Lecture 4

Equivalence of NFAs, DFAs, and Regular
Expressions

In this lecture, we will show that NFAs, DFAs, and regular expressions are equivalent in their
expressive power: that is, a language A can be recognized by a DFA if and only if it can be
recognized by and NFA, and also if and only if it has a regular expression. We will start by showing
the equivalence of NFAs and DFAs.

4.1 NFAs and DFAs

Each DFA can be easily converted to an NFA recognizing the same language (indeed, the state
diagram does not need to change at all, only the formal definition of § needs to change slightly). In
order to show that NFAs and DFAs are equivalent in power, we will only need to show that every
NFA can be converted into a DFA recognizing the same language. That is, let N = (Q, %, 0, qo, F)
be an NFA; our goal will be to construct a DFA M = (Q', %', ¥, g, F’) such that L(M) = L(N).

Since we want the DFA M to recognize the same language as N, we will clearly want to set
¥ =¥ (that is, we want the alphabet of M to be the same as that of N). So what we need to do is
to describe a set of states @', a transition function &, a set of accept states F”, and a start state ¢,
such that together they characterize, in a deterministic way, the nondeterministic behavior of N.

How shall we do this? The trick is to think about how you would describe the status of N when
it is in the middle of a run. What is the “memory” that N keeps when it is in the middle of reading
a string? Once we think about it this way, the answer should be clear: what N remembers when it
is in the middle of a run is the set of all possible states it might be in.

Of course, a DFA can only remember which state it is in, and nothing else. But this suggests
one way of simulating an NFA using a DFA: we will simply create a DFA that has one state for
each set of states the NFA has. That is, the set Q' of states of the DFA will be P(Q), the set of all
subsets of @, where @ is the set of states of the NFA. This means that |Q'| = 2|9l so the DFA will
have exponentially more states than the NFA.

To make sure that this DFA M simulates the NFA N, we will ensure that at each point in time—
after reading any fixed string x—the state of the DFA will correspond to the set of states the NFA
is allowed to reach after reading z, that is, the set 6*(qo,). To ensure this, we will first set the start
set of the DFA to be ¢, = €({qo}), the e-closure of the start state of the NFA, which is the set of all
states the NFA can reach without reading any symbols. Next, we will define the transition function

§’ of the DFA. This will be defined by §'(S,c) = € (qus 5(q,c)). To understand this definition,
note that each S € Q' is also a subset S C Q; this state S of the DFA gets mapped to a different

1

2 LECTURE 4. EQUIVALENCE OF NFAS, DFAS, AND REGULAR EXPRESSIONS

state T', which is also a subset of states of the NFA, T' C (). This T is the set of all states of the
NFA that can be reached from a state in S by reading ¢, and then by any number of e-transitions.
Finally, we define F”, the set of accept states of the DFA M. This will be the set of all sets of states
of the NFA contain at least one accept state of the NFA; that is, F/ = {SC Q: SNF # o}.

Having fully defined the DFA M in terms of N, we can now argue that the accept exactly
the same strings; that is, L(M) = L(N). To show this, we will first show that the behavior of
the two machines is effectively the same. Formally, we claim that for any string z € X*, we have
(0")*(qp, x) = 6*(qo, x). This is saying that for any string z, the state reached by M when run on =
is exactly the set d*(qo, x) of states of N reachable by N when run on z.

We do this by induction on the length of the string z. In the base case, when x = €, we have

(0)" (a0, €) = ao = e({g0}) = 0" (a0, ©),

as desired. When |z| > 0, we can write x = yc for y € ¥* and ¢ € ¥. Then by the induction
hypothesis, we can assume that (6")*(¢},y) = 0*(qo,y). Now, expanding the definition of the
extended transition function of a DFA, we get

(0")" (40, ye) = &"((")" (90,), €) = 8"(6" (g0,) €),

where we used the induction hypothesis in the second equality. Next, using the definition of ¢’, we
have

5/(5*((]073/)36) =€ U 5((]7 C))

q€5*(qo,y)

which by the definition of the extended transition function §* of an NFA, is equal to §*(qo, yc). Hence
we have shown (8')*(¢(, yc) = 6*(qo,yc), so by induction, we conclude that (6")*(g(, z) = 0*(qo,)
for all strings = € ¥*.

From here, showing that L(M) = L(N) is easy. By definition, x € L(M) if and only if
(0")*(qp,x) € F'. Since (8")*(g(,) = 0*(qo,), we have x € L(M) if and only if 6*(qo,x) € F’'. By
the definition of F’, this happens if and only if 6*(go, z) N F' # @. Finally, by the definition of L(NV)
for an NFA, we have x € L(N) if and only if 6*(go,) N F' # &, completing the chain.

Example. To get a clearer understanding of how this conversion from an NFA to a DFA works,
let’s apply it to a small example. Consider the NFA in Figure 4.1.

0 1,2

e

Figure 4.1: An NFA over the alphabet {0, 1, 2}.

How can we turn this NFA into a DFA? Using the construction described above, we will have
one state in the DFA for each set of states of the NFA. This means the states of the DFA will be
&, {q}, {x1}, and {qo,q1}. Of these, the sets containing gy will be accepting, and the start state
will be {qo} (since there are no e-transitions coming out of qq).

The state diagram of the DFA is given in Figure 4.2. The transitions in it were computed by
thinking, for each set of states of the NFA and each alphabet symbol, where can the NFA go from

4.2. FROM REGULAR EXPRESSIONS TO NFAS 3

that set of states when seeing that alphabet symbol? Then we draw an arrow to set of states the
NFA can go.

0,1,2

Figure 4.2: A DFA recognizing the same language as the NFA in Figure 4.1.

4.2 From regular expressions to NFAs

In the previous section, we saw that DFAs and NFAs have same power for recognizing languages:
every language that can be recognized by one can be recognized the other. Next, we will show that
every language that has a regular expression can be represented by an NFA; this will show NFAs
have at least the same representational power as regular expressions. In the next section, we will
show the converse, that every NFA can be converted into a regular expression as well.

Which languages have a regular expression? By definition, these are the regular languages:
languages that can be formed using the operations union, concatenation, and star, starting from
only the languages @, {e} and {c} for each ¢ € ¥. We now want to show that all such regular
languages can be recognized by NFAs.

We will start with the “base case” languages: @, {€} and {c} for each ¢ € 3. Clearly, there is an
NFA for @: in fact, any NFA with no accept states recognizes @. This is because with no accept
states, the NFA will reject all strings. Next, consider the language {€}. This language accepts the
empty string and nothing more; it can be recognized by the NFA in Figure 4.3.

ﬁ

Figure 4.3: An NFA recognizing {€}.

Note that since there are no arcs in this NFA, seeing any symbol causes it to drop into the abyss,
rejecting forever. Since this NFA might be a little confusing, let’s also write a DFA for the language
{€}. See Figure 4.4.

Next, consider the language {c} for some ¢ € ¥. This can be recognized by the NFA in Figure 4.5.

Now that we’ve handled the base case languages, let’s consider the operations union, concate-
nation, and star. Suppose we have two languages A and B over an alphabet X, and suppose that
we already have NFAs for our languages, denoted N4 and Ng. How might we construct an NFA

4 LECTURE 4. EQUIVALENCE OF NFAS, DFAS, AND REGULAR EXPRESSIONS

rceX
*’C:CGZ

Figure 4.4: A DFA recognizing {€}.

ﬁ

Figure 4.5: An NFA recognizing {c}.

for AU B? Well, a string is in AU B if it is in either A or B, so this new NFA N4yp should accept
a string « if and only if = is accepted by either N4 or Np.

We construct such an NFA as follows. First, the alphabet of Ngyp will simply be . The
states of Nyyp will be all the states of both Ny and Ng: we will ensure these sets of sets are
disjoint (renaming the states if necessary), and then take their union. Actually, N4,p will have one
additional new start state gy (we will ensure this name is distinct from the state names in N4 and
Np by renaming those states if necessary).

The trick is this: the NFA N4up will have an e-transition from ¢y to the start state of V4, and
another e-transition from gg to the start state of Ng. This will let the NFA choose which path it
wants to take: a path that simulates N4 (and accepts the input if and only if © € A), or a path
that simulates Np (and accepts the input if and only if x € B). Since NFAs accept a string so long
as some path reaches an accept state, this will mean N4yp will accept the strings that are either in
A or in B. We will just need to set the accept states of Nayp to be the union of the accept states
of Ny and Np; the new state gy will not be an accept state (why not? Because otherwise it will
always be the case that Nayp accepts €, even if € ¢ A and € ¢ B). All the transitions of Nyp will
be just like the transitions of N4 and Np, plus the two new e-transitions.

This shows that if two languages A and B over an alphabet ¥ have an NFA recognizing them,
then so does the language AU B. What about the language AB? How might we construct an NFA
for that?

Just as before, we will start with the NFAs N4 and Np, and construct an NFA Np that has
all the states of both (ensuring they have disjoint names). However, this time we connect the two
NFAs differently. We would like the new NFA Nap to accept a string x if and only if it has some
decomposition into the concatenation of two strings, x = yz, such that y is accepted by N4 and z
is accepted by Np. To do so, the accepting paths of N4p need to correspond to paths that reach
an accept state of N4, then switch to the start state of Ng, keep reading the input, and reach
the accepting state of Np at the end of the input string. How can we construct Nap to force its
accepting paths to do this?

The trick will be to set the start state of Nap to the start state of N4, and then to place
e-transitions from each the accept state of N4 to the start state of Ng. We will also set the accept
states of N4p to be the accept states of Ng, but not those of N4.

To see why this works, suppose we have a string x € AB. Then x can be written x = yz, with
y € A and z € B. Now, since N4 accepts y, there is some path in N4 from the start state of N4
to some accept state which reads exactly the input y; similarly, there is some path from the start
state of Np to some accept state of Np which reads exactly the input z. Now, in N4p, we can first
follow the path in V4 that reads y and gets to an accept state of IN4; then, take the e-transition to
the start state of Np; and finally, follow the path in Np that reads z and reaches an accept state
of Np. Together, this forms a path in N4p that reads x and reaches an accept state, meaning that

4.2. FROM REGULAR EXPRESSIONS TO NFAS 5

Nap accepts the string x € AB.

What about the other direction? We should verify that Nap accepts only the strings in AB,
not merely all of them. This is important, because to recognize AB, N4p must accept ezactly the
strings in AB and no others. To do this, let « be an arbitrary string accepted by Nap. This means
that there is a path in N4p that reaches an accept state and reads exactly z. Since the only accept
states of N4p are the accept states of Np, and since we start at the start state of IV 4, this accepting
path for z must use an e-transition to transition from the states of N4 to the states of Ng. Since
we can only go from Ny to Np (but not backwards), this transition point is unique: it happens
exactly once in this accepting path. Let y be the string of all symbols of x read before this special
e-transition, and let z be the string of all symbols read afterwards. Then x = yz. It is also clear
that there is a path in N4 that reads y and reaches an accept state of N4 (since reaching such a
state is necessary to take the e-transition), and similarly, there is a path in Np that reads z and
reaches an accept state of Ng. Hence N4 accepts y and Np accepts z, so y € A, z € B, and thus
x =1yz € AB. This means N4p only accepts strings in AB, as desired.

Finally, we handle the star operation. Let A be a language, and let N4 be an NFA recognizing
A. We want to construct an NFA N4« recognizing A*. This construction is as follows: N« will
have all the states of N4, plus an additional special start state go (we will ensure this is different
from the states of N4 by renaming those states if necessary). This special start state gy will have
an e-transition to the start state of N4, and also, each accept state of N4 will have an e-transition
to qo. Further, the new start state ¢y will be the only accept state of N4«; all the accept states of
N4 will not be accept states in N4« (though they will each have e-transitions to qp).

Why does this work? We now show L(N4-) = A*. First, let « be a string in A*. Then either
T =€, or else x can be written x = y192 . ..y, for some n > 1 and some y1,¥y2,...,yn € A. If x =€,
then N4« accepts x, because its start state is an accept state. Otherwise, we know that each y;
is accepted by N4, and so there is some path from the start state of N4 to an accept state while
reading y;; now, in Nax, we can follow each of these paths in turn, preceeded by the e-transition
from gg to the start state of N4 and followed by taking the e-transition back to gy once we complete
each of the paths. This forms a path in NV« that starts and ends at the start state ¢y while reading
T = Yy1Y2 ... Yn; this is an accepting path for z, so N4« must accept each string x € A*.

What we showed so far is that A* C L(N4+). For the other direction, suppose z is a string
accepted by Ng«. Then there is some accepting path in N4« that starts at gg, ends at gg (the only
accept state), and reads exactly = along the way. Now, split this path into sub-paths, with the
split happening every time the path reenters the state qg. If the path never leaves qg, then x = €,
which is always in A* for each language A. Otherwise, these sub-paths read strings yi1, 2, ... yn,
with n > 1 and y1y2 ...y, = x. Each y; is read by some path in N4~ of nonzero length that starts
and ends at qp, but otherwise does not visit g except at the beginning and end. Since this path
has nonzero length, it must leave gy at the beginning using the e-transition to the start state of
N4; and since the path comes back to ¢y at the end, it must reach an accept state of N4 and take
the e-transition back to gp. Removing the e-transitions from the beginning and end leaves us with
a path in N4 that reads exactly y;, starts at the start state of N4, and ends at an accept state of
N4. This means that N4 accepts the string y;. We conclude that each y; isin A, so x = y1y2 ... Yn
is in A*, and hence L(Na«) C A*, as desired.

We have now seen that the languages @, {e}, and {c} for ¢ € ¥ all have NFAs recognizing
them, and also that the concatenation, union, and star of languages recognized by NFAs can also
be recognized by NFAs. Since regular expressions define languages by constructing them out of
these basic operations, it follows that every language represented by a regular expression can be
recognized by an NFA.

6 LECTURE 4. EQUIVALENCE OF NFAS, DFAS, AND REGULAR EXPRESSIONS

4.3 From NFAs to regular expressions

So far, we have seen how to convert between NFAs and DFAs (in both directions), and how to
convert regular expressions into NFAs. The final step in showing they are all equivalent is to show
how to convert NFAs into regular expressions.

We won’t do this proof extremely formally, but we will go over the idea. The first thing we will
do is generalize NFAs into regular-expression NFAs, which we call RNFAs. These will be similar to
normal NFAs, except that their arcs will be labeled by reqular expressions rather than by individual
symbols. An example of an RNFA is given in Figure 4.6.

00U 11
(010)*

-0 _®

€
Figure 4.6: An example of an RNFA.

RNFAs are nondeterministic, just like NFAs; this means that there may be more than one viable
path to follow for a given string. An RNFA is said to accept a string if there is any viable path that
reads the string and reaches an accept state at the end.

How do we interpret arcs labeled by regular expressions? Well, such arcs can “match” to any
sequence of symbols generated by that regular expression. For example, in the RNFA in Figure 4.6,
the regular expression (010)* can match any of the following strings: €, 010, 010010, 010010010, and
so on. For instance, this RNFA accepts the string €, because one possible path is to go from ¢g to ¢1
without reading any symbols, and ¢ is an accept state. This RNFA also accepts the string 0101111,
because we can go from gy to g; while reading 010, then loop on ¢; reading 11, and then loop again
reading 11. On the other hand, this RNFA does not accept the string 0100. That’s because there
is no path that reads exactly 0100 and ends up at ¢q;. To see this, consider what an accepting path
might look like for 0100. We could first read 010 and move from ¢y to ¢;. But then we’ll be at ¢
with only the string 0 left to read, and that has no matches except the e-transition going back to
qo, from where we’ll be forced to loop between qg and ¢ forever. There is no accepting path here,
because an accepting path must read the entire string, and we will never be able to read the last 0
character.

Now that we have (informally) defined RNFAs, we will use them to turn regular NFAs into
regular expressions by first viewing the NFA as an RNFA, and then repeatedly simplifying the
RNFA by removing states.

Let N be an NFA. We will start by doing a bit of cleanup: first, we will add a new start state g,
which we will ensure is different from the other states of N by renaming them if necessary. We will
then add an e-transition from gg to the former start state of N, so that the behavior of N doesn’t
change. This state gp will not be an accept state and will have no other transitions. (Why did we
do this? Because it will be nice to assume that the start state cannot be returned to and is not an
accept state, which we’ve now guaranteed.)

The second bit of cleanup is that we will add a new accept state p (again ensuring that it is
different from all the other states by renaming them if necessary). This state p will be an accept
state, and we will add an e-transition from each former accept state of N to p. We will also make
those former accept states no longer be accept states. This way, there will only be a single accepting
state p, and once the NFA enters p is can no longer leave (except to drop into the abyss of always

4.3. FROM NFAS TO REGULAR EXPRESSIONS 7

rejecting). The state p will not have any loops or outgoing transitions on it. This means that every
accepting path of our modified NFA N’ will start at ¢y and end at p, and in the middle, it will never
visit go or p. Note that L(N’) = L(N); our modification so far did not affect which strings the NFA
accepts.

We have now added two new states to the NFA. The next thing we will do is to view this NFA
as an RNFA, and then remove all states from this RNFA one by one until only gy and p remain. At
that point, our RNFA will have the form in Figure 4.7.

H

Figure 4.7: An RNFA with only the states ¢y and p remaining. Here R is some regular expression.

Note that if we manage to get an RNFA into this form which recognizes the same language as
N, then it must be the case that L(R) = L(INV), because this RNFA accepts a string if and only if
it is generated by R. Therefore, once we achieve our goal of removing all states from the RNFA
N’ except for gy and p, we will have converted our NFA NN into a regular expression with the same
language, just like we wanted.

To remove all these states from the RNFA, we just need to show how to remove a single state
from an RNFA; we can then apply that procedure repeatedly. Moreover, we may assume that the
state we wish to remove is not the start state and not an accept state.

How do we remove such a state ¢ from an RNFA? Well, to maintain the behavior of the RNFA,
we will need to make sure that all paths that pass through g get correctly rerouted elsewhere. To
do so, we look at all pairs (q1,q2) of states that are not equal to ¢ and such that there is an arc
¢1 — ¢ and another arc ¢ — ¢o. For each such pair (g1, ¢2), we need to worry about how a path
going from ¢ to g to g2 will be implemented once we remove g. A general case of this situation is
given in Figure 4.8.

Ry

Ry

Figure 4.8: We wish to remove ¢ while preserving possible paths from ¢; to ¢o passing through q.
Here R;, Rs, R3, and R4 are regular expressions.

To preserve all the possible paths passing from ¢; to g2 through ¢, we will delete ¢ (and the arcs
labeled R;, Ro, and Rj), delete the arc labeled R4 (which may not even exist in the first place),
and a new arc from ¢; to g2 labeled (R1(R2)*R3) U Ry (if R4 doesn’t exist, we can just label this
R1(R2)*Rs3). It should be intuitive that this new arc allows the same strings to go from ¢; directly
to go as previously could go from ¢; to ¢o via either the direct arc or via q. Note that we do this for
every pair of nodes (q1,¢g2) that are not equal to ¢ and are connected to ¢ in this way; this means
we will be adding or modifying a large number of arcs to delete the single node gq.

This same construction still works when ¢ is the start state gy or when g5 is the accept state p.
It even works when ¢; = go; in that case, the arc from ¢; to g2 will be a loop, but everything else
will work the same.

8 LECTURE 4. EQUIVALENCE OF NFAS, DFAS, AND REGULAR EXPRESSIONS

By repeatedly deleting the intermediate nodes (those note equal to gy or p) in this way, we can
reduce the number of states down to only two: gg and p. Those states don’t have self-loops, so we
can therefore turn any NFA N into an RNFA of the form in Figure 4.7 for some regular expression
R generating the language L(N), as desired.

4.4 Next steps

We have now seen how to convert between DFAs, NFAs, and regular expressions. We’ve shown
that all three can recognize the same class of languages, call the regular languages. Next lecture,
we will show a few more properties of regular languages, and then start talking about which types
of languages are not regular, and how to prove it.

	Sets and Strings
	Course Overview
	Sets
	Infinite sets

	Strings
	Languages
	Operations on languages

	Summary

	Regular Expressions
	Regular Languages
	Regular Expressions
	Examples of Regular Expressions
	Are All Languages Regular?

	Finite Automata
	Deterministic finite automata
	State diagrams
	Formally defining what a DFA accepts
	Nondeterministic finite automata
	A formal definition of NFAs
	Conclusion and next steps

	Equivalence of NFAs, DFAs, and Regular Expressions
	NFAs and DFAs
	From regular expressions to NFAs
	From NFAs to regular expressions
	Next steps

	Showing a language is not regular
	Closure properties
	The pumping lemma
	Using the pumping lemma
	Using closure properties to show irregularity
	Conclusion

	Additional properties regular languages
	Symmetric difference
	Reverse
	Prefix, suffix, and substring
	Additional exercises

	The Myhill-Nerode Theorem
	Using the Myhill-Nerode theorem
	Some common mistakes
	Next steps

	Context Free Grammars
	Parse Trees and Chomsky Normal Form
	Closure Properties for Context-Free Languages
	Proving that languages are not context-free
	Pushdown automata
	Turing Machines
	Formally defining Turing machines
	The configuration of a Turing machine and the yields relation

	Acceptance and rejection
	State transition diagrams and example
	An example of a Turing machine

	Next steps

	Properties of Turing machines and their languages
	Equivalent forms of Turing machines
	Change of alphabet
	Multi-tape Turing machines

	Everything a computer can do can be done by a Turing machine
	Deciding regular and context-free languages
	Every regular language is decidable
	Every context-free language is decidable

	Closure properties
	Behavior under complement
	Other closure properties

	Turing machines with a fixed tape size

	Encodings and Universality
	Encodings
	Unary encoding and lexicographic order

	Some interesting languages
	A universal Turing machine
	The Church-Turing Thesis

	Undecidability and the Halting problem
	A simple undecidable language
	The halting problem
	Understanding the proof
	Proving undecidability using reductions
	A formal notion of reductions
	A proof of undecidability via a mapping reduction

	Next steps

	Enumerators and Dovetailing
	Enumerators
	RE languages are recognizable
	Recognizable languages are RE
	Dovetailing

	Other examples of Dovetailing
	The range of computable functions
	Additional closure properties

	Busy Beaver and Kolmogorov Complexity
	Non-computable functions from languages
	Functions growing too fast to be computable
	The busy beaver function

	Kolmogorov complexity
	Kolmogorov complexity is not computable

	Time-Bounded Computations
	NP
	More complexity classes and their relationships
	The classes P and NP, again
	P
	NP

	Some other classes
	coNP
	EXP
	PSPACE

	Relationship between the classes
	If P=NP, then EXP=NEXP

	The Cook-Levin Theorem
	A simple NP-complete problem
	Satisfiability
	Satisfiability is NP-complete
	3-SAT

	Ladner's Theorem
	Review of the Course Material
	Regular languages
	Context-free languages
	Computability theory
	Complexity Theory
	Final remarks
	References

