-10-22
2 B 22:04:57 2025-10-22
3 B 22:05:32 2025-10-22
...

224 C 07:02:21 2025-10-26
225 D 08:05:34 2025-10-26
226 E 08:32:19 2025-10-26
...

347 A 22:43:09 2025-10-29
348 A 22:43:13 2025-10-29
349 F 22:43:14 2025-10-29
...

Condense Day Day of
week

# Unique
URLs

Total number of
URLs visited

Avg. time
between visits

1 Wed 16 28 00:08:46
2 Sun 27 47 00:19:21
3 Wed 12 22 00:11:48
...

User #1234 browsing data split into
daily browsing sessions  User #1234 daily summaries

TVAE #1
Training input: Daily summaries (User #1234)

Conditional sampling: day of week (e.g., Wed.)
Ensure #Unique URLs is within boundary

Day of
week

# Unique
URLs

Total number of
URLs visited

Avg. time
between visits

Wed 15 24 00:10:32

TVAE #2
Training input: Daily browsing sessions (User #1234)
Conditional sampling: 24 visited URLs

User #1234 synthetic daily summary for day of week

User #1234 synthetic daily browsing session
with 24 visited URLs (16 unique URLs)

# URL Access Time
1 A 22:06:32
2 B 22:07:35
3 F 22:14:13
4 P 22:35:51
...
24 B 22:43:11

Constraint verification 
Enforce # Unique URLs

Enforce balanced URL spread

User #1234 synthetic daily browsing session
with 24 visited URLs (15 of which are unique)

# URL Access Time
1 A 22:06:32
2 B 22:07:35
3 F 22:14:13
4 F 22:35:51
...
24 B 22:43:11

P          F

1 2

3

4

5

Fig. 9. Huma’ OUS (personalized mode) training pipeline.

browsing session and its initial summary (step 5 ) by matching
the number of unique URLs and balancing their spread. If the
session includes too many unique URLs, we merge visits to
reduce them–e.g., as depicted in Figure 9, where we replace
the URL abstracted as “P” (16th unique URL) with F (6th
unique URL), to enforce a total of 15 unique URLs as
prescribed by the synthetic daily summary; if too few, we add
URLs from the user’s historical data for that day of the week.
We balance URLs’ spread by reducing the number of visits to
the mostly visited URLs, redirecting them to other URLs.

APPENDIX C
ADDITIONAL RESULTS

A. Throughput and Overhead

How geographical proximity affects overhead. In the U.S.
client, geographical proximity to the target and high bandwidth
capacity enable a lower latency overhead compared to other
clients, as shown in Table IV. For instance, in the setting
involving a small DW page and a large target website,
requiring multiple DW requests, Huma’s latency overhead is
174% in the U.S. client, compared to 712% in India and
1239% in Germany, while the bandwidth overhead is similar
in all examples. This observation highlights how the latency
overhead caused by performing several fetches can rise when
clients are geographically distant from DWs.

The effect of rising latency overheads due to several fetches
can also be seen in Table V, where the latency overhead
of using a small DW to fetch a small target website is
measured at 425% due to requiring two fetches to complete
the request, while introducing a bandwidth overhead of only
100%. However, in the case of using a medium DW to fetch
the same target website, even though the bandwidth overhead
has increased to 146%, due to requiring only one request to
be completely fetched, Huma introduces a latency overhead of
only 247%, nearly half of the first scenario. In the Germany
client, the latency overhead reduction achieved by increasing
the DW size to reduce the number of requests (similar to
the cases discussed above) remains significant, though smaller
than that observed on the India client. For example, on the
India client, the latency overhead drops from 214% down to
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TABLE IV
HUMA’S LATENCY AND BANDWIDTH OVERHEADS FOR THE US CLIENT

WITH DIFFERENT DW/TARGET WEBSITE PAGE SIZE COMBINATIONS.

DW Size Target Size Fetch
Count

Latency
OH

BW
OH Bytes

Small Small 2 66%±86 100%
Small Medium 4 104%±66 62%
Small Large 8 175%±69 13%
Medium Small 1 59%±94 146%
Medium Medium 2 95%±61 100%
Medium Large 4 172%±60 39%
Large Small 1 64%±53 607%
Large Medium 1 98%±81 187%
Large Large 2 155%±43 100%

TABLE V
HUMA’S LATENCY AND BANDWIDTH OVERHEADS FOR THE GERMAN

CLIENT WITH DIFFERENT DW/TARGET WEBSITE SIZE COMBINATIONS.

DW Size Target Size Fetch
Count

Latency
OH

BW
OH Bytes

Small Small 2 425%±74 100%
Small Medium 4 670%±68 62%
Small Large 8 1239%±92 13%
Medium Small 1 247%±61 146%
Medium Medium 2 394%±81 100%
Medium Large 4 746%±72 39%
Large Small 1 305%±88 607%
Large Medium 1 264%±64 187%
Large Large 2 494%±74 100%

105% when changing the setting from a small DW page and
a small target size, to the same target size and a medium DW
page, a reduction of ∼ 51%. In contrast, the Germany client
sees a drop from 425% to 247% under similar changes, which
is still substantial but is a smaller reduction of ∼ 42%. This
trend is further confirmed by the U.S. client, where the latency
overhead decreases by only ∼ 10% under the same change.
Effects of bandwidth capacity on latency overhead. We
generally observe a higher latency overhead in the Germany
client compared to the India client. This counterintuitively
stems from the German node’s higher bandwidth capacity.
While increased bandwidth capacity improves direct page load
times without Huma, the fixed request latency impacting every
Huma request does not decrease with additional bandwidth
capacity. As a result, the latency overhead percentage becomes
larger in distant servers with good bandwidth capacity.
Providing better service to Huma users. The Huma authority
can leverage the above observation by assigning users located
farther from available DWs to DWs with larger page sizes,
capable of satisfying their requests in fewer pages than smaller
pages. Similarly, users residing closer to where DWs are
hosted can be matched with DWs that have smaller page sizes.

B. Content Access Rates with OUStral

To simulate OUStral [30] usage, we resorted to the same
user profiles used in our Raven-style OUS test, and computed
their average active browsing time (see Appendix D–Table VI).
Then, we simulated 100 days of OUStral activity and recorded
total page visits and unique page visits for each profile.
Daily page fetches w/ OUStral-style OUS. Figure 10 shows
the number of pages of varying sizes fetched per day as a
function of available DWs. Compared to the Raven-style OUS,
OUStral yields a higher fetch count, primarily due to its more
active browsing behavior (see Appendix D–Table VII). We can
see that an OUStral-based OUS following a medium activity
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Fig. 10. Pages fetched via the OUStral-based OUS, with varying page sizes,
as a function of available DWs across different user profiles.

profile fetches 73 medium-sized targets when 100 DWs are
available, while a Raven-based OUS is able to fetch only 47 in
the same scenario. The range of tested DWs is also expanded,
reflecting OUStral’s more active browsing, which allows it to
access more DWs per day (and thus higher page fetch counts).

APPENDIX D
OUS USER PROFILES

To test the practicality of our OUS, we chose the 25th,
50th, and 75th percentiles of the users based on the average
number of pages they visited per day, derived from the data
of Kulshrestha et al. [110]. Table VI shows that the medium
active user, despite having fewer page visits per day, has a
higher average visits per unique page per day (∼ 2.22) than
the heavily active user (∼ 1.86), which allows them fetch more
pages from each DW on average due to a better utilization of
each DW. As a result, the medium active user has a higher
fetch count when fewer DWs were available, as evident by
Figure 6. However, this higher fetch count is short-lived, as
increasing the number of DWs past a user’s unique visits per
day begins to degrade their fetch count until it plateaus.

We then used the active time values from Table VI to
simulate OUStral and calculate the number of page visits it
does within the same amount of active time. We recorded this
data over 100 tests, and reported the average in Table VII.
Comparing browsing behavior in OUStral and Raven.
By comparing the values in Table VII with Table VI, we
can observe that Raven’s OUS tries to mimic real browsing
data and visits fewer pages per day, while OUStral is based
on preset probabilities, which can lead to much more active
browsing patterns. As a result, we believe the Raven-based
OUS to be safer than OUStral in high-risk scenarios.

TABLE VI
OUS USER PROFILES, AND THEIR AVERAGE STATISTICS PER DAY,

EXTRACTED FROM THE DATA PROVIDED BY KULSHRESTHA ET AL. [110].

User Profile ID Visits Unique Visits Active Time

Lightly active 1194 58.12 30.50 1199.50s
Medium active 1392 118.60 53.50 2666.93s
Heavily active 1462 233.11 125.07 6029.61s

TABLE VII
OUSTRAL USER PROFILES W/ AVERAGE STATS PER DAY, CREATED BY

SIMULATING OUSTRAL USING THE ACTIVITY TIMES FROM TABLE VI.

User Profile Visits Unique Visits Active Time

Lightly active 188.29 87.0 1199.50s
Medium active 407.33 176.0 2666.93s
Heavily active 919.23 373.0 6029.61s
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APPENDIX E
ARTIFACT APPENDIX

This appendix contains information required to obtain the
datasets and source code to execute and evaluate Huma, a
censorship circumvention system that relies on web protocol
tunneling. Huma’s source code includes code for the three
main system components: a) client: code run by the users to
access Huma, b) decoy website: the benign-looking website
that doubles as a circumvention proxy entry-point, and c)
shade proxy: the proxy that is in charge of fulfilling the
user’s request. The repository also includes the source code
and instructions on how to run experiments showcased in the
main paper. These experiments result in the same evaluation
data showcased in the paper, and can be used for validation.

A. Description & Requirements

Our system is composed of source code for clients, decoy
websites, and shade proxies. We have prepared Docker files
for all of these components to ease the running and testing
process. Moreover, Huma relies on an overt user simulator
(OUS) that’s based on user data, which we source from a
separate study that should be downloaded and used alongside
the OUS evaluation code.

Due to the long duration of training OUS models based on
user data, we have also included pre-trained models for the
users used in our evaluation, that could be used to recreate
the values found in our results section. Our code includes the
logic for training these models, and can be explored.

1) How to access: Our main repository which includes all
the source code and pre-trained models to run and evaluate
Huma was uploaded to Zenodo under the following DOI:
https://doi.org/10.5281/zenodo.17790334. We plan to keep up-
dating this artifact and distribute it more widely via GitHub.

2) Hardware dependencies: This artifact can be evaluated
on a single machine to test functionality, and with reliance
on provided trace data, test results. However, if the traces
produced by clients is to be replicated, three machines capable
of running Python programs are required to run the system.

3) Software dependencies: The evaluation of this artifact
relies on Docker and Python@3.11.8.

4) Benchmarks: We use the user browsing data from Kul-
shrestha et al. to evaluate Huma’s OUS. This database should
be downloaded to be used alongside the evaluation code, and
is available at the persistent DOI: 10.5281/zenodo.4383163.

B. Artifact Installation & Configuration

Our README.md provides details on the installation and con-
figuration required. Below, we describe our main requirements.

Huma requires a computer device capable of running
Docker and Python@3.11.8 to be run. Docker is required to
run the system itself, and a local installation of Python will be
used to run the code for the evaluation, to provide a more in-
teractive approach to running the tests. Huma’s evaluation also
depends on using tcpdump, which will be installed as a part
of our setup script. After installing Python, the setup.sh file
located in the root directory of the repository will handle the

rest of the setup: a) installing required tools such as tcpdump,
b) downloading and extracting required datasets, and c) creat-
ing a virtual environment venv and installing all the Python
requirements in it. Then, run source venv/bin/activate to
activate the virtual environment.

C. Major Claims

• (C1): Huma resists content fingerprinting by chunking
and padding user responses to appropriate sizes. This is
showcased by experiment (E1) whose results are illus-
trated in §V.C and Figure. 4.

• (C2): Huma offers protection against traffic fingerprinting
when considering unobservability and behavioral realism.
This is shown by experiments (E2) whose results are
described in §V.D and Table II , and (E3) whose results
are showcased in the same section under Fig 5.

• (C3): Huma achieves an acceptable performance even
when clients face poor network conditions. This is shown
by the results of experiment (E4), whose results are
reflected in §V.E under subsection Raw overheads.

• (C4) Huma offers an acceptable amount of daily covert
page fetches when paired with various OUSs. This is
showcased by experiment (E5), whose results are re-
flected in §V.E under subsections Daily page fetches w/
Raven-style OUS and Daily page fetches w/ OUStral-style
OUS, as well as Figure 6.

• (C5) Huma can scale to multiple clients that simultane-
ously resort to the same DW and SP to request covert
data. This is showcased through experiment (E6), whose
results are available in §V.F and Fig 7.

D. Evaluation

Experiment (E1) - Resistance to Content Fingerprinting,
10 human-minutes + 20 compute-minutes. The test for
resistance to content fingerprinting (Section V.C in the paper)
aims to choose an optimal chunk size for the chunking process
at the shade proxy, to hide the contents of the website. To
do so, we used the data from the top 100 Tranco websites,
chunked them to various chunk sizes, and finally used a
fingerprinting technique to see if a potentially malicious decoy
website could infer the contents of the response. The output
is a figure which highlights the tradeoff between chunk sizes
and fingerprinting accuracy.

[Preparation] To prepare for this test, navigate to
evaluation/contentFingerprinting/ in the repository
using the following command:

$ cd evaluation/contentFingerprinting/

[Execution] To run the test, you can either run the notebook
file DW_FP_notebook.ipynb by hand, or use the all in file
Python file provided using the following command:

$ python3 DW_FP_onefile.py

[Results] Upon completion, Figure 4 from the paper should
be generated and saved under filename DW_content_FP.pdf,
which reflects how the size of the chunks (overhead) affects
fingerprinting accuracy. We used this graph to decide on the
chunk size of 2MB when performing our other tests.
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Experiment (E2) - Unobservability, 10 human-minutes + 10
compute-minutes / 20 human-minutes + 1 compute-hour.
This experiment aims to showcase Huma’s unobservability
against a censor who is monitoring the link between the client
and the decoy website. We connected a Huma client to a
decoy website and requested an arbitrary target page from
the Internet through it 100 times. Then, we used a benign
client that requested a page from the decoy website (the same
page that was being used to embed the responses to the Huma
client’s requests) 100 times. Lastly, we tried to distinguish the
two resulting sets of data using: a) a classifier that tries to tell
the two cases apart, and; b) a statistical KS test.

Our unobservability tests were done resorting to network
traffic collected from machines located around the world. For
easing reproducibility of our results, we have included the
same traces collected as part of our data collection process (in
the form of .csv files) in this folder. The easy way to verify
our system is to run the test using these values. However, in
case one would like to re-run the whole raw data collection
scripts from scratch using clients in various locations, we have
rented VMs in the same provider/locations we used to run our
experiments and will provide access to them.

[Preparation] First, navigate to the experiment folder in the
repository using: $ cd evaluation/unobservability

Note: Comprehensive information for this experiment’s data
gathering process is available in our README.

[Execution] To run the test and verify our findings, run:
$ python3 run_all_unobservability.py

[Results] Upon completion, all the values for the KS tests
and XGBoost cross validation are printed to console. These
numbers are the same values found in Table II.
Experiment (E3) - Behavior Realism, 10 human-minutes +
2 compute-hours. This experiment is for assessing Huma’s
behavioral realism, which aims to examine the extent of
Huma’s evasion when facing an adversary that can profile the
user’s activity prior to and post-Huma usage. To perform this
test, we first pick 100 random users who have more active days
than the median (18 days in our dataset). Then, we created a
personal profile for each of these 18 users, and then trained
an OUS on the corresponding data. This OUS is then used to
create synthetic browsing data, which will finally be used by
a classifier to try to classify genuine vs. synthetic data. Our
results reveal that the adversary is unable to do so without
incurring a high rate of false positives.

[Preparation] First, navigate to the experiment folder in the
repository using: $ cd evaluation/OUS

[Execution] To run the test and verify our findings, run the
following command: $ python3 EvalOUSMulti_onefile.py

[Results] Upon completion, Fig. 5 should be created under
the name 100users_WithMeanIntervisit_final.pdf.
Experiment (E4) - Measuring Raw Overheads, 10 human-
minutes + 0 compute-minutes/10 human-minutes + 4
compute-hours. This experiment consists of fetching target
webpages of various sizes from a DW serving pages with
various sizes. To be exact, both the target webpage and the
DW page can be either small (1.3MB), medium (3.2MB), or

large (9.2MB). The sizes were chosen based on the results
of the top 100 Tranco websites. During this test, we fetched
each ⟨target - DW size⟩ combination 100 times, from each
of the servers (located in India, the US, and Germany). Our
results allow for filling in Tables III, IV, and V of our paper,
respectively, and we made the traces available (in .pkl format).

Our raw overhead tests were done resorting to network
traffic collected from machines located in various parts of
the world. For easing reproducibility of our results, we
have included the same exact traces collected as part of
our data collection process (in the form of .pkl files)
in the evaluation/throughput/throughput_results

folder. The easy way to verify our system is to go
through these values to check the values shown in:
{india,us,germany}_results_throughput.txt.

Should one would like to run the raw performance scripts
from scratch using clients in various locations, we provide
instructions on the data gathering process in our README.
Experiment (E5) - Raven & OUStral Performance, 10
human-minutes + 10 compute-minutes. This experiment
evaluates the potential throughput Huma can achieve using
the two available OUS options. For this test, we chose three
users and based our experiments on them: A user who has
low daily activity, one with medium activity, and one with
high activity. In practice, these users are the 25th, 50th, and
the 75th percentile of users based on their daily activities. We
then used these users to estimate the number of page fetches
per day they have, and used those numbers to calculate how
many pages of various sizes they can fetch per day, and plotted
these values in two charts showcased in Fig. 6 and Fig. 10.

[Preparation] First, navigate to the experiment folder in the
repository using: $ cd evaluation/OUS

[Execution] To run the test, you can either run the notebook
file OUS_DE.ipynb by hand, or use the all-in-one Python file
we provide: $ python3 OUS_DE_onefile.py

[Results] Upon completion, the plots seen in Figs. 6
and 10 of our paper will be generated under the names:
raven_ous_all_in_one_pages_fetched_per_day.pdf

and oustral_all_in_one_pages_fetched_per_day.pdf.
OUStral is a probabilistic agent; thus, Fig. 10 might not
exactly resemble the results of the experiment (although its
trend should be followed closely).
Experiment (E6) - Scalability, 10 human-minutes + 20
compute-minutes. This experiment tests Huma’s performance
and resource usage under client load. Similar to previous tests,
we have also included the data from our own runs in the ex-
periment folder under the name: scalabilityResults.zip.
Steps to re-gather data are available in our README.

[Preparation] First, navigate to the experiment folder in the
repository using: $ cd evaluation/scalability

[Execution] Run the experiment (for a total of 5 individual
runs) by executing: $ python3 orchestrate.py

[Results] Upon completion, this experiment will gen-
erate the graphs seen in Fig. 7 under the names:
all_cpu_usage_box.pdf, all_ram_usage_box.pdf, and
dw_page_fetch_time_box_plot.pdf.
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