
Week 3

Communication Complexity Basics

Communication complexity is an important model in complexity theory, and it will be the second
model we’ll study in this course. It also has a very close connection to query complexity. Communi-
cation complexity is a richer, more complicated model of computation than query complexity, but
one in which we can still prove lower bounds.

3.1 Basic definitions

In query complexity, the main object of study was a Boolean function f : {0, 1}n ! {0, 1} (which
can be generalized to be a partial function, or to have non-Boolean inputs and/or outputs, or to be
a relation rather than a function). To compute f(x), we were allowed to make queries to the bits of
the input x, receiving the answer xi when we query position i 2 [n] of x 2 {0, 1}n.

In communication complexity, we study functions F : {0, 1}n⇥{0, 1}m ! {0, 1}, or more generally
F : X ⇥Y ! {0, 1} for some finite sets X and Y . (Note that the function name F is often capitalized;
we will use f for a query function and F for a communication function.) An input to F will have
the form (x, y) with x 2 X and y 2 Y.

Unlike in query complexity, we are not allowed to make queries to the bits of x and y. Instead,
we consider two players, Alice and Bob. When we are given an input (x, y), what actually happens
is that Alice is given x and Bob is given y. They are allowed to do any computation of their half of
the input for free; in other words, Alice can see all of x (without having to pay for queries to x) and
Bob can see all of y. Their goal is to compute F (x, y) using as little communication as possible.

Note that Alice and Bob are on the same team: they are cooperating together to try to get
F (x, y). Additionally, they can decide on a strategy in advance, before receiving their inputs. This
means that Alice and Bob can be assumed to know the function F , and they can get together and
decide on any strategy they wish for computing F ; then they are separated, given an input (x, y),
and must compute F (x, y) using as little communication as possible. We will use DCC(F) to denote
the worst-case number of bits Alice and Bob must send to each other in order to get the answer bit
F (x, y). This is called the deterministic communication complexity of F . We will also use RCC(F)
and QCC(F) to denote the randomized and quantum communication complexities of F ; in the
former, Alice and Bob have access to randomness, and in the latter, they may transmit qubits to
each other instead of bits.

Note a few interesting things about communication complexity. First of all, it doesn’t matter
whether Alice or Bob holds the answer F (x, y) at the end of the protocol, because either of them
can transmit the answer to the other at the cost of just one additional bit of communication. Hence,
up to an additive +1 term, it doesn’t matter if we define F solved when Alice outputs F (x, y), when

1

2 WEEK 3. COMMUNICATION COMPLEXITY BASICS

Bob outputs F (x, y), or if they both need to output F (x, y) correctly.
Second, note that it doesn’t matter what the set X looks like internally, whether it consists of

strings in {0, 1}n or of something else. That’s because Alice can see all of her input x and can calculate
any function of f for free; this means that if the input is given in the form {0, 1, 2, 3, 4, . . . , 2n}, Alice
can convert this to an input of the form {0, 1}n or any other form of her choice. For this reason, we
can denote the input sets by X and Y without specifying them further.

3.1.1 Formalizing the definition

The definitions as we’ve stated them are a little vague. Let’s try to formalize DCC(F). First, it will
help to consider a third player besides Alice and Bob, which we will call the coordinator. Instead
of Alice and Bob communicating with each other, they will instead communicate only with the
coordinator. Also, we will make the coordinator output F (x, y) at the end (rather than making
Alice or Bob output the answer).

Further, consider the setting where the coordinator can ask Alice questions about x and ask Bob
questions about y. Asking questions is free, but a 1-bit answer costs 1. In this model, Alice and
Bob are completely passive, only answering questions about x and y asked by the coordinator.

Note that in the original model of communication complexity, Alice and Bob can agree in advance
on the strategy. This means they can agree in advance to pretend there is a coordinator asking
them questions, and they can also agree in advance on the coordinator’s questioning strategy. This
means that this new model, with the coordinator being active and Alice and Bob being passive, is
equivalent to the original communication complexity model.

We can now formalize this coordinator model in order to formally define DCC(F). Note that
each question asked by the coordinator is just some function ↵ : X ! {0, 1} or � : Y ! {0, 1}; that is,
the coordinator will send Alice the function ↵ (for free), and will get back ↵(x). Or the coordinator
may send Bob the function � (for free), and receive back �(x).

Note that there are 2|X | functions ↵ : X ! {0, 1}. With this in mind, let �X be a mapping
�X : X ! {0, 1}2|X| which converts x 2 X to a very long Boolean string. For each ↵ : X ! {0, 1},
we set (�X(x))↵ = ↵(x). That is, the string �X(x) has one entry for each Boolean function defined
on domain X , and the entry of the string �X(x) at position ↵ is simply the value of ↵(x). The
single string �X(x) therefore stores the value of every possible function evaluated on x.

We now convert the communication function F into a query function f . The domain of f will
be {�X(x)�Y (y) : (x, y) 2 X ⇥ Y} (where �X(x)�Y (y) is the concatenation of the strings �X(x)
and �Y (y)), and we will define f(�X(x)�Y (y)) = F (x, y). In other words, f takes as input strings
of length 2|X | + 2|Y|, where the first 2|X | bits represent all possible function evaluations of x, and
where the last 2|Y| bits represent all possible function evaluations of y. The output of f on such a
string is F (x, y).

We can now define DCC(F) to simply be D(f). Why is this a reasonable thing to do? That’s
because the coordinator, who asks Alice and Bob questions and receive 1-bit answers (at a cost
of 1 per question), is effectively just querying the strings �X(x) and �Y (y). The coordinator may
make such queries in any order, adaptively; but this is simply saying that the coordinator can run
any deterministic query algorithm on �X(x)�Y (y). The minimum number of worst-case queries the
coordinator needs to make is therefore exactly D(f), and this corresponds to the minimum number
of worst-case bits of communication Alice and Bob must send to each other before they both know
F (x, y).

3.2. RANDOMIZED COMMUNICATION MODELS 3

3.1.2 Some properties of the query function coming from a communication
function

Note that this function f is defined on very long strings. If X = {0, 1}n and Y = {0, 1}m, then
|X | = 2n and |Y| = 2m. This means that |Dom(f)| = |X ⇥ Y| = 2n+m, and each string in the
domain of f has length |�X(x)| + |�Y (y)| = 2|X | + 2|Y| = 22

n
+ 22

m . This actually means that f

is defined on a very small promise set: the total number of strings of length 22
n
+ 22

m is 22
2n+22

m

.
Supposing without loss of generality that n � m, this is between 22

2n and 42
2n , whereas |Dom(f)| is

between 2n and 4n. If we use N to denote the number of bits in an input string of f , then |Dom(f)|
is between ⌦(log logN) and O(log log2N). This is a really tiny subset of strings of length N .

Moreover, since Alice can always send her entire string over to Bob and have Bob compute
F (x, y), we know that DCC(F) = O(min{n,m}). Hence we know that D(f) = O(log log logN).
What we will care about is whether the communication complexity is less than n, say

p
n, which

means we will care about whether D(f) is log log logN or
p
log log logN . Reasoning about the

query complexity of such functions, which are defined on such a small promise set and where we
care about such small log factors, turns out to be quite tricky. It will be much better to reason
about communication complexity directly, rather than trying to compute the query complexity of
the corresponding query function.

3.2 Randomized communication models

Having formally defined deterministic communication complexity, we now turn our attention to
randomized communication complexity. One way to define RCC(F) would be to set it equal to
R(f), where f is the query function defined above.

What does this correspond to in terms of a communication strategy between Alice and Bob?
It is clear that this R(f) definition corresponds to the coordinator using a randomized strategy
when picking the questions to ask Alice and Bob. If Alice and Bob wish to mimic such a strategy
themselves (without the coordinator), they would have to pretend to ask each other the questions –
without actually sending the questions across, as that’s too costly – and then send each other the
answers to those questions. To do this, they must pick the questioning strategy in advance.

However, if the questions are random (with the randomness being chosen after the input), Alice
and Bob cannot fully decide on the questioning strategy in advance, since that strategy also depends
on random bits that must be chosen later (after Alice and Bob are separated and the input is given
to them). In order to simulate the coordinator’s behavior, Alice and Bob would need to somehow
pick the same random bits together. Such a model is called the shared randomness or public coin
model. We could pretend that Alice and Bob each have a device that generates random bits, but
these devices are correlated and always give the same random bits to Alice and to Bob. The key is
that the input (x, y) cannot depend on the value of this randomness; we can imagine (x, y) being
chosen by an adversary that knows Alice and Bob’s strategy, but doesn’t know their random choice
of bits. So in the shared randomness model, Alice and Bob must succeed on such worst-case inputs,
but they get to pick shared random bits.

This shared randomness model turns out to be equivalent to R(f). This is the usual way of
defining the randomized communication complexity RCC(F).

3.2.1 Private randomness

However, it is also interesting to consider the situation where Alice and Bob only have access to
private randomness. This model is weaker: if Alice and Bob had shared randomness, then Bob

4 WEEK 3. COMMUNICATION COMPLEXITY BASICS

can pick k bits of shared randomness by agreeing with Alice in advance that Alice will ignore
the first k bits of randomness she receives from her shared-randomness device; then Bob can use
these bits, and they will be uncorrelated with anything Alice uses. In other words, the shared
randomness model can simulate the private randomness model, but not vice versa. Let us use
RCC,priv(F) to denote the randomized communication complexity of F with private randomness;
then RCC,priv(F) � RCC(F). The measure RCC,priv(F) cannot be defined using a query function
such as f , so we must always talk about it in terms of communication models. We won’t give a
formal definition.

3.2.2 Equivalence

It turns out that in the bounded-error setting, the private randomness and shared randomness
models are equivalent up to constant factors and up to an additive O(log log |X |+ log log |Y|) term
(which is O(log n) when X = Y = {0, 1}n). Formally, we have the following theorem.

Theorem 3.1. Let F : X ⇥ Y ! {0, 1} be a communication function. Then

RCC,priv
✏ (F) = O

✓
RCC

✏ (F) + log log(|X ||Y|) + log
1

✏
+ log

1

1� 2✏

◆
.

This theorem may look complicated, but just realize that when ✏ is a constant in (0, 1/2), then
the log 1/✏ and log 1/(1� 2✏) terms are both additive constants, and also that log log(|X ||Y|) should
be interpreted as log n (where n is the size of the input strings). Hence this is essentially saying
that RCC,priv(F) = O(RCC(F) + log n).

Proof. Consider any communication protocol ⇧ which uses shared randomness to solve F – equiva-
lently, consider any randomized algorithm R which solves f to bounded error. Then R is a probability
distribution over decision trees.

What we would like to do is to find k decision trees D1, D2, . . . , Dk in the support of R such
that picking i 2 [k] at random and running Di always gives nearly the same result as running R.
(The decision trees Di can have repetitions; they might even all be the same tree.) That is, we want
the decision trees Di to satisfy the property

| Pr
i⇠[k]

[Di(z) = 1]� Pr
D⇠R

[D(z) = 1]|  �

for all z 2 Dom(f), where � is some small parameter. Note that if such a sequence of decision trees
Di exists, then Alice and Bob can solve F using private randomness, as follows: first, Alice picks
a random i between 1 and k, and sends it to Bob. This requires O(log k) bits of communication.
Next, Alice and Bob pretend there is a coordinator questioning them with questioning strategy Di,
and send each other the answer bits accordingly. Then they output Di(�X(x)�Y (y)) where (x, y) is
their input. Note that their success probability is within � of the success probability of R, so their
probability of error is at most ✏+ �. This cost them an additive O(log k) more communication than
in the shared randomness version.

It remains to show that for k not too large, such a sequence D1, D2, . . . , Dk of decision trees
must exist. To do so, we consider picking each Di independently at random from R, and calculate
the probability that such a random sequence has the desired property. For each z 2 Dom(f), the
probability that

| Pr
i⇠[k]

[Di(z) = 1]� Pr
D⇠R

[D(z) = 1]|  �

3.3. QUANTUM COMMUNICATION COMPLEXITY 5

is just the probability that

|1
k

kX

i=1

Di(z)� Pr[R(z) = 1]|  �.

LetXi be the random variable Di(z), where Di is chosen from R. Then the Xi variables are identically
distributed Bernoulli random variables, with mean µ = Pr[R(z) = 1]. Then the Chernoff-Hoeffding
inequality tells us that the probability of the average of k i.i.d. Bernoulli random variables is more
than � away from the mean is at most 2e�2�2k, so the randomly-chosen sequence Di is good on a single
input z with probability at least 1� 2e�2�2k. By the union bound, the probability that a randomly
chosen sequence Di is good for all z 2 Dom(f) is at least 1� 2e�2�2k|Dom(f)| = 1� 2e�2�2k|X ||Y|.
To ensure that such a sequence exists, all we need to do is pick k large enough that this expression
is greater than 0; equivalently, we need e�2�2k < 1/2|X ||Y| or k > ln(2|X ||Y|)/2�2. Picking
k = bln(2|X ||Y|)/2�2c+ 1, we get that taking k = O(log(|X ||Y|)/�2) suffices, so Alice and Bob can
achieve error ✏+� with private randomness using an additive overhead of O(log log(|X ||Y|)+log 1/�)
extra bits of communication.

We can now combine this result with amplification. If ✏ is close to 0, we can take � = ⇥(✏) and
then amplification from ✏+ � error to ✏ error costs only a constant factor. On the other hand, if ✏ is
close to 1/2, we can take � = ⇥(1� 2✏) and then amplification against costs only a constant factor.
In both cases, we get

RCC,priv
✏ (F) = O

✓
RCC

✏ (F) + log log(|X ||Y|) + log
1

✏
+ log

1

1� 2✏

◆
,

as desired.

3.3 Quantum communication complexity

At first, one might be tempted to define quantum communication complexity in a way which is
analogous to deterministic and (shared-randomness) randomized communication complexity, by
setting it equal to Q(f) for the query function f . Unfortunately, this definition doesn’t work. The
reason is that Q(f)  2 for all query functions f that come from a communication function F .
Indeed, recall that if we have access to subset-parity queries for a string x 2 {0, 1}n, then the
Bernstein-vazirani algorithm lets us extract all of x using a single quantum query (a query to the
parity of subsets of x, in superposition). The string �X(x) contains all possible functions applied
to x, so in particular, some positions in the string �X(x) represent the parities of the subsets of x.
Hence, using a single quantum query to �X(x), we can extract the entire string x. Doing a similar
thing to y using another query, we can get both x and y, and then output F (x, y) after only two
queries.

The reason this definition failed is that such a definition essentially allows the coordinator to ask
Alice and Bob questions in superposition; however, we did not charge for the questions, only for the
answers. Setting up a really large superposition, over 2n different questions, allows a single quantum
query to extract n classical bits. Alice and Bob have no way to simulate this without a coordinator.

Instead, we must define quantum communication complexity differently, in a way which actually
talks about the communication. This is a bit tedious to do, but we will go through it anyway.

What happens is that Alice holds a register |Ai and Bob holds a register |Bi. At the beginning
of the protocol, the registers are initialized to |A0i = |xi |0i and |B0i = |yi |0i, where the extra |0i
states are some work space of arbitrarily large (but finite) dimension. In addition to these register,
there is also a communication register |Ci, which can only store values in {0, 1}. Let’s initialize
|C0i = |0i. This register |Ci will move back and forth between Alice and Bob.

6 WEEK 3. COMMUNICATION COMPLEXITY BASICS

We will assume that Alice and Bob take turns speaking. This is a safe assumption up to a factor
of 2; for example, if Alice and Bob wanted to arrange that only Alice speaks, we can just have Bob
send back |0i each time, which uses twice as many bits of communication while gaining the property
that Alice and Bob alternate their speech.

The communication protocol itself will be a sequence of unitaries U0, U1, . . . , UT . At first, Alice
will apply U0 to |A0i |C0i (with U0 acting as identity the register |B0i, so that Alice may apply
U0 on her side only). We define |A1i |C1i |B1i = U0 |A0i |C0i |B0i (note that |B1i is the same as
|B0i). Then the communication register |C1i gets sent to Bob, and Bob applies the unitary U1 to
|B1i |C1i, and sends the C register back to Alice. They keep going in this way, with Alice applying
even-numbered unitary matrices and Bob applying odd-numbered unitary matrices.

After the last unitary is applied, a special part of Alice and Bob’s registers is measured. That is,
we assume that Alice and Bob each hold special output registers as part of their work tapes, and
that these special registers take values in {0, 1}. For convenience, we will require that both Alice
and Bob output the right answer: that is, we measure each of their output registers, and we say
that the protocol succeeded on input (x, y) if both measurement outcomes were equal to F (x, y).

Having defined a quantum communication protocol, we can now define QCC(F) to be the
minimum number of rounds T in a quantum communication protocol which computes F (x, y) to
error at most 1/3 against worst-case inputs (x, y).

3.3.1 Shared entanglement

The definition we gave for QCC(F) allows Alice and Bob to use private randomness (they can
generate random numbers using quantum states, using some standard tricks), but it does not allow
Alice and Bob to have shared randomness. We can extend the definition to allow them to share
randomness as well, giving a potentially more powerful model.

Going further, we can consider allowing Alice and Bob to start with a shared entangled state.
They will agree on this state in advance, and the shared state will span the work registers of both
Alice and Bob; this starting state cannot depend on the input. It will replace the |0i part of |A0i
and |B0i respectively, and the protocol will otherwise be defined to be the same as before.

Since the shared entanglement is arbitrary (and must be specified along with the unitary matrices
U0, U1, . . . , UT when defining a quantum communication protocol), Alice and Bob can choose it in
a way that gives them access to shared randomness. Hence shared entanglement is more powerful
than shared randomness.

Another cool property is that using appropriately-chosen shared entanglement, Alice and Bob
only need to send each other classical bits. This is because they can use quantum teleportation,
which uses an entangled state together with classical communication to transmit quantum bits from
Alice to Bob.

Recall that for randomized communication complexity, the private and shared randomness set-
tings ended up being equivalent (at least up to a log n term and up to constant factors and when we
only care about constant error). On the other hand, for quantum communication complexity, it is
still open whether the shared entanglement and the non-shared entanglement models are equivalent
in this way. Some authors use QCC(F) to denote the shared entanglement quantum communication
complexity of F . Other authors use QCC(F) to denote the non-shared entanglement quantum com-
munication complexity, and they use QCC,⇤(F) to denote the shared entanglement version. Note
that QCC,⇤(F) = O(QCC(F).

3.4. COMMUNICATION MATRICES AND PARTIAL FUNCTIONS 7

3.4 Communication matrices and partial functions

We sometimes represent a communication function F : X ⇥ Y ! {0, 1} by the corresponding com-
munication matrix. This is a matrix with rows indexed by X and columns indexed by Y, in which
the entry corresponding to (x, y) is F (x, y). We denote this matrix by the same symbol F , so we
will sometimes write F [x, y] for F (x, y) when we want to think of F as a matrix. Note that if
X = Y = {0, 1}n, then this matrix is 2n ⇥ 2n; in other words, the matrix is exponentially large in
what we would normally think of as the input size.

Communication functions we have seen are analogous to total Boolean functions in query com-
plexity. However, we can also define partial communication functions. This works by defining F on a
subset of X ⇥Y , where X and Y are again arbitrary finite sets. In other words, a partial communica-
tion function is a function F : S ! {0, 1} where S ✓ X ⇥Y. We can also write F : X ⇥Y ! {0, 1, ⇤}
where we set F (x, y) = ⇤ if (x, y) is not in the domain of F .

The definitions above for deterministic, randomized, and quantum communication complexities
all generalize naturally to partial functions. We can also extend the notion of a communication
matrix: if F is a partial communication function, then its communication matrix is again F , where
now some entries F [x, y] might be ⇤ instead of 0 or 1.

3.4.1 The rank of a communication matrix

Surprisingly, the rank of a communication matrix turns out to be an important measure for a
communication function. In fact, we have the following.

Lemma 3.2. Let F : X ! Y ! {0, 1} be a total communication function. Then DCC(F) �
log2 rank(F).

Proof. Take any deterministic communication protocol for F . This can be thought of as a determin-
istic query algorithm D for f , which makes queries to the string �X(x)�Y (y).

If the algorithm makes T queries, then there are 2T possible sequences of answers to those queries.
For each such sequence s 2 {0, 1}T , consider the set As ✓ Dom(F) of all inputs (x, y) which are
consistent with these query responses; that is, all inputs (x, y) such that if we run D on that input,
the sequence of query responses would be exactly s. Note that the sets As are disjoint, and that
their union is Dom(F), so they partition Dom(F).

Further, note that each set As is actually a rectangle. In communication complexity, we say
a subset of X ⇥ Y is a rectangle if it is equal to S ⇥ T for some S ✓ X and T ✓ Y. For each
s 2 {0, 1}T , the set As must be a rectangle, because each question to Alice about input x only
eliminates possibilities from X and question to Bob about input y y only eliminates possibilities
from Y; there is no way to rule out a pair (x, y) from being the input without also ruling out all
pairs of the form (x, y0) and (x0, y) for all x0 and y0.

Finally, note that since D computes f , the matrix F restricted to the entries in As must either be
all 0s or all 1s. This is because after the T queries, when the algorithm saw the responses s 2 {0, 1}T ,
the algorithm knows with certainty the value of F (x, y); hence all inputs (x, y) consistent with seeing
s must have the same value under F . Let Fs be the matrix with the same dimensions as F which
is equal to F on coordinates in As and equal to 0 elsewhere. Then F =

P
s2{0,1}T Fs. Moreover,

each Fs is either the all-0 matrix, or else it is a matrix with 1s in As and 0s elsewhere. Since As is a
rectangle, by rearranging rows and columns of Fs we can get it to be a rectangle of 1s, surrounded
by 0s. This is a rank-1 matrix.

8 WEEK 3. COMMUNICATION COMPLEXITY BASICS

Finally, we write

rank(F) = rank

0

@
X

s2{0,1}T
Fs

1

A 
X

s2{0,1}T
rank(Fs) 

X

s2{0,1}T
1 = 2T .

Since T = DCC(F), the desired result follows.

A long standing open problem in communication complexity is called the logrank conjecture. It
says that the above relationship can also go the other way, up to polynomial factors. In other words,
the conjecture states that logrank is always a decent lower bound on deterministic communication
complexity.

Conjecture 3.3. For every total communication function F : X ⇥ Y ! {0, 1}, we have DCC(F) =
O(polylog(rank(F))).

3.5 A separation between deterministic and randomized communi-
cation

We can give an exponential separation between randomized and deterministic communication com-
plexities for a total Boolean function. In fact, we give a function F : {0, 1}n ⇥ {0, 1}n ! {0, 1} for
which DCC(F) = ⌦(n) but RCC(F) = O(1). This is the maximum possible separation, because
the deterministic communication complexity is always at most O(min{log |X |, log |Y|}) (since one
of Alice or Bob can send their whole input to the other).

The function which achieves this separation is called equality, or EQn. This function is defined
by EQn(x, y) = 1 if x = y and EQn(x, y) = 0 if x 6= y. The domain of EQn is {0, 1}n ⇥ {0, 1}n.

Let’s first prove a lower bound on DCC(EQn). To do so, we will use logrank. Note that the
communication matrix of this function EQn is the 2n⇥2n identity matrix. Its rank is 2n, and hence
the logarithm of its rank is n. Hence we get DCC(EQn) = ⌦(n).

Next, we can upper bound the randomized communication complexity RCC(F). We will do so
using public randomness. Alice and Bob have n-bit strings x and y, and they wish to know if they
are equal. What they will do is pick a random subset S ✓ [n] using their shared randomness, and
then Alice will send Bob the parity of the bits of x that are in S. Bob will compare that to the parity
of the bits of y that are in S. They will repeat this procedure a few times, say 10 times with newly
chosen random subsets each time, and if the parities agree all 10 times, they output 1. Otherwise,
if the parities ever disagree, they output 0.

Note that if x = y, then Alice and Bob will always output 1 when following this protocol. Now,
suppose x 6= y. Then let T ✓ [n] be the non-empty set of positions at which x and y disagree. For
any S ✓ [n], the parities of the bits of x in S and the bits of y in S disagree if and only if |S \ T | is
odd. Since S is randomly chosen, each i 2 T occurs in S with probability 1/2. It follows that no
matter what size T is, the probability that |S \ T | is odd when S is chosen randomly is exactly 1/2.
Hence in each round, Alice and Bob have a 1/2 chance of discovering that x 6= y (if indeed x and y
are different). After 10 rounds, the probability that Alice and Bob did not discover that x 6= y is
2�10 < 0.001. Hence this protocol achieves bounded error, and RCC(EQn) = O(1).

Note that this protocol used shared randomness. We can convert it to a protocol with private
randomness as we’ve seen, but that will use O(log n) bits of communication instead of O(1). Still,
O(log n) is an exponential improvement over DCC(F) = ⌦(n).

3.6. COMPOSING A QUERY FUNCTION WITH A COMMUNICATION FUNCTION 9

3.6 Composing a query function with a communication function

Communication functions cannot be composed with each other; if we have F : X ⇥ Y ! {0, 1} and
G : X 0⇥Y 0 ! {0, 1}, it is not clear what F �G should even mean. However, an interesting operation
is to take a Boolean function f : {0, 1}n ! {0, 1} and a communication function G : X ⇥Y ! {0, 1}
and compose them together.

The way this works is as follows. The function f � G will be a communication function
X n ⇥ Yn ! {0, 1}. On input ((x1, x2, . . . , xn), (y1, y2, . . . , yn)), the function f � G will evaluate
to f(G(x1, y1), G(x2, y2), . . . , G(xn, yn)). In other words, we take as input n different inputs to G,
and we give Alice all the n Alice-inputs and give Bob all the n Bob-inputs. Now Alice holds n
different inputs xi and Bob holds n different strings yi. Their new goal is to compute f �G, which
means they want to compute G(xi, yi) for each i, and then apply f to the resulting n-bit string of
outputs from G. They just need to produce this final bit f(G(x1, y1), G(x2, y2), . . . , G(xn, yn)). We
can also extend this definition to partial functions f and G in the usual way (the promise of f �G
will be that the inputs to all n copies of G satisfy the promise of G, and also that the n-bit output
string from the n copies of G satisfies the promise of f).

One might wonder: is it true that DCC(f �G) = D(f)DCC(G) for all Boolean functions f and
communication functions G? The upper bound certainly holds (at least ignoring constant factors):
Alice and Bob can pick a deterministic query algorithm for f , and then execute that algorithm, and
whenever that algorithm queries a bit i of the input, Alice and Bob will compute the i-th copy of G.

However, the lower bound does not hold. As an example, consider f = Parityn and G = XOR,
where G : {0, 1}⇥ {0, 1} ! {0, 1} is the function G(x, y) = x� y which takes two bits and returns
their XOR. It should be clear that DCC(G) = 1 and D(f) = n. However, the function f �G is just
the function {0, 1}n ⇥ {0, 1}n ! {0, 1} which takes two strings (x, y) and returns the parity of the
concatenated string xy. Alice and Bob can compute this function using O(1) communication: Alice
will simply send Bob the parity of x, and Bob will compute the parity of y and XOR with the bit
from Alice. This will give the right answer for the joint parity of their strings.

On the other hand, what does seem to be true is that for sufficiently hard functions G, it may
be the case that DCC(f �G) = ⌦(D(f)DCC(G)). So while we cannot hope that this statement will
always be true, we can still hope that it is true for all “non-trivial” G, for an appropriate definition
of non-trivial.

However, this is still open. What’s known is a weaker result, called a lifting theorem.

Theorem 3.4. For every input size n, there exists a communication function Gn such that DCC(Gn) =
O(log n) and such that for any Boolean function f : {0, 1}n ! {0, 1}, we have DCC(f � Gn) =
⌦(D(f)DCC(G)).

This theorem, first shown by [GPW18] based on a protocol of [RM99], says that although we
don’t know how to compose every f with every G, we do know that some sufficiently “rich” G does
compose with every f . This “lifting theorem” allows us to take a query function f and “lift” it to a
communication function f �G which shares many of the properties of f . For starters, it will have
similar deterministic communication complexity to the query complexity of f . Moreover, since f �G
composes in the upper bound direction in most models (e.g. randomized and quantum, though we
may lose a log factor due to amplification), we also have an upper bound on RCC(f �G) in terms
of R(f) and an upper on QCC(f �G) in terms of Q(f).

It’s important that the communication complexity of Gn is small (only O(log n)), because this
way, when we compose a query function f with G, the communication function we get has almost
the same communication complexity as the query complexity of f . Ideally, one could also prove

10 WEEK 3. COMMUNICATION COMPLEXITY BASICS

the above theorem for a constant communication function G, whose size does not depend on n (the
input size of f). This is believed to be true, but is currently open.

Conjecture 3.5. There is a fixed communication function G such that for all query functions f ,
DCC(f �G) = ⌦(D(f)).

Note that we phrased this “lifting with a constant-sized gadget” conjecture for deterministic
query and communication complexities, but we can make a similar conjecture for other models, such
as randomized (query and communication) complexity and quantum (query and communication)
complexity. All these conjectures are currently open, at least for a constant-sized gadget. (We
often use the term “gadget” to refer to the inner function G, because we think of it as small but
rich/complex.)

Lifting a query function into communication complexity is a good way of constructing interesting
communication functions. For example, the best separation we have between RCC(F) and QCC(F)
for a total communication function comes from taking a total query function with a separation
between R(f) and Q(f), and lifting it. This requires a lifting theorem for randomized query-to-
communication complexity, which was only shown recently [GPW17] (the gadget size there is not
constant, but has communication complexity that grows like O(log n) where n is the input size of
f). Note that it does not require a quantum lifting theorem, since such a separation only requires
an upper bound on the quantum communication of a composed function, which is the easy direction
(lifting theorems prove the lower bound).

A lifting theorem for quantum query to quantum communication complexity is not currently
known with any gadget. This is an important open problem.

Conjecture 3.6. For each n, there is a communication function Gn such that QCC(Gn) = O(polylog n)
and such that for any Boolean function f : {0, 1}n ! {0, 1}, we have QCC(f �Gn) = ⌦̃(Q(f)).

Another important open problem is whether there is a super-polynomial separation between
randomized and quantum communication complexities for total functions. Recall that in query
complexity, we know that R(f) = O(Q(f)6) for all total functions f (and this has recently improved
to a power 4 relation). In query complexity, this even holds for D(f) vs. Q(f) – they are also
polynomially related for total functions.

However, in communication complexity, we saw an exponential separation between DCC(EQ)
and RCC(EQ) already. Note that EQ is a total function. On the other hand, such a separation
between RCC and QCC is not known, and is an important open problem.

Conjecture 3.7. We have RCC(F) = O(poly(QCC(F))) for all total communication functions F .

Remember that lifting query functions to communication functions can give us separations be-
tween measures, but it cannot give us relations between communication complexity measures, because
although every query function can be lifted to a communication function, not every communication
function can be viewed as a lifted query function.

As a final note, for partial communication functions, exponential separations are known; one
way to get them would be to start with a partial query function which gives an exponential sep-
aration between R and Q, and then “lift” it to a communication function by composing it with a
communication function G. Lifting theorems generally work for partial functions too, not just for
total functions.

References

[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for
BPP. Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2017. doi: 10.1109/FOCS.2017.21. eprint: 2017/053 (p. 10).

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic Communication vs.
Partition Number. SIAM Journal on Computing (2018). Previous version in FOCS
2015. doi: 10.1137/16M1059369. eccc: 2015/050 (p. 9).

[RM99] Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Com-
binatorica (1999). Previous version in FOCS 1997. doi: 10.1007/s004930050062

(p. 9).

11

https://doi.org/10.1109/FOCS.2017.21
2017/053
https://doi.org/10.1137/16M1059369
http://eccc.hpi-web.de/report/2015/050/
https://doi.org/10.1007/s004930050062

	Query Complexity Basics
	Classical query complexity
	Quantum query complexity
	Dirac notation
	Defining quantum query complexity

	Partial functions and examples
	Separations for partial functions

	Relationships for total functions

	Some Quantum Query Algorithms
	Revisiting the quantum query model
	An alternative definition
	A simplification
	Extension to non-Boolean strings

	Basic quantum algorithms
	Shor's algorithm
	Grover's algorithm
	Amplitude amplification

	Communication Complexity Basics
	Basic definitions
	Formalizing the definition
	Some properties of the query function coming from a communication function

	Randomized communication models
	Private randomness
	Equivalence

	Quantum communication complexity
	Shared entanglement

	Communication matrices and partial functions
	The rank of a communication matrix

	A separation between deterministic and randomized communication
	Composing a query function with a communication function

	Quantum Certificates and the Hybrid Method
	The hybrid method
	Linear programming duality
	Fractional certificates
	Some examples
	Randomized and quantum certificates

	The Adversary Method
	Primal form
	Dual form
	Applications
	Reproving previous results
	New applications

	The Negative-weight Adversary
	Limitations of the positive adversary method
	Property testing barrier
	The certificate barrier

	The negative adversary
	SDP formulation

	An error-dependent version
	Negative-weight adversary vs. quantum query complexity
	Duality and tightness
	Composition

	Polynomials, Part 1: Symmetrization
	Representing functions by polynomials
	Approximating polynomials
	Symmetrization
	Larger alphabets

	Polynomials, Part 2: Dual polynomials
	Duality for polynomials
	Sign degree and discrepancy
	Duality for discrepancy and sign degree

	Back to bounded-error polynomials
	Applications
	Composition theorems
	Explicit lower bounds

	Other Methods
	Lower Bounds by Upper Bounds
	The first ironic lower bound
	The second ironic lower bound

	The Multiplicative Adversary Method
	Zhandry's Quantum Query Lower Bounds
	Lower bounds in other models

	The Gamma 2 Norm and Its Variants
	More on lifting theorems
	Approximate logrank
	Discrepancy and sign rank
	The gamma 2 norm
	Definitions of the gamma 2 norm
	Basic properties of the gamma 2 norm
	A quick detour about other matrix norms
	More properties of the gamma 2 norm
	The dual norm of the gamma 2 norm
	Grothendieck's inequality
	The cut norm and the mu norm

	Approximate gamma 2 norm and logrank
	Duality for the approximate gamma 2 norm

	References

