
Week 2

Some Quantum Query Algorithms

2.1 Revisiting the quantum query model

Recall the definition of a quantum query algorithm: it is a tuple Q = (U0, U1, . . . , UT) of T + 1
unitary matrices, each of which acts on four registers: a work register |·i

W
, an output register |·i

O

(which is sometimes considered part of the work register), an index register |·i
I
, and a query-output

reigster |·i
B

(used to store the answers to queries). When run on input x, the quantum algorithm
Q outputs Q(x), defined as the random variable we get by computing

UTU
xUT�1U

x . . . UxU1U
xU0 | initi

and then measuring the output register |·i
O

. Here Ux is the unitary matrix which performs a query:
it maps |oi

O
|wi

W
|ii

I
|bi

B
! |oi

O
|wi

W
|ii

I
|b� xiiB, where � denotes addition modulo 2 (or any

other reversible operation). This map Ux is extended linearly to all vectors defined on these registers.
The value of | initi does not really matter, since U0 can change it to whatever the algorithm wants
the initial state to be, so without loss of generality we can take | initi = |0i

O
|0i

W
|1i

I
|0i

B
.

2.1.1 An alternative definition

The above is a natural way to define quantum query complexity, and is the way we defined it last
week. However, there is an alternative way of defining quantum query complexity, which modifies
the action of the query matrix Ux. Recall that Ux needs to somehow take an index |ii and return
a bit |xii, but it must remain unitary, so we cannot erase |ii and overwrite it with |xii (since this
will “destroy information” and not be reversible, which means the action cannot be unitary). The
solution we came up with was to have Ux map |ii |bi ! |ii |b� xii, where b will usually be 0 and is
just a placeholder for the query output xi.

Instead, we can implement a quantum query in a different way: we can encode xi in the phase.
In other words, we can define Ux to map |ii to (�1)xi |ii. This action is reversible: indeed, we
can undo Ux by applying it again, so it is its own inverse. Actually, we will also want to give the
algorithm the ability not to query any index; one simple way to do so is to add back the register B,
and map |ii |bi ! (�1)bxi |ii |bi. This way, if b = 1, the query is implemented in the phase, while if
b = 0, no query is made at all (so |bi

B
becomes effectively an on/off switch). If we extend this map

linearly (and define it to act as identity on the work registers), we get a unitary matrix Ux which
can form the basis of another definition of quantum query complexity.

In this new definition, a T -query quantum algorithm will still be a tuple Q = (U0, U1, . . . , UT), and
Q(x) will still denote the output of measuring the output register after applying UTUx . . . UxU0 | initi.

1

2 WEEK 2. SOME QUANTUM QUERY ALGORITHMS

The only difference is that Ux now means something different (it implements a query to x in phase),
so the algorithm Q needs to be designed differently to take this input account.

It turns out that these two definitions of quantum query complexity are equivalent. To see
this, let’s examine what happens when we apply a Hadamard matrix to the B register before and
after we apply Ux. The Hadamard matrix is the unitary matrix 1p

2

�
1 1
1 �1

�
. Applying it to |bi gives

1p
2
(|0i + (�1)b |1i). We extend H to act as identity on the other registers by taking the tensor

(Kronecker) product with the identity matrix. This matrix will then send

|ii |bi ! 1p
2
(|ii |0i+ (�1)b |ii |1i).

Applying the matrix Ux which queries in phase then gives 1p
2
(|ii |0i + (�1)b(�1)xi |ii |1i), and

applying the Hadamard matrix again gives |ii |b� xii.
Hence if Ux is the matrix which queries in the phase, then (I ⌦ H)Ux(I ⌦ H) is the matrix

which queries regularly. Since I ⌦H is its own inverse, we also get that if Ux is the matrix which
queries regularly, then (I⌦H)Ux(I⌦H) queries in the phase. This means that if we had a quantum
algorithm by the first definition, we can turn it into one that works by the second definition simply
by multiplying the matrices Ui by matrices (I ⌦H). We can also convert backwards using the same
trick.

2.1.2 A simplification

We can simplify the second definition of the quantum query model by almost removing the register
|bi. Recall that when b = 0, no query gets made. It feels a little bit “wasteful” to pass |ii to the
oracle if the oracle is not going to do anything with it. Instead, we can do the following: we will
pass only |ii to the query matrix Ux, and have Ux map |ii ! (�1)xi |ii. However, since we want
to preserve the ability to not make any query, we will add the symbol i = 0 as a possible argument
to pass to Ux, and set Ux |0i = |0i. That is, if we pass |0i to Ux, we are saying we don’t want to
make any queries.

This final model removes the register B, and hence is notationally simpler. This is model is most
often used in the design of quantum algorithms. It turns out to be equivalent to the other two query
models we’ve defined.

Finally, let’s ask the question: did we need the additional argument |0i
I
? What would happen if

we defined quantum query complexity with the phase definition of querying, but without any option
not to make a query?

The answer is that without the ability to not make a query, there is a lot we cannot do, so
this ability is necessary. In particular, if the input is x = 1n, then if we didn’t have the ability to
make no queries, the matrix Ux would add a minus sign to every basis state, and hence we would
have U1n = �I. On the other hand, if x = 0n, we would have U0n = I. Since a measurements
are invariant under a global phase, the algorithm’s output would be the same in both cases; hence
no quantum algorithm would be able to distinguish the string 0n from the string 1n. This would
be a bad definition of quantum query algorithms! Instead, any of our three equivalent definitions
allows a quantum algorithm to distinguish between 0n and 1n using a single query (see if you can
understand how).

2.1.3 Extension to non-Boolean strings

We can also define quantum query complexity in the case where the symbols xi of x do not have to
come from {0, 1}, but instead come from a larger finite alphabet. For simplicity, let’s assume the

2.2. BASIC QUANTUM ALGORITHMS 3

larger alphabet is {0, 2, . . . ,m � 1}, where m is a positive integer. Then in the first definition of
quantum query complexity, we can have Ux map |ii |bi ! |ii |b+ xii, where b 2 {0, 1, . . . ,m � 1}
and where the addition is computed modulo m. This addition modulo m is chosen because it is
reversible; any other reversible operation will also work, and will be equivalent.

We can then apply a Fourier transform to the B register before and after the query matrix Ux.
Doing so lets us query in phase: we get a new matrix which maps

|ii |bi ! e2⇡jbxi/m |ii |bi

where j =
p
�1. Note that b need not be Boolean here; it is an element of {0, 1, . . . ,m � 1} that

the algorithm can choose freely.

2.2 Basic quantum algorithms

In this section, we’ll review some famous quantum algorithms. We’ll begin with a very simple one
called the Deutsch–Jozsa algorithm [DJ92]. This algorithm computes the parity of 2 bits using one
quantum query (and the computation is exact, i.e. the algorithm never makes any errors).

Theorem 2.1 (Deutsch–Jozsa [DJ92]). QE(Parity2) = 1.

Proof. It’s clear that we need at least one query, since Parity2 is not constant. To compute
Parity2 in one query, we query the superposition 1p

2
(|1i

I
+ |2i

I
) in phase, which gives us

1p
2
((�1)x1 |1i

I
+ (�1)x2 |2i

I
) =

(�1)x1

p
2

(|1i
I
+ (�1)x1�x2 |2i

I
).

We then apply a Hadamard matrix to the index register (note that this does not use any queries).
This gives us the state

(�1)x1(|x1 � x2iI).

We then simply copy that over to the output register; when it is measured, we get x1 � x2, which is
the parity of the 2-bit string x.

This algorithm doesn’t appear to do much, since it only improves on the trivial deterministic
algorithm by a factor of 2; however, it illustrates how quantum query algorithms are constructed.

Next, we’ll introduce the Bernstein-Vazirani algorithm [BV97], which is effectively a higher-
dimensional version of Deutsch–Jozsa. To do so, we will need a bit of notation.

Definition 2.2. For a string x 2 {0, 1}n and a subset S ✓ [n], let �(x) denote the string of length
2n defined by �(x)y = hx, yi for each y 2 {0, 1}n. Here we’ve used y as an index into this string of
length 2n, which makes sense as there are 2n distinct options for y 2 {0, 1}n. We’ve also used the
notation hx, yi the inner product modulo 2 of x and y.

With this notation in hand, we can present the Bernstein-Vazirani algorithm.

Theorem 2.3 (Bernstein-Vazirani [BV97]). Let n 2 N be a positive integer, and let N = 2n. Let
P = {�(x) : x 2 {0, 1}n} ✓ {0, 1}N . Let IdP denote the identity function defined on P ; that is,
IdP (z) = z for all z 2 P , and IdP (z) is undefined when z /2 P . Then QE(IdP) = 1.

4 WEEK 2. SOME QUANTUM QUERY ALGORITHMS

Before we prove this theorem, note that IdP is a function defined on strings of length N = 2n,
so one might expect its query complexity to be close to N . However, even a deterministic algorithm
can compute IdP using only n = logN queries. Indeed, if the input is denoted by z, we can query
the positions zei for each i 2 [n], where ei is the string that has 1 at position i and zeroes everywhere
else. Since z 2 P , we know z = �(x) for some x 2 {0, 1}n, and hence zei = hx, eii = xi. Hence
querying zei for all i (a total of n queries) gives us all of x, after which we can simply compute
z = �(x) offline (with no additional queries).

The interesting property is that a quantum algorithm can compute this function using 1 query
instead of using logN queries. Of course, this strongly relies on the promise we’ve placed on the
input strings.

Proof. The quantum algorithm forms the uniform superposition over indices y to the input z:

1p
2n

X

y2{0,1}n
|yi

I
.

It then queries the input in phase, giving the state

1p
2n

X

y2{0,1}n
(�1)zy |yi

I
.

Finally, the algorithm applies H⌦n

2 to the index register, where H2 is the 2⇥ 2 Hadamard matrix
and where ⌦n denotes the tensor (Kronecker) product of H2 with itself n times. The result is a
2n ⇥ 2n unitary matrix, with H⌦n

2 [y, w] = (�1)hy,wi/
p
2n. Applying this unitary, we get

1

2n

X

y2{0,1}n

X

w2{0,1}n
(�1)zy(�1)hw,yi |wi

I
=

1

2n

X

y2{0,1}n

X

w2{0,1}n
(�1)hx,yi+hw,yi |wi

I

=
1

2n

X

y2{0,1}n

X

w2{0,1}n
(�1)hx+w,yi |wi

I

=
1

2n

X

w2{0,1}n

0

@
X

y2{0,1}n
(�1)hx+w,yi

1

A |wi
I
.

Note that if x+ w is not the all-zero string (modulo 2), then the inner sum will be 0, because half
of the strings y will cause the term (�1)hx+w,yi to be 1 and the other half will cause it to be �1.
If x+ w is the all-zero string modulo 2, then we have w = x, and furthermore (�1)hx+w,yi = 1 for
all y. Hence the above state is exactly equal to |xi

I
. We can now simply convert x to �(x) (which

is reversible, and hence can be done by a unitary matrix) without any further queries, and we can
place �(x) in the output register.

2.3 Shor’s algorithm

Next, we’ll introduce Shor’s algorithm [Sho97], which solves a problem called period-finding.

Definition 2.4. Call a string x 2 [n]n periodic with period k 2 N if

1. xi = xi+k for all i 2 [n], and

2. for all positive integers ` < k and all i 2 [n], xi 6= xi+`.

2.3. SHOR’S ALGORITHM 5

Here addition is modulo n (and x0 refers to xn).

We can now state Shor’s algorithm, which amounts to the following theorem.

Theorem 2.5 (Shor [Sho97]). Let P be the set of all periodic strings in [n]n with period at leastp
n. Let f : P ! [n] be the function that takes an input x 2 P and returns its period (which is an

integer in [
p
n, n]). Then Q(f) = O(1).

Proof. The quantum algorithm will work with regular (non-phase) queries. It will start by setting
up the uniform superposition

1p
n

X

i2[n]

|ii
I
|0i

B
.

It will then make a query, yielding
1p
n

X

i2[n]

|ii
I
|xiiB .

Next, it will apply the quantum Fourier transform to the index register. This is the n⇥ n unitary
matrix Fn given by Fn[a, b] = e2⇡jab/n/

p
n, where j =

p
�1. Applying this matrix to the index

register does not cost any queries, and gives us

1

n

X

i2[n]

X

`2[n]

e2⇡ji`/n |`i
I
|xiiB .

All we are going to do next is to measure the index register (and then repeat this algorithm a few
times and do some classical post-processing). However, before we deal with the measurement, let’s
make some simplifications to this quantum state.

Note that if the period of x is k, then there are only k distinct symbols in the string x; if we
denote the set of these symbols by S ✓ [n] with |S| = k, then we can write this state as

1

n

X

↵2S

X

`2[n]

0

@
X

i2[n]:xi=↵

e2⇡ji`/n

1

A |`i
I
|↵i .

The inner sum is over i such that xi = ↵. Since x is periodic, we know that the set of such i
forms an arithmetic sequence; we can write i = a+ bk where b is an integer which ranges from 0 to
b(n� a)/kc = n/k � 1 and where a 2 [1, k] is the position of the first occurrence of ↵. Let’s use w
to denote e2⇡j/n. Then the inner sum is

w`a

n/k�1X

b=0

wb`k.

There are two cases. If `k is a multiple of n, then wb`k is an integer power of wn = 1; in this case,
the above becomes w`an/k. If `k is not a multiple of n, then the sum is a geometric sequence, and
the above becomes

w`a
1� w`k(n/k)

1� w`k
= 0.

Hence the terms where ` is not a multiple of n/k are all 0. We can take ` = cn/k for c = 1, 2, . . . , k;
this way, the quantum state becomes

1

k

kX

a=1

kX

c=1

e2⇡jca/k |cn/ki
I
|xaiB .

6 WEEK 2. SOME QUANTUM QUERY ALGORITHMS

Measuring the index register then gives a uniform distribution over integers cn/k for c 2
{1, 2, . . . , k}. If we run this twice, we get two integers c1n/k and c2n/k where c1 and c2 are
uniformly random in {1, 2, . . . , k}. When k is large enough, the probability that two uniformly
random integers less than k are relatively prime is around 6/⇡2 � 0.6. This means that if we
simply take the greatest common factor of the two outputs c1n/k and c2n/k, we will get n/k with
probability at least 0.6, provided k is large enough. We can then classically compute k from n/k,
since we know n. Finally, if we want the success probability to be larger than 0.6, we can repeat this
process a constant number of times and output the largest k we’ve seen; this can boost the success
probability to any constant of our choice.

We note that although we used classical post-processing, we could have done all of this compu-
tation using the work tape of the quantum algorithm; this is because quantum computation can
simulate classical computation.

Shor’s algorithm can find the period of a periodic string using a constant number of queries. How
long does this take for a classical algorithm? Some lower bounds are shown in [Cle04; CFMW10].
Note that if a string x is periodic, then the period k has to divide evenly into the length n of the
string; this means that even without making any queries, we know something about the period k.

Luckily, it turns out that Shor’s algorithm can also find the period of a nearly-periodic string, in
which n is not a multiple of k. Proving this formally requires an annoying analysis of the errors this
introduces, and we won’t do so here; however, at least when k is in the vicinity of

p
n (or a constant

factor away), Shor’s algorithm can still work using O(1) queries.
To get a clean separation between quantum and classical algorithms, we can define our period-

finding function to have the promise that x is nearly periodic (so its length does not need to be an
integer multiple of the period) and that its period is in the range [

p
n, 4

p
n]. We can then define the

function f to have Boolean outputs: we’ll ask for the output to be 0 if the period is smaller thanp
2n, and for the output to be 1 if the period is in [

p
2n,

p
4n].

This function f defined on strings of length n has Q(f) = O(1) and R(f) = ⌦(n1/4); see
[CFMW10], for example. This gives quite a large separation between quantum and randomized
query complexity. However, note that the strings of the input had a non-Boolean alphabet. If
we want the function to be defined on Boolean strings, we could use O(log n) bits to represent
one alphabet symbol; of course, the quantum algorithm will then require O(log n) to compute the
function, since it needs to read constantly many alphabet symbols. This gives us a Boolean function
with Q(f) = O(log n) and R(f) = ⌦(n1/4).

2.4 Grover’s algorithm

Next, we examine Grover’s algorithm [Gro96].

Theorem 2.6. Let P ✓ {0, 1}n be the set of all strings with Hamming weight 1 (that is, strings that
have exactly one non-zero entry). Define a function f : P ! [n] by setting f(x) to be the unique
index i 2 [n] such that xi = 1. Then Q(f) = O(

p
n)

Proof. The algorithm starts with the uniform superposition over indices,

|�i = 1p
n

nX

i=1

|ii
I
.

This state is independent of the input x, and can be constructed with no queries. From this starting
state, the algorithm then repeatedly applies two unitaries: first, the unitary Ux which queries in

2.4. GROVER’S ALGORITHM 7

phase; and second, the unitary U = I � 2 |�ih�|. This is repeated k times, which gives us the state

(UUx)k |�i .

To analyze the resulting state, we observe that the algorithm is acting in a two-dimensional
space; that is, even though the quantum states used (such as |�i) are n-dimensional, they all lie in
the the same 2-dimensional plane, and the algorithm never causes the state to leave this plane. Let
i be the index where xi = 1; then the 2-dimensional plane is the one spanned by the orthogonal
vectors |ii and | i = 1p

n�1

P
j 6=i

|ji.
Visualize

P
j 6=i

|ji as the x-axis and |ii as the y-axis. Then |�i is a unit vector in the first
quadrant which is close to the x-axis. Indeed, the angle ✓ between |�i and the x-axis satisfies

cos(✓) = h�| i = 1p
n(n� 1)

X

j 6=i

hj|ji =
r

n� 1

n
,

which means that sin(✓) = 1/
p
n, and hence ✓ ⇡ 1/

p
n.

The unitary operator Ux acts on this 2-dimensional space by flipping the vector across the x-axis
(since it negates |ii and leaves |ji unchanged for j 6= i). On the other hand, by construction U acts
on this 2-dimensional space by flipping across the line spanned by |�i. If a vector has angle ↵ with
the positive x axis, then Ux maps it to the vector with angle �↵, and then U maps it to the vector
with angle ↵+ 2✓. Hence after k steps of the algorithm, the state (UUx)k |�i is precisely

sin((2k + 1)✓) |ii+ 1p
n

X

j 6=i

cos((2k + 1)✓) |ji ,

with ✓ = arcsin(1/
p
n).

If we measure the index register I, the probability that we will find the correct index i is
sin2((2k + 1)✓). Since ✓ ⇡ 1/

p
n, if we choose k to be around (⇡/4)

p
n, the success probability will

be at least a constant. We can then do some classical post-processing: we can query xi where i is
the result of the measurement to check if xi = 1. If so, we know that i is correct, and we can return
i. If not, we can rerun the quantum algorithm to try again. After a constant number of repetitions,
the probability that we failed in all of them can be made to be below any small constant of our
choice.

The above application of Grover search is very specific: there is a special promise (that the
Hamming weight is exactly 1) and the output of the function is not Boolean. However, it turns out
that we can use the same basic algorithm to get a quadratic speedup on many related problems.

First, consider the partial function PromiseORn, where the Hamming weight is promised to
be either 0 or 1 and where our goal is to determine which is the case. By running Grover’s algorithm
as above, we get some index i that the algorithm claims contains a 1; by querying xi, we can then
check whether the algorithm succeeded. If so, we output 1, and if not, we output 0. This algorithm
makes constant error.

Next, consider the situation where there is more than one marked item; that is, where the
Hamming weight of x is h > 1. We can run essentially the same algorithm as in Grover search,
except that our two axes will be (1) the uniform superposition over unmarked items (as the x-axis)
and (2) the uniform superposition over marked items (as the y-axis). The angle ✓ will now be
arcsin(

p
h/n), and so the number of times we wish to rotate by 2✓ before measuring will be

p
n/h.

This means we can find the position i of a marked item using O(
p

n/h) quantum queries; however,
this requires knowing h (at least to within a factor of 2 or so), so that we know when to stop rotating.

8 WEEK 2. SOME QUANTUM QUERY ALGORITHMS

This means we can distinguish strings of Hamming weight h from the all-0 string using O(
p
n/h)

quantum queries, so long as we know h. In fact, we can even distinguish strings of Hamming
weight between [h, 2h] from the all-0 string using O(

p
n/h) while knowing only h (and not the

exact Hamming weight); this is because Grover’s algorithm still works with some constant success
probability if we run for a number of iterations that is slightly sub-optimal. However, if we run for
a number of iterations that is much smaller or much larger than the “correct” number, the angle
that the final vector makes with the x-axis might end up being close to 0 or to ⇡, in which case the
success probability might be very small (like 1/n or even 0).

What if we don’t know h? Can we still find a marked item if we don’t know how many there
are to look for? Well, we can do the following trick: we can run the Grover rotation for a random
number of iterations. We can choose this random number k uniformly in [0, 100

p
n]. The upper

bound is picked to be large enough to ensure that even if there is only one marked item, we will rotate
full-circle many times. This way, regardless of ✓ (and hence regardless of the number of marked
elements), the angle we end up with will effectively be uniformly random in the full range [0, 2⇡].
Then with probability around 1/2, the angle at the end will be in [⇡/4, 3⇡/4] [[5⇡/4, 7⇡/4]; if this
happens, the success probability of our measurement will be at least 1/2. Hence the probability
that this process succeeds in finding a marked item is at least 1/4. We can then check the resulting
index i by querying xi to see if xi = 1; if not, we can try again. Repeating this procedure a constant
number of times lets us find a marked item with any constant probability we wish (or else lets us
conclude there is no marked item at all).

The upshot of this is that we get the following conclusion.

Theorem 2.7 (Grover Search [Gro96]). Let ORn be the OR function on n bits. Then Q(ORn) =
O(

p
n).

It is not hard to argue that R(ORn) = ⌦(n), so ORn is a total function that gives a quadratic
quantum speedup. As we’ve discussed last week, it is known that R(f) = O(Q(f)4) and even
D(f) = O(Q(f)4) for total functions. There’s also a power 3 separation known between R(f) and
Q(f), and a tight power 4 separation between D(f) and Q(f).

It is not currently known whether the largest possible separation between Q(f) and R(f) for
total functions is a power 3 separation or a power 4 separation (or something in between).

2.5 Amplitude amplification

As we’ve noted before, a quantum algorithm can be amplified: if the algorithm computes a Boolean
function to error ✏, repeating it k times and taking a majority vote of the outputs gives a new
algorithm which uses k times as many queries and which has smaller error.

How much does it cost to perform this amplification? In other words, how large does k need to
be? It turns out that if we start with a constant-error algorithm and wish to get a very-small-error
algorithm with error ✏, we only need to pick k to be ⇥(log 1/✏). This means that, for example, if we
wanted the error to be 1/n100, we would only need to pay a multiplicative factor of O(log n) in the
number of queries used.

What if instead of starting with constant error, we start with very large error? Recall that an
error of 1/2 or larger makes query complexity trivial (because the algorithm can guess the answer
without making any queries). Suppose, however, that we have an algorithm that computes a Boolean
function to error (1� �)/2, where � > 0 is very small (say, 1/

p
n or something). We wish to turn

this into an algorithm that succeeds with constant error. How much does this cost?
It turns out that this is a much more expensive operation. Using the strategy of repeating k

times and taking the majority vote, it turns out that we would need to pick k = ⇥(1/�2) before the

error level becomes constant. If � = 1/
p
n, this would mean that we have to use n times as many

queries as before – but since every Boolean function can be computed with n queries, this doesn’t
even beat the trivial deterministic algorithm of querying all the bits, and is therefore useless.

A better amplification strategy in this type of setting exists – for quantum algorithms only
(the classical ones are stuck paying 1/�2). This strategy relies on amplitude estimation. Roughly
speaking, the task of quantum amplitude estimation works as follows: we have a quantum algorithm
Q, which we can view as a unitary U = UTUx . . . UxU0 that depends on x, a start state | initi, and
a measurement; we will represent the measurement using a projection matrix ⇧, which projects onto
the space where the algorithm outputs 1. In this notation, the probability that Q(x) outputs 1 is
p = k⇧U | initi k2.

Our goal will be to estimate this probability p; that is, we want a new algorithm which uses the
unitary U as a subroutine and which outputs an estimate p̂, which is guaranteed to be close to p. If
we had such an algorithm, and if it used the unitary U few times, and if the final distance between
p and p̂ was smaller than �/2, then we could use this estimate on our original algorithm to see if its
acceptance probability is less than or greater than 1/2. This allows us to know whether or not the
input x was a 1-input.

Formally, we have the following theorem.

Theorem 2.8 (Amplitude estimation). Suppose we have access to a unitary U (representing a
quantum algorithm) which maps |0i to | i, as well as access to a projective measurement ⇧, and
we wish to estimate p := k⇧| ik22 (representing the probability the quantum algorithm accepts). Fix
✏, � 2 (0, 1/2). Then using at most O((1/✏) ln(1/�)) controlled applications of U or U † and at most
that many applications of I � 2⇧, we can output p̃ 2 [0, 1] such that |p̃� p| ✏ with probability at
least 1� �.

Further, this can be tightened to a bound that depends on p, as follows. For any positive real
number T , there is an algorithm which depends on ✏, �, and T (but not on p) which uses at most T
applications of the unitaries (as above) and outputs p̃ 2 [0, 1] with the following guarantee: if T is at
least 100(1/

p
✏+

p
p/✏) ln(1/�), then |p̃� p| ✏ with probability at least 1� �.

This theorem is proved in this week’s readings; we do not prove it here. We note that using
this theorem, we can get amplification from error (1 � �)/2 to constant error while paying only
O(1/�) overhead, as mentioned earlier. This fast amplification has many applications in quantum
algorithms. For example, we get the following theorem.

Theorem 2.9. Let GapMajn be the promise problem in which the input is promised to have
Hamming weight either at most n/2�

p
n or else at least n/2 +

p
n, and where we must determine

which of these two cases we are given as input. Then Q(GapMajn) = O(
p
n).

Proof. Consider the randomized algorithm which picks an index i 2 [n] uniformly at random, and
outputs xi. This algorithm uses one query and computes GapMajn to error 1/2 � 1/

p
n. We

can turn this into a single-query quantum algorithm which also achieves this error level. We then
amplify this quantum algorithm to constant error using amplitude estimation. The new quantum
algorithm computes GapMajn to constant error and uses O(

p
n) queries, as desired.

9

10 REFERENCES

References

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM Journal on
Computing (1997). Previous version in STOC 1993. doi: 10.1137/s0097539796300921
(p. 3).

[CFMW10] Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf. New Results
on Quantum Property Testing. Proceedings of the 30th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS).
2010. doi: 10.4230/LIPICS.FSTTCS.2010.145. arXiv: 1005.0523 (p. 6).

[Cle04] Richard Cleve. The query complexity of order-finding. Information and Computation
(2004). Previous version in CCC 2000. doi: 10.1016/j.ic.2004.04.001. arXiv:
quant-ph/9911124 (p. 6).

[DJ92] David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Com-
putation. Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences (1992). doi: 10.1098/rspa.1992.0167 (p. 3).

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings
of the 28th Annual ACM SIGACT Symposium on Theory of Computing (STOC). 1996.
doi: 10.1145/237814.237866. arXiv: quant-ph/9605043 (pp. 6, 8).

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing (1997). Previous version
in FOCS 1994. doi: 10.1137/S0097539795293172. arXiv: quant-ph/9508027 (pp. 4,
5).

https://doi.org/10.1137/s0097539796300921
https://doi.org/10.4230/LIPICS.FSTTCS.2010.145
https://arxiv.org/abs/1005.0523
https://doi.org/10.1016/j.ic.2004.04.001
https://arxiv.org/abs/quant-ph/9911124
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9508027

	Query Complexity Basics
	Classical query complexity
	Quantum query complexity
	Dirac notation
	Defining quantum query complexity

	Partial functions and examples
	Separations for partial functions

	Relationships for total functions

	Some Quantum Query Algorithms
	Revisiting the quantum query model
	An alternative definition
	A simplification
	Extension to non-Boolean strings

	Basic quantum algorithms
	Shor's algorithm
	Grover's algorithm
	Amplitude amplification

	Quantum Certificates and the Hybrid Method
	The hybrid method
	Linear programming duality
	Fractional certificates
	Some examples
	Randomized and quantum certificates

	The Adversary Method
	Primal form
	Dual form
	Applications
	Reproving previous results
	New applications

	The Negative-weight Adversary
	Limitations of the positive adversary method
	Property testing barrier
	The certificate barrier

	The negative adversary
	SDP formulation

	An error-dependent version
	Negative-weight adversary vs. quantum query complexity
	Duality and tightness
	Composition

	Polynomials, Part 1: Symmetrization
	Representing functions by polynomials
	Approximating polynomials
	Symmetrization
	Larger alphabets

	Polynomials, Part 2: Dual polynomials
	Duality for polynomials
	Sign degree and discrepancy
	Duality for discrepancy and sign degree

	Back to bounded-error polynomials
	Applications
	Composition theorems
	Explicit lower bounds

	Other Methods
	Lower Bounds by Upper Bounds
	The first ironic lower bound
	The second ironic lower bound

	The Multiplicative Adversary Method
	Zhandry's Quantum Query Lower Bounds
	Lower bounds in other models

	Communication Complexity Basics
	Basic definitions
	Formalizing the definition
	Some properties of the query function coming from a communication function

	Randomized communication models
	Private randomness
	Equivalence

	Quantum communication complexity
	Shared entanglement

	Communication matrices and partial functions
	The rank of a communication matrix

	A separation between deterministic and randomized communication
	Composing a query function with a communication function
	Other communication measures
	Parallels between query complexity and communication complexity
	Logrank corresponds to degree
	Certificate complexity

	The Gamma 2 Norm and Its Variants
	More on lifting theorems
	Approximate logrank
	Discrepancy and sign rank
	The gamma 2 norm
	Definitions of the gamma 2 norm
	Basic properties of the gamma 2 norm
	A quick detour about other matrix norms
	More properties of the gamma 2 norm
	The dual norm of the gamma 2 norm
	Grothendieck's inequality
	The cut norm and the mu norm

	Approximate gamma 2 norm and logrank
	Duality for the approximate gamma 2 norm

	References

