
Lecture 6

Additional properties regular languages

In this lecture, we’ll go through some further properties of regular languages and try to get a feel
for how to prove things about regular languages.

6.1 Symmetric difference

The symmetric difference between two sets A and B is defined as the set of all elements that are in one
of A or B, but not both. This is denoted by A4B. For example, we have {a, b, c}4{b, c, d} = {a, d}.
The symmetric difference gives us the set of elements on which the two sets differ.

Are regular languages closed under symmetric difference? Well, we have A4B = (A\B)[(B\A),
and since we’ve seen that regular languages are closed under set difference and under unions, it
follows that regular languages are also closed under symmetric difference.

One cool property of the symmetric difference is that if C = A4B, then A = B4C. Let’s prove
this. Fix x 2 A; we want to show that x is in B4C. There are two options: if x 2 B, then by the
definition of C = A4B, we know that x /2 C, since x is in both A and B; therefore, x 2 B4C.
Alternatively, if x /2 B, then by definition we have x 2 C = A4B, so x is again in one of B and C,
and therefore x 2 B4C. Conversely, fix y 2 B4C; we want to show that y is in A. There are two
options: if y is in B but not C, then since C = A4B, it must be the case that y 2 A. Similarly, if
y is in C but not B, then since C = A4B, it must be the case that y 2 A. We’ve now shown that
all elements in A are in B4C, and also that all elements in B4C are in A, so A = B4C.

(It might help to think of the symmetric difference as similar to the XOR logical operation.
Recall that the set A \B is formed by taking all the elements in A AND B, while the set A [B is
formed by taking all the elements in A OR B. In a similar way, the symmetric difference A4B is
formed by taking all the elements in A XOR B, where XOR is the exclusive-OR.)

Here is an interesting conclusion: if A is regular and A4B is regular, then B is regular. This is
because we’ve seen that B = A4(A4B), and regular languages are closed under 4.

Note that this property is not true for intersection and union: if A is regular and A[B is regular,
it might still be the case that B is irregular (for example, take A = {0, 1}⇤ and B = {0n1n : n 2 N};
in this case, A [ B = A, which is regular, but B is not regular). Similarly, if A is regular and
A \ B is regular, it might still be the case that B is irregular (for example, take A = ? and
B = {0n1n : n 2 N}; then A \B = A, which is regular, but B is not regular).

One particularly useful conclusion is that if A is regular and A4B is finite, then B is regular.
In other words, if a language differs from a regular language on finitely many strings, it must still
be regular. This follows from the fact that finite languages are regular, so if A4B is finite, it is
regular. Similarly, if A is not regular and A4B is finite, then B is also not regular. (That’s because

1



2 LECTURE 6. ADDITIONAL PROPERTIES REGULAR LANGUAGES

if B were regular, we would conclude that A is regular by the aforementioned property.)
To see why this is useful, consider the following example. Suppose we wanted to show that the

language {0n1n : n � 3} is not regular. We could use the pumping lemma from scratch, of course.
But we could also observe that this language differs from {0n1n : n 2 N} on only finitely many
strings: the symmetric difference between the two languages is finite. Since we’ve already shown
the latter is irregular, the former must also be irregular.

6.2 Reverse

Next, let’s show that the regular languages are closed under the reverse operation. Recall that the
reverse of a language, denoted AR, is the language {xR : x 2 A}, where xR denotes the reverse of a
string x (that is, if x = x1x2 . . . xn where xi 2 ⌃ are symbols, then xR = xnxn�1 . . . x1). We want
to show that if A is regular, then AR is also regular.

One way to do so will be to use the regular expression characterization of regular languages.
Let S be any regular expression; we will define the reverse of S to be another regular expression,
defined as follows.

1. If S = ?, then SR = ?.

2. If S = ✏, then SR = ✏.

3. If S = c for some c 2 ⌃, then SR = c.

4. If S = (S1 [ S2) for some regular expressions S1 and S2, then SR = (SR

1 [ SR

2 ).

5. If S = (S1S2) for some regular expressions S1 and S2, then SR = (SR

2 S
R

1 ).

6. If S = (S⇤
1) for some regular expression S1, then SR = ((SR

1 )
⇤).

Note that this definition covers all possible cases of what a regular expression S could be, given
how we defined regular expressions. Thus for each regular expression S, the regular expression SR

is well-defined.
It is not hard to see that L(SR) = L(S)R. Now, if A is any regular language, then it must have

some regular expression S such that L(S) = A; then L(SR) = AR, so SR is a regular expression for
AR, and hence AR is regular. This shows that the regular languages are closed under reverse.

Can we also prove this closure property using the DFA/NFA characterizations of regular lan-
guages? Given a regular language A, we want to show that AR is regular. One useful approach is to
assume we have a DFA for the given regular language (in this case A) and to construct an NFA for
the target language (in this case AR). Assuming we have a DFA for the given language is helpful as
DFAs are easier to analyze than NFAs, and constructing an NFA for the target language is helpful
because NFAs are easier to construct than DFAs.

In this case, if we are given a DFA M for A, how do we construct an NFA N for AR? Well, we
want N to accept a string x if and only if M accepts xR; that is, we want there to be an accepting
path for x in N if and only if M reaches an accept state when run on xR. To do this, we will let N
have the same states as M , but with all the arcs reversed. We will also add a new start state q0 in
N , and we’ll add ✏-transitions from the new start states to all of the accept states of M . Finally,
we will set the start state of M to be the only accept state of N .

This way, if there is an accepting path for x in N , it means that there is some path in N leading
from an accept state of M to the start state of M ; the same path with the arcs reversed would lead
from the start state of M to an accept state of M when run on xR, and hence if N accepts x then



6.3. PREFIX, SUFFIX, AND SUBSTRING 3

M accepts xR. Conversely, if M accepts xR, then there is a path from the start state of M to an
accept state of M that reads xR, and reversing it gives us a path in N from an accept state of M to
the start state of M ; adding an ✏-transition at the beginning, we get that N accepts x, as desired.

6.3 Prefix, suffix, and substring

Recall that for a language A, the prefix language, denoted Prefix(A), is the set of all prefixes of
strings in A:

Prefix(A) = {x 2 ⌃⇤ : xy 2 A for some y 2 ⌃⇤}.

Similarly, Su�x(A) is the set of all suffixes of strings in A, and Substring(A) is the set of all
substrings of strings in A. We will now show that regular languages are closed under all of these
operations.

First, consider Su�x(A). Suppose A is regular. How do we show that Su�x(A) is regular?
Often, the best way to tackle such problems is to assume we have a DFA for the given language

A, and to construct an NFA for the larget language (in this case Su�x(A)). Let’s try this.
Let M be a DFA for A. We want to construct an NFA N that recognizes Su�x(A). To do

so, let’s first consider the set P of all states that are reachable from the start state of M via some
path. Of course, when constructing a DFA, we would never want to have unreachable states, since
they never do anything; but nothing in the definition of a DFA prevents unreachable states from
existing, so we cannot assume M doesn’t have them. For that reason, we’ll define P to be the set
of reachable states in M .

Now, each state in P is reachable, which means some string x 2 ⌃⇤ can cause M to go to that
state (starting from the initial state). To recognize the suffix language Su�x(A), we want to allow
the NFA N to skip all possible initial strings. What we will do is as follows: we will include all
states and transitions of M in N , and additionally, we’ll have a new start state q0. From q0, we’ll
add ✏-transitions to all states in P . The accept states of N will be the same as the accept states of
M .

To see why this works, consider a string x 2 Su�x(A). Then yx 2 A for some string y. Let p
be the state reached by M after reading y. Then p 2 P , since it is reachable. Also, we know that
starting from the initial state, M will reach an accept state when reading yx, and hence starting
from p, it will reach an accept state when reading x. Now, in N , we have an accepting path when
reading x: we can follow the ✏-transition from the new initial state q0 to p, and then we can follow
the path M takes from p to an accept state while reading x. This means that N accepts x.

Conversely, if N accepts a string x, consider the accepting path in N that starts from q0 and
reads x. Such a path must use some ✏-transition to leave q0, so let p be the state of M reached
by taking that ✏-transition from q0. Then p 2 P , so p is reachable from the start state of M ; let
y 2 ⌃⇤ be a string that causes M to reach p when starting from its initial state. Since the path in
N that reads x was an accepting path, we know that there is a path in M that starts from p, reads
x, and gets to an accept state. This means that when M reads yx, then it reaches p after reading y
and then reaches an accept state after reading x, so M accepts yx. Thus yx 2 A, so x 2 Su�x(A).
This completes the proof that L(N) = Su�x(A).

This shows that regular languages are closed under suffixes. What about prefixes? Here we
can observe that Prefix(A) = Su�x(AR)R. To see this, suppose that x 2 Prefix(A). Then xy 2 A
for some y 2 ⌃⇤. This means that (xy)R 2 AR, or yRxR 2 AR. This implies that xR is a suffix
of a string in AR, and hence xR 2 Su�x(AR), and so x 2 Su�x(AR)R. Conversely, suppose
that x 2 Su�x(AR)R. Then xR 2 Su�x(AR), and hence yxR 2 AR for some y 2 ⌃⇤. This
means that (yxR)R 2 A, or xyR 2 A, which implies that x 2 Prefix(A). Since each string in
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Prefix(A) is in Su�x(AR)R and each string in Su�x(AR)R is in Prefix(A), we conclude Prefix(A) =
Su�x(AR)R. Finally, since we know that regular languages are closed under reverse and under
suffixes, we conclude they are closed under prefixes as well.

Finally, let’s handle substring. It’s not hard to show that Substring(A) = Prefix(Su�x(A)), so
the closure under substrings follows from the closure under prefixes and suffixes.

6.4 The “language per pair of states” trick

As mentioned, one useful trick for showing that some modification A0 of a regular language A is
regular is to start with a DFA for A and to construct an NFA for A0. One trick we’ve seen that
helps with constructing NFAs is adding an additional start state, and then adding ✏-transitions from
that start state to other desired states; this effectively makes the NFA have multiple different start
states.

Another useful trick is one we’ll call the “language per pair of states” trick. Suppose we start
with a DFA

M = (Q,⌃, �, q0, F ).

For any pair of states p1, p2 2 Q, consider the language of all strings x 2 ⌃⇤ such that �⇤(p1, x) = p2.
This is the set of all strings x such that if M starts at p1 and reads x, then M ends up at p2. Let’s
denote this language by Ap1,p2 (remember that this language depends on the DFA M that we started
with).

we can construct a DFA Mp1,p2 that accepts exactly the strings in Ap1,p2 . This DFA will have
set of states Q, alphabet ⌃, and transition function �, but its initial state will be p1 and its set of
accept states will be {p2}. The language L(Mp1,p2) = Ap1,p2 , which consists of all strings that cause
M to go to p2 if it was previously at p1, is therefore a regular language.

These languages Ap1,p2 (and their corresponding DFAs Mp1,p2) are often useful tools in showing
that languages are regular. Let’s do an example.

Problem 6.1. Let A be a regular language over the alphabet ⌃, and consider the following language:

B = {xy : xay 2 A for some a 2 ⌃}.

The strings in B are those that can be formed by taking a string in A and deleting some symbol
from it. Can you show that B is regular?

To start, we can assume that A has a DFA M . We want to show that B is regular. Well, to
accept the strings in B, we want to read some prefix using M , then somehow skip a character in M ,
and then read the rest of the string using M . More concretely, suppose that M accepts xcy 2 A.
Then M reaches state p1 when reading x, then transitions to state p2 when reading c, and then
moves from p2 to an accept state p3 when reading y. If we want to skip reading the character c, we
can take language Aq0,p1Ap2,p3 , which is the concatenation of Aq0,p1 (the language of all strings that
cause M to go from its initial state q0 to p1) with Ap2,p3 (the language of all strings that cause M
to go from its p2 to p3). The resulting concatenated language is regular, and consists of all strings
that cause M to go from q0 to p1, then from p2 to p3, while teleporting from p1 to p2 somewhere in
the middle.

Next, we will take the union of Aq0,p1Ap2,p3 over all triples (p1, p2, p3) of states of M such that
there’s a transition that goes from p1 to p2 (reading a single character), and such that p3 is an
accept state. There are finitely many such triples, so we’ve taken the union of finitely many regular
languages, and therefore the resulting language is regular.
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We claim that that the resulting language is precisely B. To see this, we will show both set
inclusions, as usual.

Suppose that w 2 B; then w = xy and there is a symbol c 2 ⌃ such that xcy 2 A. Let p1 be
the state reached by M when reading x (starting at the initial state), that is, p1 = �⇤(q0, x). Let p2
be the state M reaches from p1 after reading c, that is, p2 = �(p1, c). Let p3 be the state M reaches
from p2 after reading y, that is, p3 = �⇤(p2, y). Then p3 must be an accept state (since M recognizes
A and xcy 2 A, and since M reaches p3 when run on xcy). Therefore, the triple (p1, p2, p3) satisfies
the conditions that p2 is reachable from p1 by reading a single character and p3 is an accept state,
so Aq0,p1Ap2,p3 is included in the union. We claim that w 2 Aq0,p1Ap2,p3 . Since w = xy, we only
need to show that x 2 Aq0,p1 and y 2 Ap2,p3 ; this is true by definition, as we have �⇤(q0, x) = p1
and �⇤(p2, y) = p3.

Conversely, suppose that w is in the finite union. We wish to show w is in B. Since w is in
the union, it is in Aq0,p1Ap2,p3 for some triple (p1, p2, p3) such that p3 is an accept state and p2 is
reachable from p1 after reading a single symbol. In particular, we can write w = xy with x 2 Aq0,p1

and y 2 Ap2,p3 . This means that �⇤(q0, x) = p1, �⇤(p2, y) = p3, p3 is an accept state, and there is
some symbol c 2 ⌃ such that �(p1, c) = p2. From this, it follows that �(q0, xcy) = p3, so M accepts
xcy. Thus xcy 2 A, so w = xy 2 B, as desired.

Problem 6.2. Let A be a regular language over the alphabet ⌃, and consider the following language:

C = {xy : yx 2 A for some x, y 2 ⌃⇤}.

Show that C is regular.

We’ll use the same “language per pair of strings” trick. Since A is regular, let M = (Q,⌃, �, q0, F )
be a DFA recognizing A. We can form the regular languages Ap1,p2 for any pair of states p1, p2 2 Q.
Note that A can be written as the union of Aq0,p1Ap1,p2 for all (p1, p2) such that p2 2 F (that is,
we can split any string w in A into two parts, w = xy, such that M goes to p1 when reading x and
then goes from p1 to p2 when reading y, where p2 is an accept state). Motivated by this, we will
take the union over all (p1, p2) 2 Q ⇥ F of the languages Ap1,p2Aq0,p1 . (Here the notation Q ⇥ F
denotes all pairs of elements such that the first comes from Q and the second comes from F .)

Note that this is a finite union of regular languages, so it is regular. We now claim that this
union is the same language as C. To show this, we will show both inclusions, as usual (that is, we
show that each string in C is in the union, and separately show that each string in the union is in
C).

First, let w 2 C. Then by the definition of C, we can write w = xy with yx 2 A. Let
p1 = �⇤(q0, y) be the state M reaches when reading y, and let p2 = �⇤(p1, x) = �⇤(q0, yx) be the
state M reaches when reading yx from the beginning, which is also the state M reaches when
reading x starting from p1. Since yx 2 A, we know that M accepts yx, so p2 is an accept state;
hence (p1, p2) 2 Q⇥F . Also, by the definition of the languages Aq0,p1 and Ap1,p2 , we have y 2 Aq0,p1

and x 2 Ap1,p2 , so xy 2 Ap1,p2Aq0,p1 , and hence w = xy is in the union we defined.
In the other direction, suppose that w is in the union. Then w must be in some specific set

Ap1,p2Aq0,p1 such that (p1, p2) 2 Q ⇥ F . This means we can write w = xy with x 2 Ap1,p2 and
y 2 Aq0,p1 , so �⇤(p1, x) = p2 and �⇤(q0, y) = p1. Also, p2 2 F . From this we conclude that
�⇤(q0, yx) = p2 2 F , so M accepts yx. Thus yx 2 A, so w = xy 2 C. This shows that C is equal
to the union we described, and hence C is regular.
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