The Structure of Promises in Quantum Speedups

Abstract

In 1998, Beals, Buhrman, Cleve, Mosca, and de Wolf showed that no super-polynomial quantum speedup is possible in the query complexity setting unless there is a promise on the input. We examine several types of “unstructured” promises, and show that they also are not compatible with super-polynomial quantum speedups. We conclude that such speedups are only possible when the input is known to have some structure.

Specifically, we show that there is a polynomial relationship of degree 18 between D(f) and Q(f) for any Boolean function f defined on permutations (elements of [n]^n in which each alphabet element occurs exactly once). More generally, this holds for all f defined on orbits of the symmetric group action (which acts on an element of [M]^n by permuting its entries). We also show that any Boolean function f defined on a “symmetric” subset of the Boolean hypercube has a polynomial relationship between R(f) and Q(f) - although in that setting, D(f) may be exponentially larger.

Publication
Proceedings of the 11th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC)